1
|
Chu L, Wang R, Gross CP, Chen K, Ma X. Ambient Temperature and Stroke Risk Among Adults Aged 18-64 Years: A Case-Crossover Study. J Am Coll Cardiol 2024; 84:2327-2331. [PMID: 39453364 DOI: 10.1016/j.jacc.2024.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Lingzhi Chu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA; Yale Center on Climate Change and Health, Yale School of Public Health, New Haven, Connecticut, USA
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, Connecticut, USA
| | - Cary P Gross
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, Connecticut, USA; Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA; Yale Center on Climate Change and Health, Yale School of Public Health, New Haven, Connecticut, USA.
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
2
|
Babalova L, Grendar M, Kurca E, Sivak S, Kantorova E, Mikulova K, Stastny P, Fasko P, Szaboova K, Kubatka P, Nosal S, Mikulik R, Nosal V. Forecasting extremely high ischemic stroke incidence using meteorological time serie. PLoS One 2024; 19:e0310018. [PMID: 39259726 PMCID: PMC11389912 DOI: 10.1371/journal.pone.0310018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
MOTIVATION The association between weather conditions and stroke incidence has been a subject of interest for several years, yet the findings from various studies remain inconsistent. Additionally, predictive modelling in this context has been infrequent. This study explores the relationship of extremely high ischaemic stroke incidence and meteorological factors within the Slovak population. Furthermore, it aims to construct forecasting models of extremely high number of strokes. METHODS Over a five-year period, a total of 52,036 cases of ischemic stroke were documented. Days exhibiting a notable surge in ischemic stroke occurrences (surpassing the 90th percentile of historical records) were identified as extreme cases. These cases were then scrutinized alongside daily meteorological parameters spanning from 2015 to 2019. To create forecasts for the occurrence of these extreme cases one day in advance, three distinct methods were employed: Logistic regression, Random Forest for Time Series, and Croston's method. RESULTS For each of the analyzed stroke centers, the cross-correlations between instances of extremely high stroke numbers and meteorological factors yielded negligible results. Predictive performance achieved by forecasts generated through multivariate logistic regression and Random Forest for time series analysis, which incorporated meteorological data, was on par with that of Croston's method. Notably, Croston's method relies solely on the stroke time series data. All three forecasting methods exhibited limited predictive accuracy. CONCLUSIONS The task of predicting days characterized by an exceptionally high number of strokes proved to be challenging across all three explored methods. The inclusion of meteorological parameters did not yield substantive improvements in forecasting accuracy.
Collapse
Affiliation(s)
- Lucia Babalova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marian Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
- Laboratory of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stefan Sivak
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ema Kantorova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarina Mikulova
- Slovak Hydrometeorological Institute in Bratislava, Bratislava, Slovakia
| | - Pavel Stastny
- Slovak Hydrometeorological Institute in Bratislava, Bratislava, Slovakia
| | - Pavel Fasko
- Slovak Hydrometeorological Institute in Bratislava, Bratislava, Slovakia
| | - Kristina Szaboova
- Slovak Hydrometeorological Institute in Bratislava, Bratislava, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Slavomir Nosal
- Clinic of Paediatric Anaesthesiology and Intensive Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Robert Mikulik
- First Department of Neurology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Neurology Department, Tomas Bata Regional Hospital, Zlín, Czech Republic
| | - Vladimir Nosal
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
3
|
Qian K, Sun Q, Li Y, Chen J. Association of ambient temperature on acute ischemic stroke in Yancheng, China. BMC Public Health 2024; 24:1879. [PMID: 39010033 PMCID: PMC11247823 DOI: 10.1186/s12889-024-19423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is a major global public health issue. There is limited research on the relationship between ambient temperature and AIS hospital admissions, and the results are controversial. Our objective is to assess the short-term impact of ambient temperature on the risk of AIS hospital admissions in Yancheng, China. METHODS We collected data on daily AIS hospital admissions, meteorological factors, and air quality in Yancheng from 2014 to 2019. We used Poisson regression to fit generalized linear models and distributed lag non-linear models to explore the association between ambient temperature and AIS hospital admissions. The effects of these associations were evaluated by stratified analysis by sex and age. RESULTS From 2014 to 2019, we identified a total of 13,391 AIS hospital admissions. We observed that the influence of extreme cold and heat on admissions for AIS manifests immediately on the day of exposure and continues for a duration of 3-5 days. Compared to the optimal temperature (24.4 °C), the cumulative relative risk under extreme cold temperature (-1.3 °C) conditions with a lag of 0-5 days was 1.88 (95%CI: 1.28, 2.78), and under extreme heat temperature (30.5 °C) conditions with a lag of 0-5 days was 1.48 (95%CI: 1.26, 1.73). CONCLUSIONS There is a non-linear association between ambient temperature and AIS hospital admission risk in Yancheng, China. Women and older patients are more vulnerable to non-optimal temperatures. Our findings may reveal the potential impact of climate change on the risk of AIS hospital admissions.
Collapse
Affiliation(s)
- Kai Qian
- Department of Neurology, Dongtai People's Hospital, Yancheng, 224200, Jiangsu, China
| | - Qian Sun
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, Jiangsu Province, China
| | - Yanlong Li
- Department of Neurology, Dongtai People's Hospital, Yancheng, 224200, Jiangsu, China
| | - Jin Chen
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224006, Jiangsu Province, China.
| |
Collapse
|
4
|
Qu C, Chen Y, Liu C, Hu Z, Zhang J, Yan L, Zhang H, Liu Y, Liu W, Cheng Q, Luo P, Liu Z. Burden of Stroke Attributable to Nonoptimal Temperature in 204 Countries and Territories: A Population-Based Study, 1990-2019. Neurology 2024; 102:e209299. [PMID: 38598742 PMCID: PMC11175652 DOI: 10.1212/wnl.0000000000209299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/30/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Stroke attributable to nonoptimal temperature needs more attention with dramatic climate change. The aim of this study was to estimate the global burden and distribution characteristics of the burden. METHODS In this ecological study, we collected data from the Climate Research Unit Gridded Time Series, the World Bank databases, and the Global Burden of Diseases study to estimate the distribution of burden. We used the joinpoint model, decomposition analysis, age-period-cohort model, panel data analysis, and health inequality analysis to assess the different types of stroke burden attributable to different climatic conditions. RESULTS The burden of stroke attributable to nonoptimal temperature continued to grow, and aging was a key factor in this increase. In 2019, 521,031 (95% uncertainty interval [UI] 402,433-663,996) deaths and 9,423,649 (95% UI 7,207,660-12,055,172) disability-adjusted life years [DALYs] attributable to stroke due to nonoptimal temperature were recorded globally. Globally, men (age-standardized mortality rate [ASMR] 7.70, 95% UI 5.80-9.73; age-standardized DALY rate [ASDR] 139.69, 95% UI 102.96-178.54 in 2019) had a heavier burden than women (ASMR 5.89, 95% UI 4.50-7.60; ASDR 96.02, 95% UI 72.62-123.85 in 2019). Central Asia (ASMR 18.12, 95% UI 13.40-24.53; ASDR 327.35, 95% UI 240.24-440.61 in 2019) had the heaviest burden at the regional level. In the national level, North Macedonia (ASMR 32.97, 95% UI 20.57-47.44 in 2019) and Mongolia (ASDR 568.54, 95% UI 242.03-1,031.14 in 2019) had the highest ASMR/ASDR, respectively. Low temperature currently contributes to the main burden (deaths 474,002, 95% UI 355,077-606,537; DALYs 8,357,198, 95% UI 6,186,217-10,801,911 attributable to low temperature vs deaths 48,030, 95% UI 5,630-104,370; DALYs 1,089,329, 95% UI 112,690-2,375,345 attributable to high temperature in 2019). However, the burden due to high temperature has increased rapidly, especially among people aged older than 10 years, and was disproportionately concentrated in low sociodemographic index (SDI) regions such as Africa. In addition, the rapid increase in the stroke burden due to high temperature in Central Asia also requires special attention. DISCUSSION This is the first study to assess the global stroke burden attributed to nonoptimal temperature. The dramatic increase in the burden due to high temperature requires special attention, especially in low-SDI countries.
Collapse
Affiliation(s)
- Chunrun Qu
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Chen
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Liu
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiwen Hu
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingwei Zhang
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Luzhe Yan
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Zhang
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yifan Liu
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanyao Liu
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Quan Cheng
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhixiong Liu
- From the Department of Neurosurgery (C.Q., Y.C., J.Z., Q.C., Z.L.), National Clinical Research Center for Geriatric Disorders (C.Q., Y.C., J.Z., Q.C., Z.L.), Xiangya Hospital, and XiangYa School of Medicine (C.Q., Y.C., C.L., Z.H., L.Y., Y.L., W.L.), Central South University, Changsha, Hunan; Department of Neurosurgery (H.Z.), The Second Affiliated Hospital, Chongqing Medical University; and Department of Oncology (P.L.), Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Danh N, Ho C, Ford E, Zhang J, Hong H, Reid C, Xu D. Association between ambient temperature and stroke risk in high-risk populations: a systematic review. Front Neurol 2024; 14:1323224. [PMID: 38259643 PMCID: PMC10801432 DOI: 10.3389/fneur.2023.1323224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background Significant associations exist between ambient temperature and stroke risk, but results in high cardiovascular risk populations are lacking. This systemic review summarised current evidence on ambient temperature and overall stroke risk in a high cardiovascular risk population. Methods We performed a systematic literature search across MEDLINE, Embase, PsycINFO, CINAHL, Web of Science, and GEOBASE, from inception to 3 July 2023, to identify all population-based studies. Eligible studies screened by independent reviewers recruited individuals aged 18 years and over, where minimum 80% of participants had a high cerebral vascular disease (CVD) risk profile. The primary outcomes are stroke morbidity and mortality, while the secondary outcomes are morbidity and mortality of ischaemic stroke (IS), intracranial cerebral haemorrhage (ICH), and subarachnoid haemorrhage (SH). Results The database searches identified 9,025 articles. After removing duplicates, 7,647 articles were screened in title and abstract to identify 380 articles for full-text screening. After the full-text screening of 380 articles by two independent reviewers, 23 articles were included in the review. Conclusion The evidence for an association between ambient temperature and stroke incidence is that lower temperatures were more likely to increase morbidity and mortality risk of both haemorrhagic and ischaemic stroke in older people. Conversely, higher ambient temperature is significantly associated with intracranial haemorrhage risk, but decreased risk with IS. Higher and lower ambient temperatures consistently increase stroke risks in patients with comorbidities of congestive heart failure and dyslipidaemia. This evidence implies the need to establish clinical guidelines for preventive intervention in patients with high stroke risks during extreme ambient temperatures.
Collapse
Affiliation(s)
- Nathan Danh
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Chau Ho
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Emily Ford
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Jian Zhang
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hua Hong
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Christopher Reid
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Xu
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Chen S, Dai M, Hu J, Cheng J, Duan Y, Zou X, Su Y, Liu N, Jingesi M, Chen Z, Yin P, Huang S, He Q, Wang P. Evaluating the predictive ability of temperature-related indices on the stroke morbidity in Shenzhen, China: Under cross-validation methods framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156425. [PMID: 35660600 DOI: 10.1016/j.scitotenv.2022.156425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Composite temperature-related indices have been utilized to comprehensively reflect the impact of multiple meteorological factors on health. We aimed to evaluate the predictive ability of temperature-related indices, choose the best predictor of stroke morbidity, and explore the association between them. METHODS We built distributed lag nonlinear models to estimate the associations between temperature-related indices and stroke morbidity and then applied two types of cross-validation (CV) methods to choose the best predictor. The effects of this index on overall stroke, intracerebral hemorrhage (ICH), and ischemic stroke (IS) morbidity were explored and we explained how this index worked using heatmaps. Stratified analyses were conducted to identify vulnerable populations. RESULTS Among 12 temperature-related indices, the alternative temperature-humidity index (THIa) had the best overall performance in terms of root mean square error when combining the results from two CVs. With the median value of THIa (25.70 °C) as the reference, the relative risks (RRs) of low THIa (10th percentile) reached a maximum at lag 0-10, with RRs of 1.20 (95%CI:1.10-1.31), 1.49 (95%CI:1.29-1.73) and 1.12 (95%CI:1.03-1.23) for total stroke, ICH and IS, respectively. According to the THIa formula, we matched the effects of THIa on stroke under various combinations of temperature and relative humidity. We found that, although the low temperature (<20 °C) had the greatest adverse effect, the modification effect of humidity on it was not evident. In contrast, lower humidity could reverse the protective effect of temperature into a harmful effect at the moderate-high temperature (24 °C-27 °C). Stratification analyses showed that the female was more vulnerable to low THIa in IS. CONCLUSIONS THIa is the best temperature-related predictor of stroke morbidity. In addition to the most dangerous cold weather, the government should pay more attention to days with moderate-high temperature and low humidity, which have been overlooked in the past.
Collapse
Affiliation(s)
- Siyi Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyi Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yanran Duan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Youpeng Su
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Liu
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Maidina Jingesi
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qingqing He
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Wu H, Zhang B, Wei J, Lu Z, Zhao M, Liu W, Bovet P, Guo X, Xi B. Short-term effects of exposure to ambient PM 1, PM 2.5, and PM 10 on ischemic and hemorrhagic stroke incidence in Shandong Province, China. ENVIRONMENTAL RESEARCH 2022; 212:113350. [PMID: 35487259 DOI: 10.1016/j.envres.2022.113350] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Short-term exposure to ambient PM2.5 and PM10 is associated with increased risk of mortality and hospital admissions for stroke. However, there is less evidence regarding the effect of exposure to PM1 on stroke incidence. We estimated the incidence risk of stroke and the attributable fractions related to short-term exposure to ambient PM1, PM2.5 and PM10 in China. METHODS County-specific incidence of stroke was obtained from health statistics in years 2014-2019. We linked county-level mean daily concentrations of PM1, PM2.5 and PM10 with stroke incidence. We used the time stratified case-crossover design to estimate the associations between stroke incidence and exposure to PM1, PM2.5 and PM10. We also estimated the disease burden fractions attributable to PM1, PM2.5, and PM10. RESULTS The study included a total of 2,193,954 stroke, from which 1,861,331 were ischemic and 332,623 were hemorrhagic stroke. PM1, PM2.5, and PM10 levels were associated with increased risks of total stroke and ischemic stroke at when assessing the associations in exposure at lag0-4 days. The increase of 10 μg/m3 in PM1, PM2.5, and PM10 was associated with total stroke, and the relative risks were 1.012 (95% confidence interval: 1.008, 1.015), 1.006 (1.004, 1.007) and 1.003 (1.002, 1.004), while the associations with ischemic stroke were 1.013 (1.010, 1.017), 1.006 (1.005, 1.008) and 1.003 (1.002, 1.004), respectively. There was no significant association between PM and risk of hemorrhagic stroke. The attributable fractions of total stroke were 6.9% (5.1%, 8.5%), 5.6% (4.2%, 6.8%) and 5.6% (3.9%, 7.1%) for PM1, PM2.5, and PM10, respectively. CONCLUSIONS PM1 showed a stronger association with stroke, with a larger attributable fraction of outcomes, than PM2.5 and PM10. Clean air policies should target the whole scope of PM, including PM1.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China.
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China.
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Wenhui Liu
- Information and Data Analysis Lab, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Pascal Bovet
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland.
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China.
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Vaičiulis V, Venclovienė J, Kačienė G, Tamošiūnas A, Kiznys D, Lukšienė D, Radišauskas R. Association between El Niño-Southern Oscillation events and stroke: a case-crossover study in Kaunas city, Lithuania, 2000-2015. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:769-779. [PMID: 35094109 PMCID: PMC8948119 DOI: 10.1007/s00484-021-02235-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 05/20/2023]
Abstract
The aim of this study was to determine the association between the daily number of cases of ischemic stroke (IS) and hemorrhagic stroke (HS) in patients aged 25-64 years and the El Niño-Southern Oscillation (ENSO) events during 2000-2015. As an indicator of the effect of the ENSO, the monthly NIÑO 3.4 index (Equatorial Pacific Sea Surface Temperature) was used. During the 5844-day study period, 5600 cases of stroke (3170 (56.61%) in men and 2430 (43.39%) in women) were analyzed. Of these, 4354 (77.8%) cases were IS, and 1041 (18.6%) cases were HS. In 3496 (62.2%) cases, stroke occurred in the age group of 55-64 years. In the analysis, we used the following categories of the ENSO events: strong La Niña, moderate La Niña, moderate El Niño, and strong El Niño. The effect of the ENSO was examined by using the multivariate Poisson regression adjusting for weather variables. The highest risk of both strokes (BS) was observed on days of strong and moderate La Niña (rate ratio (RR) 1.27, 95% CI 1.13-1.42) and RR = 1.15 (1.07-1.23), respectively), while the risk for IS was the highest on days of moderate El Niño (RR = 1.11(1.02-1.20)). A lower risk for BS was found on days of strong El Niño (RR = 0.77(0.62-0.97)). We found that ENSO events affected the occurrence of BS and IS in all age groups, and the strongest effect was observed among females. The results of this study provide new evidence that ENSO events may affect the risk of stroke, especially the risk of IS.
Collapse
Affiliation(s)
- Vidmantas Vaičiulis
- Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, Tilžės St. 18, 47181, Kaunas, Lithuania.
- Health Research Institute, Lithuanian University of Health Sciences, Tilžės St. 18, 47181, Kaunas, Lithuania.
| | - Jonė Venclovienė
- Department of Environmental Sciences, Vytautas Magnus University, Donelaičio St. 58, 44248, Kaunas, Lithuania
- Institute of Cardiology, Laboratory of Clinical Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, 50103, Kaunas, Lithuania
| | - Giedrė Kačienė
- Department of Environmental Sciences, Vytautas Magnus University, Donelaičio St. 58, 44248, Kaunas, Lithuania
| | - Abdonas Tamošiūnas
- Institute of Cardiology, Laboratory of Population Studies, Lithuanian University of Health Sciences, Sukileliu St. 15, 50103, Kaunas, Lithuania
- Department of Preventive Medicine, Lithuanian University of Health Sciences, Tilžės St. 18, 47181, Kaunas, Lithuania
| | - Deividas Kiznys
- Department of Environmental Sciences, Vytautas Magnus University, Donelaičio St. 58, 44248, Kaunas, Lithuania
| | - Dalia Lukšienė
- Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, Tilžės St. 18, 47181, Kaunas, Lithuania
- Institute of Cardiology, Laboratory of Population Studies, Lithuanian University of Health Sciences, Sukileliu St. 15, 50103, Kaunas, Lithuania
| | - Ričardas Radišauskas
- Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, Tilžės St. 18, 47181, Kaunas, Lithuania
- Institute of Cardiology, Laboratory of Population Studies, Lithuanian University of Health Sciences, Sukileliu St. 15, 50103, Kaunas, Lithuania
| |
Collapse
|
9
|
Abrignani MG, Lombardo A, Braschi A, Renda N, Abrignani V. Climatic influences on cardiovascular diseases. World J Cardiol 2022; 14:152-169. [PMID: 35432772 PMCID: PMC8968453 DOI: 10.4330/wjc.v14.i3.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/23/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Classical risk factors only partially account for variations in cardiovascular disease incidence; therefore, also other so far unknown features, among which meteorological factors, may influence heart diseases (mainly coronary heart diseases, but also heart failure, arrhythmias, aortic dissection and stroke) rates. The most studied phenomenon is ambient temperature. The relation between mortality, as well as cardiovascular diseases incidence, and temperature appears graphically as a ‘‘U’’ shape. Exposure to cold, heat and heat waves is associated with an increased risk of acute coronary syndromes. Other climatic variables, such as humidity, atmospheric pressure, sunlight hours, wind strength and direction and rain/snow precipitations have been hypothesized as related to fatal and non-fatal cardiovascular diseases incidence. Main limitation of these studies is the unavailability of data on individual exposure to weather parameters. Effects of weather may vary depending on other factors, such as population disease profile and age structure. Climatic stress may increase direct and indirect risks to human health via different, complex pathophysiological pathways and exogenous and endogenous mechanisms. These data have attracted growing interest because of the recent earth’s climate change, with consequent increasing ambient temperatures and climatic fluctuations. This review evaluates the evidence base for cardiac health consequences of climate conditions, and it also explores potential further implications.
Collapse
Affiliation(s)
- Maurizio Giuseppe Abrignani
- Operative Unit of Cardiology, Department of Medicine, S. Antonio Abate Hospital of Trapani, ASP Trapani, Trapani 91100, Italy
| | - Alberto Lombardo
- Operative Unit of Cardiology, Department of Medicine, S. Antonio Abate Hospital of Trapani, ASP Trapani, Trapani 91100, Italy
| | - Annabella Braschi
- Department of Internal Medicine, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo 90100, Italy
| | - Nicolò Renda
- Department of Mental Health, ASP Trapani, Trapani 91100, Italy
| | | |
Collapse
|