1
|
Solomon MC, Chandrashekar C, Kulkarni S, Shetty N, Pandey A. Exosomes: Mediators of cellular communication in potentially malignant oral lesions and head and neck cancers. F1000Res 2023; 12:58. [PMID: 38059133 PMCID: PMC10696492 DOI: 10.12688/f1000research.127368.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 12/08/2023] Open
Abstract
Exosomes are a unique type of extracellular vesicles that contain a plethora of biological cargo such as miRNA, mRNA, long non-coding RNA, DNA, proteins and lipids. Exosomes serve as very effective means of intercellular communication. Due the presence of a lipid bilayer membrane, exosomes are resistant to degradation and are highly stable. This makes them easily identifiable in blood and other bodily fluids such as saliva. The exosomes that are secreted from a parent cell directly release their contents into the cytoplasm of a recipient cell and influence their cellular activity and function. Exosomes can also transfer their content between cancer cells and normal cells and regulate the tumor microenvironment. Exosomes play a vital role in tumor growth, tumor invasion and metastasis. Exosomes provide a multitude of molecular and genetic information and have become valuable indicators of disease activity at the cellular level. This review explores the molecular characteristics of exosomes and the role that exosomes play in the tumorigenesis pathway of potentially malignant oral lesions and head and neck cancers The application of exosomes in the treatment of oral cancers is also envisioned. Exosomes are very small and can easily pass through various biological barriers, making them very good delivery vectors for therapeutic drugs as well as to selectively induce DNA's mRNA and miRNAs into targeted cancer cells.
Collapse
Affiliation(s)
- Monica Charlotte Solomon
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetana Chandrashekar
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Spoorti Kulkarni
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nisha Shetty
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aditi Pandey
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
2
|
Nascimento RB, Paiva KBS, Risteli M, Silva LHS, Rodini CO, Rodrigues MFSD, De Cicco R, Lopez RVM, Salo TA, Nunes FD, Xavier FCA. Loss of Caveolin-1 Expression in Tumor Cells is Associated with Increased Aggressiveness and Cell Invasion in Oral Squamous Cell Carcinoma. Head Neck Pathol 2023; 17:618-630. [PMID: 37233885 PMCID: PMC10513997 DOI: 10.1007/s12105-023-01562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Changes in Caveolin-1 (CAV-1) expression are related to tumorigenesis. The aim of this study was to evaluate the role of CAV-1 in tumor progression in oral squamous cell carcinoma (SCC) tissue samples and the effect of CAV-1 silencing on two oral tongue SCC (OTSCC) cell lines (SCC-25, from a primary tumor, and HSC-3 from lymph node metastases). METHODS Mycroarray hybridization, mRNA expression, and immunohistochemistry were performed on OSCC tissue samples and corresponding non-tumoral margin tissues. The effects of CAV-1 silencing (siCAV-1) on cell viability, membrane fluidity, on the expression of epithelial to mesenchymal transition (EMT) markers and on cell migration and invasion capacity of OTSCC cell lines were evaluated. RESULTS Microarray showed a greater CAV-1 expression (1.77-fold) in OSCC tumors than in non-tumoral tissues and 2.0-fold more in less aggressive OSCCs. However, significant differences in CAV-1 gene expression were not seen between tumors and non-tumoral margins nor CAV-1 with any clinicopathological parameters. CAV-1 protein was localized both in carcinoma and in spindle cells of the tumor microenvironment (TME), and CAV-1 positive TME cells were associated with smaller/more aggressive tumors, independent of the carcinoma cells' expression. Silencing of CAV-1 increased cell viability only in SCC-25 cells. It also stimulated the invasion of HSC-3 cells and increased ECAD and BCAT mRNA in these cells; however, the protein levels of the EMT markers were not affected. CONCLUSION Decreased expression of CAV-1 by tumor cells in OSCC and an increase in the TME were associated with increased cell invasiveness and tumor aggressiveness.
Collapse
Affiliation(s)
- Rebeca Barros Nascimento
- Laboratório de Patologia Oral Cirúrgica, Faculdade de Odontologia, Universidade Federal da Bahia, Rua Araújo Pinho, 62, Canela, Salvador, Bahia, 40110-150, Brazil
| | - Katiúcia Batista Silva Paiva
- Laboratório de Biologia da Matriz Extracelular e Interação Celular, Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Maija Risteli
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Luiz Henrique Santos Silva
- Laboratório de Biologia da Matriz Extracelular e Interação Celular, Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Oliveira Rodini
- Departamento de Ciências Biológicas, Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, Brazil
| | | | - Rafael De Cicco
- Departamento de Cirurgia de Cabeça e Pescoço, Instituto de Câncer Doutor Arnaldo Vieira de Carvalho, São Paulo, Brazil
| | | | - Tuula Anneli Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Fábio Daumas Nunes
- Laboratório de Patologia Molecular, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, Brazil
| | - Flávia Caló Aquino Xavier
- Laboratório de Patologia Oral Cirúrgica, Faculdade de Odontologia, Universidade Federal da Bahia, Rua Araújo Pinho, 62, Canela, Salvador, Bahia, 40110-150, Brazil.
| |
Collapse
|
3
|
Al-Rawi NH, Hachim IY, Hachim MY, Salmeh A, Uthman AT, Marei H. Anatomical landscape of oral squamous cell carcinoma: A single cancer center study in UAE. Heliyon 2023; 9:e15884. [PMID: 37206025 PMCID: PMC10189390 DOI: 10.1016/j.heliyon.2023.e15884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/12/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Objectives This study aimed to present demographic and clinicopathological aspects of OSCC identified in Pathology service in the UAE over a 13-year period and compare these findings to a cohort of 523 cases of Head and neck squamous cell carcinoma using the Cancer Genome Atlas's cBioPortal database (http://cbioportal.org). Material and methods Histological examination of all hematoxylin and eosin-stained slides and assessment of all demographic and clinical information from laboratory records were performed on all OSCC diagnosed between 2005 and 2018. Results Males made up 71.4% of the sample of 231 OSCCs that were evaluated. The patients' average age was 55.38 years. The two most prevalent afflicted sites were the anterior two-thirds of the tongue (57.6%) and the cheek (28.1%). The most prevalent site among smokers were the floor of mouth, cheek, and jaw bones. There was a link between tumor size and numerous anatomical subsites that was shown to be highly significant. OSCC in the FOM was associated with a 25% mortality rate. Patients with OSCC of the anterior tongue and cheek had the best prognosis, with only 15.7% and 15.3% of patients dying during follow-up. Conclusion The present investigation found a correlation between the diverse clinicopathological characteristics of the various anatomical subsites in OSCC. Different anatomical subsites also displayed varying degrees of gene mutation.
Collapse
Affiliation(s)
- Natheer H. Al-Rawi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Dental Medicine, University of Sharjah, United Arab Emirates
- Corresponding author. Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Ibrahim Y. Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mahmood Y. Hachim
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Asmaa T. Uthman
- College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Hesham Marei
- College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| |
Collapse
|
4
|
Cholesterol depletion affects caveolin-1 expression, migration and invasion of oral tongue squamous cell carcinoma cell lines. Arch Oral Biol 2023; 150:105675. [PMID: 36989864 DOI: 10.1016/j.archoralbio.2023.105675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/21/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
INTRODUCTION Cholesterol is a key lipid molecule within cell membranes. This is especially true in cavelolas, invaginated membrane nanodomains, which present the protein caveolin-1 (CAV-1). It is important to note that this structure is involved in many cell signalling pathways. Additionally, high cholesterol is seen in different tumor types but little is known in regards to oral tongue squamous cell carcinoma (OTSCC). The aim of this study was to evaluate the influence of cholesterol depletion on primary (SCC-25) and metastatic (HSC-3) OTSCC cell lines. MATERIALS AND METHODS Cell membrane fluidity, cell viability, gene and protein expression of CAV-1 and of epithelial-mesenchymal transition (EMT) markers, cell migration in Myogel and invasion-myoma assay were evaluated after cholesterol depletion with methyl-β-cyclodextrin (MβCD - 7.5, 10 or 15 mM) RESULTS: Decreased cell viability and increased membrane fluidity of SCC-25 cells was seen with cholesterol depletion but cell viability was less affected and there was no effect on membrane fluidity in HSC-3. Cholesterol depletion also decreased CAV-1 at 6 h but increased it after 24 h.; both epithelial and mesenchymal EMT genes were upregulated after 6 h, followed by downregulation at 24 h in SCC-25. In HSC-3, CAV-1 was downregulated, and E-cadherin gene (ECAD) was upregulated at 6 h. Only the protein β-catenin in SCC-25 was affected, and cell migration of both cell lines was decreased, affecting SCC-25 more intensely. The invasive capacity within human myoma organotypic model was increased in SCC-25 and decreased in HSC-3. CONCLUSION Cholesterol depletion affects CAV-1 and ECAD inversely. This affect also depends on cell type since the invasive capacity was augmented in primary cells while decreased in metastatic cells.
Collapse
|
5
|
Zeng R, Wu H, Qiu X, Zhuo Z, Sha W, Chen H. Predicting survival and immune microenvironment in colorectal cancer: a STAT signaling-related signature. QJM 2022; 115:596-604. [PMID: 34978566 DOI: 10.1093/qjmed/hcab334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite research advances, studies on predictive models of colorectal cancer (CRC) remain scarce and none have evaluated signal transducer and activator of transcription (STAT) signaling. AIM To develop an effective prognostic signature for and evaluate its association with immune microenvironment. DESIGN Comprehensive analysis based on The Cancer Genome Atlas and Gene Expression Omnibus databases with experimental validation. METHODS Gene expression and clinical profiles of CRC patients were extracted from the databases. Differentially expressed genes with prognostic values were used to construct a signature. Immune cell infiltration and composition were further evaluated by TIMER, single-sample gene set enrichment and CIBERSORT analyses. The impact of the hub gene Caveolin-1 (CAV1) on cell proliferation, apoptosis, senescence and tumor angiogenesis was experimentally validated. RESULTS The five-gene-based STAT signaling-related prognostic signature was significantly associated with CRC survival, and the nomogram was with improved prognostic efficacy than the conventional TNM stage. The STAT signaling-related signature was correlated with tumor immune microenvironment. CAV1 was further identified as the hub gene within the signature. CAV1 inhibits the proliferation and induces the apoptosis as well as senescence of CRC cells. In addition, the tumor angiogenesis of CRC can be suppressed by CAV1 overexpression. CONCLUSIONS The STAT signaling-related signature effectively predicts the prognosis and regulates tumor immune microenvironment in CRC. Our study underscores the role of STAT regulator, CAV1, as an important tumor suppressor in CRC carcinogenesis. Modulating STAT and its regulators could be a promising strategy for CRC in clinical practice.
Collapse
Affiliation(s)
- R Zeng
- From the Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Yuexiu District, Guangdong, China
- Shantou University Medical College, Shantou 515041, Jinping District, Guangdong, China
| | - H Wu
- From the Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Yuexiu District, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou 510006, Panyu District, Guangdong, China
| | - X Qiu
- Zhuguang Community Healthcare Center, Guangzhou 510080, Yuexiu District, Guangdong, China
| | - Z Zhuo
- From the Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Yuexiu District, Guangdong, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, Panyu District, Guangdong, China
| | - W Sha
- From the Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Yuexiu District, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Baiyun District, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou 510006, Panyu District, Guangdong, China
| | - H Chen
- From the Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Yuexiu District, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Baiyun District, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou 510006, Panyu District, Guangdong, China
| |
Collapse
|
6
|
Dhar R, Mallik S, Devi A. Exosomal microRNAs (exoMIRs): micromolecules with macro impact in oral cancer. 3 Biotech 2022; 12:155. [DOI: 10.1007/s13205-022-03217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
|
7
|
Suo M, Lin Z, Guo D, Zhang A. Hsa_circ_0056686, derived from cancer-associated fibroblasts, promotes cell proliferation and suppresses apoptosis in uterine leiomyoma through inhibiting endoplasmic reticulum stress. PLoS One 2022; 17:e0266374. [PMID: 35390056 PMCID: PMC8989227 DOI: 10.1371/journal.pone.0266374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/19/2022] [Indexed: 12/12/2022] Open
Abstract
Abnormal expression of circular RNAs (circRNAs) in cancer-associated fibroblasts (CAFs) is involved in the tumor-promoting ability of CAFs. Hsa_ circ_ 0056686 has been reported to affect leiomyoma size. The purpose of this study is to investigate the regulatory role of hsa_circ_0056686 in CAFs on uterine leiomyoma (ULM). The primary CAFs and corresponding normal fibroblasts (NFs) were isolated from the tumor zones of ULM tissues and adjacent, respectively. Hsa_circ_0056686 level was higher in CAFs than NFs, and also higher in ULM tissues than in adjacent tissues. CAFs-CM significantly increased the proliferation and migration and inhibited apoptosis of ULM cells, as confirmed by CCK-8, transwell, and flow cytometry assays. Moreover, conditioned medium (CM) from CAFs transfected with hsa_circ_0056686 shRNA (CAFssh-circ_0056686-CM) abolished CAFs-mediated proliferation, migration and apoptosis of ULM cells. CAFs-CM suppressed the expression of endoplasmic reticulum stress (ERS) marker proteins and induced the expression of extracellular matrix (ECM) marker proteins, thus suppressing ERS and increasing ECM accumulation, which could be declined by CAFssh-circ_0056686-CM. Meanwhile, knockdown of hsa_circ_0056686 reversed the inhibitory effects of CAFs-CM on brefeldin A-induced cell apoptosis. Luciferase gene reporter and RNA pull-down assays indicated that miR-515-5p directly bound with hsa_circ_0056686. MiR-515-5p overexpression restored the hsa_circ_0056686-shRNA-mediated malignant biological behaviors of ULM cells. Hsa_circ_0056686 contributed to tumor-promoting effects of CAFs in ULM, manifested by promoting ULM cell proliferation and migration and reducing ERS-induced apoptosis through sponging miR-515-5p.
Collapse
Affiliation(s)
- Meifang Suo
- Department of Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
| | - Zhichen Lin
- Department of Burns, the 990th Hospital of the Joint Staff of the People’s Liberation Army, Zhumadian, China
| | - Dongfang Guo
- Department of Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
| | - Airong Zhang
- Department of Medical Laboratory, Zhumadian Central Hospital, Zhumadian, China
- * E-mail:
| |
Collapse
|
8
|
Villegas-Pineda JC, Lizarazo-Taborda MDR, Ramírez-de-Arellano A, Pereira-Suárez AL. Exosomal miRNAs and lncRNAs: The Modulator Keys of Cancer-Associated Fibroblasts in the Genesis and Progression of Malignant Neoplasms. Front Cell Dev Biol 2021; 9:717478. [PMID: 34912797 PMCID: PMC8667074 DOI: 10.3389/fcell.2021.717478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is made up of a universe of molecular and cellular components that promote or inhibit the development of neoplasms. Among the molecular elements are cytokines, metalloproteinases, proteins, mitochondrial DNA, and nucleic acids, within which the ncRNAs: miRNAs and lncRNAs stand out due to their direct modulating effects on the genesis and progression of various cancers. Regarding cellular elements, the solid tumor microenvironment is made up of tumor cells, healthy adjacent epithelial cells, immune system cells, endothelial cells, and stromal cells, such as cancer-associated fibroblasts, which are capable of generating a modulating communication network with the other components of the tumor microenvironment through, among other mechanisms, the secretion of exosomal vesicles loaded with miRNAs and lncRNAs. These ncRNAs are key pieces in developing neoplasms since they have diverse effects on cancer cells and healthy cells, favoring or negatively regulating protumoral cellular events, such as migration, invasion, proliferation, metastasis, epithelial-mesenchymal transition, and resistance to treatment. Due to the growing number of relevant evidence in recent years, this work focused on reviewing, analyzing, highlighting, and showing the current state of research on exosomal ncRNAs derived from cancer-associated fibroblasts and their effects on different neoplasms. A future perspective on using these ncRNAs as real therapeutic tools in the treatment of cancer patients is also proposed.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
9
|
Wang H, Yu T, Mao L. Placental-Cadherin, a biomarker for local immune status and poor prognosis among patients with tongue squamous cell carcinoma. Eur Arch Otorhinolaryngol 2021; 279:3597-3609. [PMID: 34825969 DOI: 10.1007/s00405-021-07181-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The prognostic and clinicopathological value of placental-Cadherin (CDH3) in multiple cancers is controversial. The diagnostic significance and functional mechanism of CDH3 in tongue squamous cell carcinoma (TSCC) have not been thoroughly investigated. This study aims to clarify the potential of CDH3 as biomarker for TSCC. METHODS Here, meta-analysis, bioinformatics, along wet-lab techniques were employed to evaluate the diagnostic, as well as the prognostic value of CDH3 in diverse types of cancers, especially TSCC. Meta-analysis was used to determine the influence of CDH3 on prognostic and clinicopathological features in numerous cancers. Molecular biology function was used to investigate the role of CDH3 in TSCC cells. The relationship of CDH3 with tumor-infiltrating immune cells (TIICs) in TSCC was assessed using CIBERSORT. Moreover, gene set enrichment analysis (GSEA) was done based on TCGA. Besides, the hub genes and associated cascades were uncovered based on gene co-expression with CDH3. RESULTS CDH3 upregulation correlated with worse overall survival and disease-free survival in various cancers. CDH3 was validated as an independent risk factor for HNSC and was linked to the onset of tumors, tumor stage, and infiltration depth. CDH3 silencing inhibited cell growth and induced apoptosis of the CAL-27 cell line. CDH3 expression level correlated with infiltration by macrophages, T cells, T cell regulatory cells (Tregs), and plasma cells in TSCC. GSEA revealed that CDH3 influences multiple cancer-associated cascades. Besides, CBX3, CCHCR1, along NFYC were identified as the core hub genes for CDH3. CONCLUSION We identified CDH3 as a pan-cancer gene with potential prognostic and diagnostic significance in various cancers, particularly in TSCC, where it is tumorigenic.
Collapse
Affiliation(s)
- Haixia Wang
- Harbin Medical University Dental Hospital, 141 Iman Street, Nangang District, 150081, Harbin, People's Republic of China
| | - Tianliang Yu
- Harbin Medical University Dental Hospital, 141 Iman Street, Nangang District, 150081, Harbin, People's Republic of China
| | - Limin Mao
- Harbin Medical University Dental Hospital, 141 Iman Street, Nangang District, 150081, Harbin, People's Republic of China.
| |
Collapse
|
10
|
Kaya S, Wiesmann N, Goldschmitt J, Krüger M, Al-Nawas B, Heider J. Differences in the expression of caveolin-1 isoforms in cancer-associated and normal fibroblasts of patients with oral squamous cell carcinoma. Clin Oral Investig 2021; 25:5823-5831. [PMID: 33774714 PMCID: PMC8443514 DOI: 10.1007/s00784-021-03887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES For many years, tumor development has been viewed as a cell-autonomous process; however, today we know that the tumor microenvironment (TME) and especially cancer-associated fibroblasts (CAFs) significantly contribute to tumor progression. Caveolin-1 (Cav-1) is a scaffolding protein which is involved in several cancer-associated processes as important component of the caveolae. Our goal was to shed light on the expression of the two different isoforms of Cav-1 in normal fibroblasts (NFs) and CAFs of patients with oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Fibroblasts from normal mucosa and CAFs were isolated and propagated in vitro. Gene expression of the different Cav-1 isoforms was assessed via quantitative real-time PCR (qPCR) and supplemented by protein expression analysis. RESULTS We could show that the Cav-1β isoform is more highly expressed in NFs and CAFs compared to Cav-1α. Furthermore, the different Cav-1 isoforms tended to be differently expressed in different tumor stages. However, this trend could not be seen consistently, which is in line with the ambiguous role of Cav-1 in tumor progression described in literature. Western blotting furthermore revealed that NFs and CAFs might differ in the oligomerization profile of the Cav-1 protein. CONCLUSION These differences in expression of Cav-1 between NFs and CAFs of patients with OSCC confirm that the protein might play a role in tumor progression and is of interest for further analyses. CLINICAL RELEVANCE Our findings support a possible role of the two isoforms of Cav-1 in the malignant transformation of OSCC.
Collapse
Affiliation(s)
- S Kaya
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Nadine Wiesmann
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany. .,Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - J Goldschmitt
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - M Krüger
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - B Al-Nawas
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - J Heider
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
11
|
Sánchez-Romero C, Pereira-Prado V, Sicco E, Suarez M, Tapia-Repetto G, Carreón-Burciaga R, Gónzalez-Gónzalez R, Villarroel-Dorrego M, Meleti M, Molina-Frechero N, Bologna-Molina R. Expression of caveolin-1 in tooth germ, ameloblastoma and ameloblastic carcinoma. Med Oral Patol Oral Cir Bucal 2021; 26:e238-e245. [PMID: 33037799 PMCID: PMC7980299 DOI: 10.4317/medoral.24151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The caveolin-1 protein (structural component of membrane caveolae) plays important roles in several biological functions, such as endocytosis, cell adhesion, and cell signaling. However, this protein has been associated with mechanisms of tumorigenesis in several neoplasms. The expression patterns and roles of caveolin-1 in the oral epithelium and in embryonic and odontogenic tumor tissues are still unclear. MATERIAL AND METHODS The expression of caveolin-1 was evaluated in samples of the normal gingival epithelium (n=7), human tooth germ (TG) (n=12), ameloblastoma (AM) (n=83), and ameloblastic carcinoma (AC) (n=9) by immunohistochemistry. Additionally, AM samples were analyzed by qRT-PCR and Western blot. RESULTS Most TG (91.7%), AM (73.5%) and AC (100%) samples showed diverse patterns of immunohistochemical positivity for caveolin-1, while only one gingival sample was positive. The transcript levels of cav-1 were significantly upregulated by 14.9-fold in AM tissue (P = 0.0014) compared to those in normal gingival epithelial tissue, as shown by qRT-PCR. Presence of caveolin-1 protein was confirmed by Western blot analysis. The caveolin-1 immunoexpression patterns throughout the stages of TG show its importance during odontogenesis. CONCLUSIONS The overexpression of caveolin-1 in AM and AC compared to its expression in normal gingival epithelium (adult tissue) suggests a possible role of caveolin-1 in protumoral events, but due to the similar immunoexpression observed in AM and AC, caveolin-1 may not necessarily participate in the malignant transformation process. However, future studies are needed to clarify and confirm these hypotheses.
Collapse
Affiliation(s)
- C Sánchez-Romero
- Molecular Pathology Area, Faculty of Dentistry University of the Republic, Uruguay
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Exosomes in head and neck cancer: Roles, mechanisms and applications. Cancer Lett 2020; 494:7-16. [DOI: 10.1016/j.canlet.2020.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/04/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
|
13
|
Yaghoubi S, Najminejad H, Dabaghian M, Karimi MH, Abdollahpour-Alitappeh M, Rad F, Mahi-Birjand M, Mohammadi S, Mohseni F, Sobhani Lari M, Teymouri GH, Rigi Yousofabadi E, Salmani A, Bagheri N. How hypoxia regulate exosomes in ischemic diseases and cancer microenvironment? IUBMB Life 2020; 72:1286-1305. [PMID: 32196941 DOI: 10.1002/iub.2275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as natural occurring vesicles, play highly important roles in the behavior and fate of ischemic diseases and different tumors. Secretion, composition, and function of exosomes are remarkably influenced by hypoxia in ischemic diseases and tumor microenvironment. Exosomes secreted from hypoxic cells affect development, growth, angiogenesis, and progression in ischemic diseases and tumors through a variety of signaling pathways. In this review article, we discuss how hypoxia affects the quantity and quality of exosomes, and review the mechanisms by which hypoxic cell-derived exosomes regulate ischemic cell behaviors in both cancerous and noncancerous cells.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | | | | - Fariba Rad
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shiva Mohammadi
- Department of Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Sobhani Lari
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
| | | | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Zhang Z, Gao Z, Rajthala S, Sapkota D, Dongre H, Parajuli H, Suliman S, Das R, Li L, Bindoff LA, Costea DE, Liang X. Metabolic reprogramming of normal oral fibroblasts correlated with increased glycolytic metabolism of oral squamous cell carcinoma and precedes their activation into carcinoma associated fibroblasts. Cell Mol Life Sci 2020; 77:1115-1133. [PMID: 31270582 PMCID: PMC11104868 DOI: 10.1007/s00018-019-03209-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
Cancers show a metabolic shift towards aerobic glycolysis. By "corrupting" their microenvironment, carcinoma cells are able to obtain energy substrates to "fuel" their mitochondrial metabolism and cell growth in an autophagy-associated, paracrine manner. However, the metabolic changes and role of normal fibroblasts in this process remain unclear. We devised a novel, indirect co-culture system to elucidate the mechanisms of metabolic coupling between stromal cells and oral squamous cell carcinoma (OSCC) cells. Here, we showed that normal oral fibroblasts (NOFs) and OSCC become metabolically coupled through several processes before acquiring an activated phenotype and without inducing senescence. We observed, for the first time, that NOFs export mitochondria towards OSCCs through both direct contact and via indirect mechanisms. NOFs are activated and are able to acquire a cancer-associated fibroblasts metabolic phenotype when co-cultivation with OSSC cells, by undergoing aerobic glycolysis, secreting more reactive oxygen species (ROS), high L-lactate and overexpressing lactate exporter MCT-4, leading to mitochondrial permeability transition pore (mPTP) opening, hypoxia, and mitophagy. On the other hand, Cav-1-low NOFs generate L-lactate to "fuel" mitochondrial metabolism and anabolic growth of OSCC. Most interestingly, the decrease in AMPK activity and PGC-1α expression might involve in regulation of ROS that functions to maintain final energy and metabolic homeostasis. This indicated, for the first time, the existence of ATP and ROS homeostasis during carcinogenesis. Our study suggests that an efficient therapeutical approach has to target the multiple mechanisms used by them to corrupt the normal surrounding stroma and metabolic homeostasis.
Collapse
Affiliation(s)
- Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Zhenjie Gao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Saroj Rajthala
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Postboks 1052, Blindern, 0316, Oslo, Norway
| | - Harsh Dongre
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Himalaya Parajuli
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway
| | - Salwa Suliman
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Ridhima Das
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Laurence A Bindoff
- The Mitochondrial Medicine and Neurogenetics (MMN) Group, Department of Clinical Medicine, University of Bergen, PO Box 7804, 5020, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
- The Mitochondrial Medicine and Neurogenetics (MMN) Group, Department of Clinical Medicine, University of Bergen, PO Box 7804, 5020, Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | - Xiao Liang
- The Mitochondrial Medicine and Neurogenetics (MMN) Group, Department of Clinical Medicine, University of Bergen, PO Box 7804, 5020, Bergen, Norway.
- Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
15
|
Chen X, Xu H, Sun G, Zhang Y. LncRNA CASC9 Affects Cell Proliferation, Migration, and Invasion of Tongue Squamous cell Carcinoma via Regulating miR-423-5p/SOX12 Axes. Cancer Manag Res 2020; 12:277-287. [PMID: 32021442 PMCID: PMC6969678 DOI: 10.2147/cmar.s220351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction The incidence of tongue squamous cell carcinoma (TSCC) has increased in recent decades. However, the function of long non-coding RNA (lncRNA) CASC9 in the occurrence and progression of TSCC is unclear. In this work, we attempted to clarify the role of lncRNA CASC9 in determining the phenotype of TSCC cells, and to clarify the underlying mechanisms. Methods We used qRT-PCR analysis to identify the level of CASC9 mRNA expression in TSCC clinical samples and cell lines. We investigated cell proliferation, and cell migration and invasion of TSCC cells transfected with siCASC9 or siNC using CCK-8 and transwell assays. Bioinformatics analysis and a luciferase reporter assay were employed to predict and verify the target microRNA (miRNA). Results CASC9 was up-regulated in the TSCC tissues and cells, and predicted a poor prognosis. CASC9 silencing significantly inhibited cell proliferation, migration, and invasion of the TSCC cells compared with the non-targeting control small interfering RNA (siCtrl) treatment. miR-423-5p was predicted as the targeting miRNA of CASC9; this was verified by a luciferase reporter assay. CASC9 expression showed a negative correlation with miR-423-5p expression and a positive correlation with SOX12 expression. The miR-423-5p inhibitor can rescue the carcinogenesis effect of CASC9 on TSCC cells. Conclusion Our work indicates that CASC9 plays a role in TSCC tumorigenesis; this novel information will improve TSCC molecular targeting therapy.
Collapse
Affiliation(s)
- Xin Chen
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Hanfeng Xu
- Oncology Department, The Second Hospital of Nanjing, Nanjing, People's Republic of China
| | - Guowen Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Ying Zhang
- Oncology Department, The Second Hospital of Nanjing, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Rodríguez Zorrilla S, García García A, Blanco Carrión A, Gándara Vila P, Somoza Martín M, Gallas Torreira M, Pérez Sayans M. Exosomes in head and neck cancer. Updating and revisiting. J Enzyme Inhib Med Chem 2020; 34:1641-1651. [PMID: 31496355 PMCID: PMC6746279 DOI: 10.1080/14756366.2019.1662000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes have gone from being considered simple containers of intracellular waste substances to be considered important carriers of cellular signals. Its broad capacity to promote tumour growth, both in situ and metastatic, has greatly intensified scientific research on them. In the same way and depending on its content, its tumour suppressive properties have opened a window of light and hope in the fight against cancer. In the present review we try to gather in a simple and understandable way the most relevant knowledge to date on the role of exosomes in oral squamous cell carcinoma, helping to understand their process of formation, release and activity on the tumour microenvironment.
Collapse
Affiliation(s)
- Samuel Rodríguez Zorrilla
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Abel García García
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| | - Andrés Blanco Carrión
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Pilar Gándara Vila
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Manuel Somoza Martín
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mercedes Gallas Torreira
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mario Pérez Sayans
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| |
Collapse
|
17
|
Xiao C, Song F, Zheng YL, Lv J, Wang QF, Xu N. Exosomes in Head and Neck Squamous Cell Carcinoma. Front Oncol 2019; 9:894. [PMID: 31620359 PMCID: PMC6759986 DOI: 10.3389/fonc.2019.00894] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Exosomes are small membranous vesicles that contain proteins, lipids, genetic material, and metabolites with abundant information from parental cells. Exosomes carry and deliver bioactive contents that can reprogram the functions of recipient cells and modulate the tumor microenvironment to induce pathological events through cell-to-cell communication and signal transduction. Tumor-derived exosomes (TDEs) in head and neck squamous cell carcinoma (HNSCC) are involved in most aspects of cancer initiation, invasion, progression, immunoregulation, therapeutic applications, and treatment resistance. In addition, HNSCC-derived exosomes can be used to obtain information on diagnostic and therapeutic biomarkers in circulating blood and saliva. Currently, the biology, mechanisms, and applications of TDEs in HNSCC are still unclear, and further research is required. In this review, we discuss various aspects of exosome biology, including exosomal components, exosomal biomarkers, and molecular mechanisms involved in immunoregulation, cancer metastasis, and therapy resistance. We also describe recent applications to update our understanding of exosomes in HNSCC.
Collapse
Affiliation(s)
- Cheng Xiao
- Department of Medical Oncology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fang Song
- Department of Anesthesiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yu Long Zheng
- Department of Medical Oncology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiong Lv
- Department of Oral and Maxillofacial Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qiang Feng Wang
- Department of Medical Oncology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Zhang Y, Fan W, Wu J, Dong J, Cui Z. Association of caveolin-1 protein expression with hepatocellular carcinoma: a meta-analysis and literature review. Cancer Manag Res 2019; 11:5113-5122. [PMID: 31239768 PMCID: PMC6553953 DOI: 10.2147/cmar.s194033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/07/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Aberrant expression of caveolin-1 (CAV-1) is involved in the pathogenesis of hepatocellular carcinoma (HCC); however, the results have been inconsistent due to the small size of sample in the individual study. Methods: We performed a meta-analysis and evaluated the association of CAV-1 protein overexpression and clinicopathological significance by using Review Manager 5.2. Pooled ORs and HR with corresponding CIs were calculated. Results: Nine studies were included in the meta-analysis with 810 HCC and 172 cirrhosis patients. CAV-1 protein overexpression was correlated with the risk of cirrhosis; OR was 3.25, p=0.01. Furthermore, the rate of CAV-1 protein overexpression was significantly higher in HCC with cirrhosis than HCC without cirrhosis, suggesting that the CAV-1 protein overexpression likely initiated carcinogenesis in liver with cirrhosis and subsequently contributed to the progression of HCC. In addition, CAV-1 protein overexpression was strongly associated with poor differentiated HCC and invasion; ORs were 2.61 and 2.71, respectively. CAV-1 protein overexpression was strongly correlated with poor overall survival in patients with HCC; HR was 0.4, p=0.03. Conclusions: In summary, CAV-1 protein overexpression is at risk for liver cirrhosis and HCC derived from cirrhosis, and CAV-1 is also a promising prognostic predictor in HCC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng 475000, People's Republic of China
| | - Wenjuan Fan
- Medical Bioengineering Key Laboratory, Luohe Medical College, Luohe 462002, People's Republic of China
| | - Jiang Wu
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng 475000, People's Republic of China
| | - Jinglong Dong
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng 475000, People's Republic of China
| | - Zhanjun Cui
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
19
|
Xie C, Ji N, Tang Z, Li J, Chen Q. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers. Mol Cancer 2019; 18:83. [PMID: 30954079 PMCID: PMC6451295 DOI: 10.1186/s12943-019-0985-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
The proliferation and metastasis ability of tumors are mediate by the "mutual dialogue" between cells in the tumor microenvironment (TME). Extracellular vesicles (EVs), mainly exosomes and microvesicles, play an important role in achieving intercellular substance transport and information transfer in the TME. Initially considered "garbage dumpsters" and later referred to as "signal boxes", EVs carry "cargo" (proteins, lipids, or nucleic acids) that can redirect the function of a recipient cell. Currently, the molecular mechanisms and clinical applications of EVs in head and neck cancers (HNCs) are still at an early stage and need to be further investigate. In this review, we provide insight into the TME of HNCs, classifying and summarizing EVs derived from different cell types and illuminating their complex signaling networks involved in mediating tumor proliferation, invasion and metastasis, vascular angiogenesis and cancer drug resistance. In addition, we highlight the application of EVs in HNCs, underlining the special pathological and physiological environment of HNCs. The application of tumor heterogeneous EVs in saliva and circulating blood diagnostics will provide a new perspective for the early screening, real-time monitoring and prognostic risk assessment of HNCs. Given the concept of precise and individual therapy, nanostructured EVs are equipped with superior characteristics of biocompatibility, low immunogenicity, loadability and modification ability, making these molecules one of the new strategies for HNCs treatment.
Collapse
Affiliation(s)
- Changqing Xie
- Department of Oral and Maxillofacial Surgery, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha, 410078, Hunan, China.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
20
|
Rodríguez Zorrilla S, Pérez-Sayans M, Fais S, Logozzi M, Gallas Torreira M, García García A. A Pilot Clinical Study on the Prognostic Relevance of Plasmatic Exosomes Levels in Oral Squamous Cell Carcinoma Patients. Cancers (Basel) 2019; 11:cancers11030429. [PMID: 30917536 PMCID: PMC6468603 DOI: 10.3390/cancers11030429] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background: To evaluate the relationship between the plasmatic CD63 and CAV1 positive exosome levels, in patients with OSCC before and after surgical treatment and to correlate it with their overall survival. Methods: A double-blind pilot study over 10 patients OSCC and T4 stage without distant metastases or local bone invasion has been performed. The average follow-up period was 37.64 months (34.3–40.84). We obtained 2 plasma tubes of 1 mL each before surgery and 7 days after surgery. Before performing the immunocapture-based analysis, EVs (Extracellular Vesicles) were isolated from the plasma and characterized with western blot analysis. Results: Mean values of CD63 positive plasmatic exosomes (EXO-CD63) after surgery decreased from 750.88 ± 286.67 to 541.71 ± 244.93 (p = 0.091). On the other hand, CAV-1 positive plasmatic exosomes (EXO-CAV-1) increased after surgery from 507 ± 483.39 to 1120.25 ± 1151.17 (p = 0.237). Patients with EXO-CD63 levels lower than the mean global value before the surgery had a survival of 36.04 months compared with the group with EXO-CD63 higher than the average who only survived 12.49 ± 1.67 months from the diagnosis, p = 0.225. When EXO-CAV-1 levels before surgery was lower than the average (813.94 ± 801.21) overall survival was 24.69 ± 22.23 months in contrast when it was higher that was only 11.64 months, p = 0.157. Patients with lower EXO-CD63 levels after surgery lived an average of 23.84 ± 23.9 months, while those with higher plasmatic levels of EXO-CD63 live 13.35 months, p = 0.808. When EXO-CAV-1 levels after surgery were lower, the average overall survival was 20.344 ± 15.40 months, in contrast when the EXO-CAV-1 levels were higher showing rather an estimate survival expectation of 1.64 months. Conclusions: Surgical treatment induced a dramatic reduction of the plasmatic levels of exosomes expressing CD63 as early as 1 week after resection. This first result suggests that the tumour mass is responsible of the high levels of circulating exosomes detected in cancer patients. At the same time point exosome expressing CAV-1 increased, possibly due to the inflammatory reaction immediately after surgery. Lastly, statistical analysis showed that lower levels of plasmatic exosomes both before and after surgery correlated with a better life expectancy of OSCC patients. Hopefully, this approach will prove useful in the clinical follow-up of cancer patients.
Collapse
Affiliation(s)
- Samuel Rodríguez Zorrilla
- Oral Medicine, Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 Galicia, Spain.
| | - Mario Pérez-Sayans
- Oral Medicine, Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 Galicia, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706 Coruña, Spain.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanitá, 00161 Rome, Italy.
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanitá, 00161 Rome, Italy.
| | - Mercedes Gallas Torreira
- Oral Medicine, Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 Galicia, Spain.
| | - Abel García García
- Oral Medicine, Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 Galicia, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706 Coruña, Spain.
| |
Collapse
|
21
|
Lin J, Ma L, Zhang D, Gao J, Jin Y, Han Z, Lin D. Tumour biomarkers-Tracing the molecular function and clinical implication. Cell Prolif 2019; 52:e12589. [PMID: 30873683 PMCID: PMC6536410 DOI: 10.1111/cpr.12589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
In recent years, with the increase in cancer mortality caused by metastasis, and with the development of individualized and precise medical treatment, early diagnosis with precision becomes the key to decrease the death rate. Since detecting tumour biomarkers in body fluids is the most non‐invasive way to identify the status of tumour development, it has been widely investigated for the usage in clinic. These biomarkers include different expression or mutation in microRNAs (miRNAs), circulating tumour DNAs (ctDNAs), proteins, exosomes and circulating tumour cells (CTCs). In the present article, we summarized and discussed some updated research on these biomarkers. We overviewed their biological functions and evaluated their multiple roles in human and small animal clinical treatment, including diagnosis of cancers, classification of cancers, prognostic and predictive values for therapy response, monitors for therapy efficacy, and anti‐cancer therapeutics. Biomarkers including different expression or mutation in miRNAs, ctDNAs, proteins, exosomes and CTCs provide more choice for early diagnosis of tumour detection at early stage before metastasis. Combination detection of these tumour biomarkers may provide higher accuracy at the lowest molecule combination number for tumour early detection. Moreover, tumour biomarkers can provide valuable suggestions for clinical anti‐cancer treatment and execute monitoring of treatment efficiency.
Collapse
Affiliation(s)
- Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lie Ma
- Department of Respiratory Disease, The Navy General Hospital of PLA, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihai Han
- Department of Respiratory Disease, The Navy General Hospital of PLA, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Salo T, Dourado MR, Sundquist E, Apu EH, Alahuhta I, Tuomainen K, Vasara J, Al-Samadi A. Organotypic three-dimensional assays based on human leiomyoma-derived matrices. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0482. [PMID: 29158312 PMCID: PMC5717437 DOI: 10.1098/rstb.2016.0482] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
Alongside cancer cells, tumours exhibit a complex stroma containing a repertoire of cells, matrix molecules and soluble factors that actively crosstalk between each other. Recognition of this multifaceted concept of the tumour microenvironment (TME) calls for authentic TME mimetics to study cancer in vitro. Traditionally, tumourigenesis has been investigated in non-human, three-dimensional rat type I collagen containing organotypic discs or by means of mouse sarcoma-derived gel, such as Matrigel®. However, the molecular compositions of these simplified assays do not properly simulate human TME. Here, we review the main properties and benefits of using human leiomyoma discs and their matrix Myogel for in vitro assays. Myoma discs are practical for investigating the invasion of cancer cells, as are cocultures of cancer and stromal cells in a stiff, hypoxic TME mimetic. Myoma discs contain soluble factors and matrix molecules commonly present in neoplastic stroma. In Transwell, IncuCyte, spheroid and sandwich assays, cancer cells move faster and form larger colonies in Myogel than in Matrigel®. Additionally, Myogel can replace Matrigel® in hanging-drop and tube-formation assays. Myogel also suits three-dimensional drug testing and extracellular vesicle interactions. To conclude, we describe the application of our myoma-derived matrices in 3D in vitro cancer assays. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.
Collapse
Affiliation(s)
- Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland .,Medical Research Centre, Oulu University Hospital, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland.,Helsinki University Hospital, Helsinki 0014, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Campinas 13414-903, Brazil
| | - Mauricio Rocha Dourado
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Campinas 13414-903, Brazil
| | - Elias Sundquist
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Ehsanul Hoque Apu
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Ilkka Alahuhta
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90014, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Katja Tuomainen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland
| | - Jenni Vasara
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki 0014, Finland
| |
Collapse
|
23
|
Stromal Caveolin-1 and Caveolin-2 Expression in Primary Tumors and Lymph Node Metastases. Anal Cell Pathol (Amst) 2018; 2018:8651790. [PMID: 29850392 PMCID: PMC5914130 DOI: 10.1155/2018/8651790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/23/2018] [Indexed: 12/26/2022] Open
Abstract
The expression of caveolin-1 (CAV1) in both tumor cell and cancer-associated fibroblasts (CAFs) has been found to correlate with tumor aggressiveness in different epithelial tumor entities, whereas less is known for caveolin-2 (CAV2). The aim of this study was to investigate the clinicopathological significance and prognostic value of stromal CAV1 and CAV2 expression in lung cancer. The expression of these two genes was investigated at protein level on a tissue microarray (TMA) consisting of 161 primary tumor samples. 50.7% of squamous cell lung cancer (SCC) tumors showed strong expression of CAV1 in the tumor-associated stromal cells, whereas only 15.1% of adenocarcinomas (AC) showed a strong CAV1 expression (p < 0.01). A strong CAV2 stromal expression was found in 46.0% of the lung tumor specimens, with no significant difference between the subtypes. Neither CAV1 nor CAV2 stromal expression was associated with any other clinicopathological factor including survival. When the stromal expression in matched primary tumors and lymph node metastases was compared, both CAV1 and CAV2 expressions were frequently found lost in the corresponding stroma of the lymph node metastasis (40.6%, p = 0.003 and 38.4%, p = 0.001, resp.). Loss of stromal CAV2 in the lymph node metastases was also significantly associated with earlier death (p = 0.011). In conclusion, in contrast to the expression patterns in the tumor tissue of lung cancer, stromal expression of CAV1 in primary tumors was not associated with clinical outcome whereas the stromal expression of especially CAV2 in the metastatic lymph nodes could be associated with lung cancer pathogenesis.
Collapse
|
24
|
Abstract
Resistance of solid tumors to chemo- and radiotherapy remains a major obstacle in anti-cancer treatment. Herein, the membrane protein caveolin-1 (CAV1) came into focus as it is highly expressed in many tumors and high CAV1 levels were correlated with tumor progression, invasion and metastasis, and thus a worse clinical outcome. Increasing evidence further indicates that the heterogeneous tumor microenvironment, also known as the tumor stroma, contributes to therapy resistance resulting in poor clinical outcome. Again, CAV1 seems to play an important role in modulating tumor host interactions by promoting tumor growth, metastasis, therapy resistance and cell survival. However, the mechanisms driving stroma-mediated tumor growth and radiation resistance remain to be clarified. Understanding these interactions and thus, targeting CAV1 may offer a novel strategy for preventing cancer therapy resistance and improving clinical outcomes. In this review, we will summarize the resistance-promoting effects of CAV1 in tumors, and emphasize its role in the tumor-stroma communication as well as the resulting malignant phenotype of epithelial tumors.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Prognostic Value of Metastatic Tumoral Caveolin-1 Expression in Patients with Resected Gastric Cancer. Gastroenterol Res Pract 2017; 2017:5905173. [PMID: 28828003 PMCID: PMC5554552 DOI: 10.1155/2017/5905173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Caveolin-1 (Cav-1), as the main component of caveolae, has complex roles in tumourigenesis in human malignancies. We investigated Cav-1 in primary and metastatic tumor cells of gastric cancer (GC) and its association with clinical outcomes. METHODS We retrieved 145 cases of GC who had undergone curative gastrectomy. The expression levels of Cav-1 was evaluated by immunohistochemistry, and its association with clinicopathological parameters and patient survival was analyzed. RESULTS High expression of Cav-1 protein of the GC in the stomach and metastatic lymph node was 12.4% (18/145) and 16.5% (15/91). In the multivariate analysis, tumoral Cav-1 protein in metastatic lymph node showed prognostic significance for relapse-free survival (RFS, HR, 3.934; 95% CI, 1.882-8.224; P = 0.001) and cancer-specific survival outcome (CSS, HR, 2.681; 95% CI, 1.613-8.623; P = 0.002). Among the GCs with metastatic lymph node, it remained as a strong indicator of poor prognosis for RFS (HR, 3.136; 95% CI, 1.444-6.810; P = 0.004) and CSS (HR, 2.509; 95% CI, 1.078-5.837; P = 0.032). CONCLUSION High expression of tumoral Cav-1 protein in metastatic lymph node is associated with unfavorable prognosis of curative resected GC, indicating the potential of novel prognostic markers.
Collapse
|
26
|
Yeong J, Thike AA, Ikeda M, Lim JCT, Lee B, Nakamura S, Iqbal J, Tan PH. Caveolin-1 expression as a prognostic marker in triple negative breast cancers of Asian women. J Clin Pathol 2017; 71:161-167. [PMID: 28735300 DOI: 10.1136/jclinpath-2017-204495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Triple-negative breast cancers (TNBCs) are defined by their lack of oestrogen receptor, progesterone receptor and epidermal growth factor receptor 2. Although heterogeneous, the majority are aggressive and treatment options are limited. Caveolin acts as tumour suppressor or promoter depending on the cancer type. AIM In this study, we aimed to determine if the expression levels of the candidate biomarker caveolin-1 on stromal or tumour cells were associated with clinicopathological parameters and disease outcomes in TNBCs from an ethnically diverse cohort of Asian women. METHODS Tumour specimens from 699 women with TNBC were subjected to immunohistochemical analysis of the frequency and intensity of caveolin-1 expression in tumour and stromal cells. A subset of 141 tumour samples also underwent Nanostring measurement of CAV1 mRNA. Results were correlated with clinicopathological parameters and disease outcomes. RESULTS Expression of caveolin-1 in stromal cells was observed in 14.4% of TNBC cases. TNBCs of the basal-like phenotype (85% of samples) were significantly more likely to exhibit stromal cell caveolin-1 expression (p=0.028), as were those with a trabecular growth pattern (p=0.007). Lack of stromal caveolin-1 expression in both TNBCs and those with the basal-like phenotype was significantly associated with worse overall survival (p=0.009 and p=0.026, respectively): accordingly, increasing mRNA levels of CAV1 in TNBC samples predicted better overall survival. Caveolin-1 expression on TNBC tumour cells was not associated with clinical outcome. CONCLUSION Stromal, but not tumoural, caveolin-1 expression is significantly associated with survival in Asian women with TNBC.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore
| | - Murasaki Ikeda
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | | | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
27
|
Overmiller AM, Pierluissi JA, Wermuth PJ, Sauma S, Martinez-Outschoorn U, Tuluc M, Luginbuhl A, Curry J, Harshyne LA, Wahl JK, South AP, Mahoney MG. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. FASEB J 2017; 31:3412-3424. [PMID: 28438789 DOI: 10.1096/fj.201601138rr] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-derived vesicles that serve as intercellular messengers carrying lipids, proteins, and genetic material. Substantial evidence has shown that cancer-derived EVs, secreted by tumor cells into the blood and other bodily fluids, play a critical role in modulating the tumor microenvironment and affecting the pathogenesis of cancer. Here we demonstrate for the first time that squamous cell carcinoma (SCC) EVs were enriched with the C-terminal fragment of desmoglein 2 (Dsg2), a desmosomal cadherin often overexpressed in malignancies. Overexpression of Dsg2 increased EV release and mitogenic content including epidermal growth factor receptor and c-Src. Inhibiting ectodomain shedding of Dsg2 with the matrix metalloproteinase inhibitor GM6001 resulted in accumulation of full-length Dsg2 in EVs and reduced EV release. When cocultured with Dsg2/green fluorescence protein-expressing SCC cells, green fluorescence protein signal was detected by fluorescence-activated cell sorting analysis in the CD90+ fibroblasts. Furthermore, SCC EVs activated Erk1/2 and Akt signaling and enhanced fibroblast cell proliferation. In vivo, Dsg2 was highly up-regulated in the head and neck SCCs, and EVs isolated from sera of patients with SCC were enriched in Dsg2 C-terminal fragment and epidermal growth factor receptor. This study defines a mechanism by which Dsg2 expression in cancer cells can modulate the tumor microenvironment, a step critical for tumor progression.-Overmiller, A. M., Pierluissi, J. A., Wermuth, P. J., Sauma, S., Martinez-Outschoorn, U., Tuluc, M., Luginbuhl, A., Curry, J., Harshyne, L. A., Wahl, J. K. III, South, A. P., Mahoney, M. G. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes.
Collapse
Affiliation(s)
- Andrew M Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jennifer A Pierluissi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peter J Wermuth
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sami Sauma
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Madalina Tuluc
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joseph Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Larry A Harshyne
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James K Wahl
- Department of Oral Biology, University of Nebraska, Lincoln, Nebraska, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mỹ G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
28
|
Moilanen JM, Löffek S, Kokkonen N, Salo S, Väyrynen JP, Hurskainen T, Manninen A, Riihilä P, Heljasvaara R, Franzke CW, Kähäri VM, Salo T, Mäkinen MJ, Tasanen K. Significant Role of Collagen XVII And Integrin β4 in Migration and Invasion of The Less Aggressive Squamous Cell Carcinoma Cells. Sci Rep 2017; 7:45057. [PMID: 28327550 PMCID: PMC5361192 DOI: 10.1038/srep45057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Collagen XVII and integrin α6β4 have well-established roles as epithelial adhesion molecules. Their binding partner laminin 332 as well as integrin α6β4 are largely recognized to promote invasion and metastasis in various cancers, and collagen XVII is essential for the survival of colon and lung cancer stem cells. We have studied the expression of laminin γ2, collagen XVII and integrin β4 in tissue microarray samples of squamous cell carcinoma (SCC) and its precursors, actinic keratosis and Bowen's disease. The expression of laminin γ2 was highest in SCC samples, whereas the expression of collagen XVII and integrin β4 varied greatly in SCC and its precursors. Collagen XVII and integrin β4 were also expressed in SCC cell lines. Virus-mediated RNAi knockdown of collagen XVII and integrin β4 reduced the migration of less aggressive SCC-25 cells in horizontal scratch wound healing assay. Additionally, in a 3D organotypic myoma invasion assay the loss of collagen XVII or integrin β4 suppressed equally the migration and invasion of SCC-25 cells whereas there was no effect on the most aggressive HSC-3 cells. Variable expression patterns and results in migration and invasion assays suggest that collagen XVII and integrin β4 contribute to SCC tumorigenesis.
Collapse
Affiliation(s)
- Jyri M. Moilanen
- Department of Dermatology, PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Finland
| | - Stefanie Löffek
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University of Duisburg-Essen, Germany
| | - Nina Kokkonen
- Department of Dermatology, PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Finland
| | - Sirpa Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Juha P. Väyrynen
- Department of Pathology, Research Unit of Cancer and Translational Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tiina Hurskainen
- Department of Dermatology, PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Finland
| | - Aki Manninen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Pilvi Riihilä
- Department of Dermatology, Turku University Hospital, MediCity Research Laboratory, University of Turki, Turku, Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Veli-Matti Kähäri
- Department of Dermatology, Turku University Hospital, MediCity Research Laboratory, University of Turki, Turku, Finland
| | - Tuula Salo
- Research Unit of Cancer and Translational Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Finland
- Department of Oral and Maxillo-facial Diseases, University of Helsinki, Finland
- HUSLAB, Department of Pathology, Helsinki University Central Hospital, Finland
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, SP-13414-903, Brazil
| | - Markus J. Mäkinen
- Department of Pathology, Research Unit of Cancer and Translational Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kaisa Tasanen
- Department of Dermatology, PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, MRC Oulu, University of Oulu and Oulu University Hospital, Finland
| |
Collapse
|
29
|
Fu P, Chen F, Pan Q, Zhao X, Zhao C, Cho WCS, Chen H. The different functions and clinical significances of caveolin-1 in human adenocarcinoma and squamous cell carcinoma. Onco Targets Ther 2017; 10:819-835. [PMID: 28243118 PMCID: PMC5317307 DOI: 10.2147/ott.s123912] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Caveolin-1 (Cav-1), a major structural protein of caveolae, is an integral membrane protein which plays an important role in the progression of carcinoma. However, whether Cav-1 acts as a tumor promoter or a tumor suppressor still remains controversial. For example, the tumor-promoting function of Cav-1 has been found in renal cancer, prostate cancer, tongue squamous cell carcinoma (SCC), lung SCC and bladder SCC. In contrast, Cav-1 also plays an inhibitory role in esophagus adenocarcinoma, lung adenocarcinoma and cutaneous SCC. The role of Cav-1 is still controversial in thyroid cancer, hepatocellular carcinoma, gastric adenocarcinoma, colon adenocarcinoma, breast cancer, pancreas cancer, oral SCC, laryngeal SCC, head and neck SCC, esophageal SCC and cervical SCC. Besides, it has been reported that the loss of stromal Cav-1 might predict poor prognosis in breast cancer, gastric cancer, pancreas cancer, prostate cancer, oral SCC and esophageal SCC. However, the accumulation of stromal Cav-1 has been found to be promoted by the progression of tongue SCC. Taken together, Cav-1 seems playing a different role in different cancer subtypes even of the same organ, as well as acting differently in the same cancer subtype of different organs. Thus, we hereby explore the functions of Cav-1 in human adenocarcinoma and SCC from the perspective of clinical significances and pathogenesis. We envision that novel targets may come with the further investigation of Cav-1 in carcinogenesis.
Collapse
Affiliation(s)
- Pin Fu
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | - Fuchun Chen
- Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang
| | - Qi Pan
- Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang
| | - Xianda Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | - Chen Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | | | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan; Department of Pathology, Maternal and Child Health Hospital of Hubei, Wuhan, People's Republic of China
| |
Collapse
|
30
|
Mao X, Wong SYS, Tse EYT, Ko FCF, Tey SK, Yeung YS, Man K, Lo RCL, Ng IOL, Yam JWP. Mechanisms through Which Hypoxia-Induced Caveolin-1 Drives Tumorigenesis and Metastasis in Hepatocellular Carcinoma. Cancer Res 2016; 76:7242-7253. [PMID: 27784747 DOI: 10.1158/0008-5472.can-16-1031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/24/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
Abstract
In solid tumors, hypoxia triggers an aberrant vasculogenesis, enhances malignant character, and elevates metastatic risk. The plasma membrane organizing protein caveolin-1 (Cav1) is increased in a variety of cancers, including hepatocellular carcinoma (HCC), where it contributes to metastatic capability. However, the reason for elevation of Cav1 in tumor cells and the mechanistic basis for its contributions to metastatic risk are not fully understood. Here, we show that in HCC cells, hypoxia elevates expression of Cav1, which then acts through the calcium-binding protein S100P to promote metastasis. Hypoxic regions of HCC xenografts displayed elevated expression of Cav1. Hypoxia promoted HCC cell migration and invasion and distant pulmonary metastases, whereas Cav1 silencing abolished these effects. Gene expression profiling revealed that hypoxia-induced Cav1 functioned as a positive regulator of S100P via activation of the NF-κB pathway. S100P elevation under hypoxic conditions was abrogated by silencing of Cav1 or NF-κB function. Conversely, restoring S100P in Cav1-silenced cells rescued the migratory potential of HCC cells along with tumor formation and lung metastasis. In clinical specimens of HCC, we observed S100P overexpression to correlate with venous invasion, microsatellites, direct liver invasion, and absence of tumor encapsulation. Collectively, our findings demonstrated how hypoxia-induced expression of Cav1 in HCC cells enhances their invasive and metastatic potential. Cancer Res; 76(24); 7242-53. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Sivia Yuen Sze Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Edith Yuk Ting Tse
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Frankie Chi Fat Ko
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yin Shan Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Regina Cheuk-Lam Lo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong. .,Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
31
|
Wang Z, Chen JQ, Liu JL, Tian L. Exosomes in tumor microenvironment: novel transporters and biomarkers. J Transl Med 2016; 14:297. [PMID: 27756426 PMCID: PMC5070309 DOI: 10.1186/s12967-016-1056-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironment (TME) plays an integral part in the biology of cancer, participating in tumor initiation, progression, and response to therapy. Exosome is an important part of TME. Exosomes are small vesicles formed in vesicular bodies with a diameter of 30–100 nm and a classic “cup” or “dish” morphology. They can contain microRNAs, mRNAs, DNA fragments and proteins, which are shuttled from a donor cell to recipient cells. Exosomes secreted from tumor cells are called tumor-derived (TD) exosomes. There is emerging evidence that TD exosomes can construct a fertile environment to support tumor proliferation, angiogenesis, invasion and premetastatic niche preparation. TD exosomes also may facilitate tumor growth and metastasis by inhibiting immune surveillance and by increasing chemoresistance via removal of chemotherapeutic drugs. Therefore, TD-exosomes might be potential targets for therapeutic interventions via their modification or removal. For example, exosomes can serve as specific delivery vehicles to tumors of drugs, small molecules, or agents of prevention and gene therapy. Furthermore, the biomarkers detected in exosomes of biological fluids imply a potential for exosomes in the early detection and diagnosis, prediction of therapeutic efficacy, and determining prognosis of cancer. Although exosomes may serve as cancer biomarkers and aid in the treatment of cancer, we have a long way to go before we can further enhance the anti-tumor therapy of exosomes and develop exosome-based cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | - Jin-Lu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Lei Tian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
32
|
Neoplastic extracellular matrix environment promotes cancer invasion in vitro. Exp Cell Res 2016; 344:229-40. [PMID: 27090016 DOI: 10.1016/j.yexcr.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 11/21/2022]
Abstract
The invasion of carcinoma cells is a crucial feature in carcinogenesis. The penetration efficiency not only depends on the cancer cells, but also on the composition of the tumor microenvironment. Our group has developed a 3D invasion assay based on human uterine leiomyoma tissue. Here we tested whether human, porcine, mouse or rat hearts as well as porcine tongue tissues could be similarly used to study carcinoma cell invasion in vitro. Three invasive human oral tongue squamous cell carcinoma (HSC-3, SCC-25 and SCC-15), melanoma (G-361) and ductal breast adenocarcinoma (MDA-MB-231) cell lines, and co-cultures of HSC-3 and carcinoma-associated or normal oral fibroblasts were assayed. Myoma tissue, both native and lyophilized, promoted invasion and growth of the cancer cells. However, the healthy heart or tongue matrices were unable to induce the invasion of any type of cancer cells tested. Moreover, when studied in more detail, small molecular weight fragments derived from heart tissue rinsing media inhibited HSC-3 horizontal migration. Proteome analysis of myoma rinsing media, on the other hand, revealed migration enhancing factors. These results highlight the important role of matrix composition for cancer invasion studies in vitro and further demonstrate the unique properties of human myoma organotypic model.
Collapse
|
33
|
Mitochondrial DNA plasticity is an essential inducer of tumorigenesis. Cell Death Discov 2016; 2:16016. [PMID: 27551510 PMCID: PMC4979526 DOI: 10.1038/cddiscovery.2016.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis.
Collapse
|
34
|
Fu H, Yang H, Zhang X, Xu W. The emerging roles of exosomes in tumor-stroma interaction. J Cancer Res Clin Oncol 2016; 142:1897-907. [PMID: 26987524 DOI: 10.1007/s00432-016-2145-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/09/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE The tumor-stroma interaction is critical for the development and progression of cancer. Cancer-associated fibroblasts (CAFs), one of the major components of the tumor stroma, can promote tumor growth and metastasis. Exosomes are secreted microvesicles that mediate cell-to-cell communication. Exosomal contents, including proteins, nucleic acids, and lipids, can be shuttled from donor cells to target cells. Recent studies suggest that exosomes play important roles in the tumor-stroma interaction. Herein, we review the multifaceted roles of exosomes in the tumor-stroma interaction and the underlying molecular mechanisms. METHODS Literature search for all relevant publications was performed on PubMed databases. The keywords of exosomes, tumor, stroma, CAFs, mesenchymal stem cells (MSCs) and other closely related terms were used for searching. RESULTS Tumor cell-derived exosomes induce the differentiation of fibroblasts and MSCs into CAFs. In turn, exosomes secreted by CAFs promote tumor growth, metastasis, and drug resistance through distinct mechanisms. Moreover, exosomes from stromal cells can be used as therapeutic vehicles for the delivery of anticancer drugs. CONCLUSIONS Tumor cells communicate with CAFs through exosomes, which establishes a bidirectional cross talk to promote tumor growth, metastasis, and drug resistance. Targeting exosomes in tumor-stroma interaction may have important implications for anticancer therapy.
Collapse
Affiliation(s)
- Hailong Fu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Huan Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China. .,The Affiliated Hospital, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
35
|
Knopf JD, Tholen S, Koczorowska MM, De Wever O, Biniossek ML, Schilling O. The stromal cell-surface protease fibroblast activation protein-α localizes to lipid rafts and is recruited to invadopodia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26209915 DOI: 10.1016/j.bbamcr.2015.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblast activation protein alpha (FAPα) is a cell surface protease expressed by cancer-associated fibroblasts in the microenvironment of most solid tumors. As there is increasing evidence for proteases having non-catalytic functions, we determined the FAPα interactome in cancer-associated fibroblasts using the quantitative immunoprecipitation combined with knockdown (QUICK) method. Complex formation with adenosin deaminase, erlin-2, stomatin, prohibitin, Thy-1 membrane glycoprotein, and caveolin-1 was further validated by immunoblotting. Co-immunoprecipitation (co-IP) of the known stoichiometric FAPα binding partner dipeptidyl-peptidase IV (DPPIV) corroborated the proteomic strategy. Reverse co-IPs validated the FAPα interaction with caveolin-1, erlin-2, and stomatin while co-IP upon RNA-interference mediated knock-down of DPPIV excluded adenosin deaminase as a direct FAPα interaction partner. Many newly identified FAPα interaction partners localize to lipid rafts, including caveolin-1, a widely-used marker for lipid raft localization. We hypothesized that this indicates a recruitment of FAPα to lipid raft structures. In density gradient centrifugation, FAPα co-fractionates with caveolin-1. Immunofluorescence optical sectioning microscopy of FAPα and lipid raft markers further corroborates recruitment of FAPα to lipid rafts and invadopodia. FAPα is therefore an integral component of stromal lipid rafts in solid tumors. In essence, we provide one of the first interactome analyses of a cell surface protease and translate these results into novel biological aspects of a marker protein for cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Julia D Knopf
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Stefan Tholen
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany
| | - Maria M Koczorowska
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Ghent University Hospital, 1P7, De Pintelaan 185, 9000 Gent, Belgium
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, Vered M. Morphological and molecular features of oral fluid-derived exosomes: oral cancer patients versus healthy individuals. J Cancer Res Clin Oncol 2015; 142:101-10. [DOI: 10.1007/s00432-015-2005-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
|