1
|
Zhang H, He Y, Zhao Y, Axinbai M, Hu Y, Liu S, Kong J, Sun J, Zhang L. Identification of necroptosis genes and characterization of immune infiltration in non-alcoholic steatohepatitis. Hereditas 2024; 161:32. [PMID: 39350187 PMCID: PMC11443769 DOI: 10.1186/s41065-024-00309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/02/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The most common progressive form of non-alcoholic fatty liver disease (NAFLD) is non-alcoholic steatohepatitis (NASH), which is characterized by the development of cirrhosis, and requires liver transplantation. We screened for the differentially expressed necroptosis-related genes in NASH in this study, and analyzed immune infiltration through microarray and bioinformatics analysis to identify potential biomarkers, and explore the molecular mechanisms involved in NASH. METHODS The GSE24807 microarray dataset of NASH patients and healthy controls was downloaded, and we identified the differentially expressed genes (DEGs). Necroptosis-related differential genes (NRDEGs) were extracted from these DEGs, and functionally annotated by enrichment analyses. The core genes were obtained by constructing gene co-expression networks using weighted gene co-expression network analysis (WGCNA). Finally, the transcription factor (TF) regulatory network and the mRNA-miRNA network were constructed, and the infiltrating immune cell populations were analyzed with CIBERSORT. RESULTS We identified six necroptosis-related genes (CASP1, GLUL, PYCARD, IL33, SHARPIN, and IRF9), and they are potential diagnostic biomarkers for NASH. In particular, PYCARD is a potential biomarker for NAFLD progression. Analyses of immune infiltration showed that M2 macrophages, γδ T cells, and T follicular helper cells were associated with the immune microenvironment of NASH, which is possibly regulated by CASP1, IL33, and IRF9. CONCLUSIONS We identified six necroptosis-related genes in NASH, which are also potential diagnostic biomarkers. Our study provides new insights into the molecular mechanisms and immune microenvironment of NASH.
Collapse
Affiliation(s)
- Huan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yongqiang He
- Department of Digestion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqing Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Malina Axinbai
- Beijing University of Chinese Medicine, Beijing, China
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Xinjiang Medical University, Urumqi, China
| | - Yuwei Hu
- Beijing University of Chinese Medicine, Beijing, China
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shilei Liu
- Beijing University of Chinese Medicine, Beijing, China
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingmin Kong
- Department of Emergency, Beijing Chaoyang Integrative Medicine Rescue And First Aid Hospital, Beijing, China
| | - Jinhui Sun
- Department of Digestion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Liping Zhang
- Beijing University of Chinese Medicine, Beijing, China.
- Department of Digestion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Gharakhyli EA, Tabar Molla Hassan A, Alipour M, Vahidi S, Samadani AA. The effect of miR-372-5p regulation on CDX1 and CDX2 in the gastric cancer cell line. Horm Mol Biol Clin Investig 2023; 44:271-276. [PMID: 36848481 DOI: 10.1515/hmbci-2022-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
OBJECTIVES MicroRNA expression disruptions play an important function in the expansion of gastric cancer. Previous investigation has indicated that miR-372-5p doing as an oncogene in several malignancies. CDX1 and CDX2, as target genes of miR-372-5p, play the role of tumor suppressors and oncogenes in gastric cancer cells, respectively. The current investigation explored the effects of miR-372-5p regulation on CDX2 and CDX1 in AGS cell lines and studied their molecular mechanism. METHODS hsa-miR-372-5p miRCURY LNA miRNA Inhibitors and Mimic were transfected into AGS cell line. The cell viability and cell cycle calculation were defined by MTT assay and flow cytometry, respectively. The Expression levels of miR-372-5p, CDX1, CDX2 and transfection efficiency were measured using Real-time PCR. Statistical investigation p values <0.05 were considered to be meaningful. RESULTS miR-372-5p particularly was upregulated in control cells and also after transfection by mimic. While its expression was reduced by the inhibitor. Upregulation of miR-372-5p remarkably increased cell growth and led to accumulation in the G2/M phase, although the inhibitor decreased cell growth and accumulation in the S phase. Accordingly, upregulation of miR-372-5p increased CDX2 and decreased CDX1 expression. By inhibition of miR-372-5p, expression of CDX2 was decreased and expression of CDX1 was increased. CONCLUSIONS Up and down-regulation of miR-372-5P has a potential effect on the expression levels of its target genes, CDX1 and CDX22. Accordingly, the downregulation of miR-372-5p may be assumed as a possible therapeutic target in treating gastric cancer.
Collapse
Affiliation(s)
| | | | - Majid Alipour
- Department of Cell and Molecular Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Lucchini M, De Arcangelis V, Santoro M, Morosetti R, Broccolini A, Mirabella M. Serum-Circulating microRNAs in Sporadic Inclusion Body Myositis. Int J Mol Sci 2023; 24:11139. [PMID: 37446317 DOI: 10.3390/ijms241311139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Sporadic inclusion body myositis (s-IBM) represents a unique disease within idiopathic inflammatory myopathies with a dual myodegenerative-autoimmune physiopathology and a lack of an efficacious treatment. Circulating miRNA expression could expand our knowledge of s-IBM patho-mechanisms and provide new potential disease biomarkers. To evaluate the expression of selected pre-amplified miRNAs in the serum of s-IBM patients compared to those of a sex- and age-matched healthy control group, we enrolled 14 consecutive s-IBM patients and 8 sex- and age-matched healthy controls. By using two different normalization approaches, we found one downregulated and three upregulated miRNAs. hsa-miR-192-5p was significantly downregulated, while hsa-miR-372-3p was found to be upregulated more in the s-IBM patients compared to the level of the controls. The other two miRNAs had a very low expression levels (raw Ct data > 29). hsa-miR-192-5p and hsa-miR-372-3p were found to be significantly dysregulated in the serum of s-IBM patients. These miRNAs are involved in differentiation and regeneration processes, thus possibly reflecting pathological mechanisms in s-IBM muscles and potentially representing disease biomarkers.
Collapse
Affiliation(s)
- Matteo Lucchini
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Valeria De Arcangelis
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Santoro
- Energy and Sustainable Economic Development, Division of Health Protection Technologies ENEA-Italian National Agency for New Technologies, 00123 Rome, Italy
| | - Roberta Morosetti
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Aldobrando Broccolini
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Massimiliano Mirabella
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
4
|
Tajik F, Alian F, Yousefi M, Azadfallah A, Hoseini A, Mohammadi F, Karimi-Dehkordi M, Alizadeh-Fanalou S. MicroRNA-372 acts as a double-edged sword in human cancers. Heliyon 2023; 9:e15991. [PMID: 37251909 PMCID: PMC10208947 DOI: 10.1016/j.heliyon.2023.e15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are non-coding, single-stranded, endogenous RNAs that regulate various biological processes, most notably the pathophysiology of many human malignancies. It process is accomplished by binding to 3'-UTR mRNAs and controlling gene expression at the post-transcriptional level. As an oncogene, miRNAs can either accelerate cancer progression or slow it down as a tumor suppressor. MicroRNA-372 (miR-372) has been found to have an abnormal expression in numerous human malignancies, implying that the miRNA plays a role in carcinogenesis. It is both increased and downregulated in various cancers, and it serves as both a tumor suppressor and an oncogene. This study examines the functions of miR-372 as well as the LncRNA/CircRNA-miRNA-mRNA signaling pathways in various malignancies and analyses its potential prognostic, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Yousefi
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Aref Hoseini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
PRDM16, Negatively Regulated by miR-372-3p, Suppresses Cell Proliferation and Invasion in Prostate Cancer. Andrologia 2023. [DOI: 10.1155/2023/9821829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent malignant tumors. The alternation of microRNA (miRNA) expression is associated with prostate cancer progression, whereas its way to influence progression of prostate cancer remains elusive. The expression levels of PRDM16 mRNA and miR-372-3p in PCa cell lines were analyzed using qRT-PCR. The protein expression of PRDM16 in PCa cell lines was also analyzed using western blot. CCK-8, wound healing, and Transwell assays were applied to examine cell proliferation, migration, and invasion in prostate cancer cells, respectively. Dual-luciferase reporter assay was utilized to validate the interaction between miR-372-3p and PRDM16. In the present study, markedly decreased PRDM16 mRNA and protein expression levels were observed in prostate cancer cells. PRDM16 overexpression hampered cellular proliferation, migration, and invasion, while silencing PRDM16 had the opposite effect. Moreover, miR-372-3p could target the regulation expression of PRDM16. Rescue experiments demonstrated that upregulating miR-372-3p conspicuously restored the inhibitory effect of increased PRDM16 on cell proliferation, migration, and invasion in PCa. Overall, our study clarifies the biological role of miR-372-3p/PRDM16 axis in prostate cancer progression, which may be effective biomarkers for clinical treatment of prostate cancer.
Collapse
|
6
|
Yin G, Yan C, Hao J, Zhang C, Wang P, Zhao C, Cai S, Meng B, Zhang A, Li L. PRDM16, negatively regulated by miR-372-3p, suppresses cell proliferation and invasion in prostate cancer. Andrologia 2022:e14529. [PMID: 35858224 DOI: 10.1111/and.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/27/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent malignant tumours. The alternation of microRNAs (miRNAs) expression is associated with prostate cancer progression, whereas its way to influence progression of prostate cancer remains elusive. The expression levels of PRDM16 mRNA and miR-372-3p in PCa cell lines were analysed using qRT-PCR. The protein expression of PRDM16 in PCa cell lines was also analysed using Western blot. CCK-8, wound healing and Transwell assays were applied to examine cell proliferation, migration, and invasion in prostate cancer cells, respectively. Dual-luciferase reporter assay was utilised to validate the interaction between miR-372-3p and PRDM16. In the present study, markedly decreased PRDM16 mRNA and protein expression levels were observed in prostate cancer cells. PRDM16 overexpression hampered cellular proliferation, migration, and invasion, while silencing PRDM16 had the opposite effect. Moreover, miR-372-3p could target the regulation expression of PRDM16. Rescue experiments demonstrated that upregulating miR-372-3p conspicuously restored the inhibitory effect of increased PRDM16 on cell proliferation, migration, and invasion in PCa. Overall, our study clarifies the biological role of miR-372-3p/PRDM16 axis in prostate cancer progression, which may be effective biomarkers for clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Guangwei Yin
- The Third Department of Urology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Chengquan Yan
- The Third Department of Urology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Jing Hao
- Office of Academic Affairs, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Chunying Zhang
- The Third Department of Urology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Pengfei Wang
- The Third Department of Urology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Chaofei Zhao
- The Third Department of Urology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Shengyong Cai
- The Third Department of Urology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Bin Meng
- The Third Department of Urology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Aili Zhang
- The Third Department of Urology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| | - Lin Li
- The Third Department of Urology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China
| |
Collapse
|
7
|
Soliman MH, Ragheb MA, Elzayat EM, Mohamed MS, El-Ekiaby N, Abdelaziz AI, Abdel-Wahab AHA. MicroRNA-372-3p Predicts Response of TACE Patients Treated with Doxorubicin and Enhances Chemosensitivity in Hepatocellular Carcinoma. Anticancer Agents Med Chem 2021; 21:246-253. [PMID: 32416702 DOI: 10.2174/1871520620666200516145830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Identification of factors to detect and improve chemotherapy.response in cancer is the main concern. microRNA-372-3p (miR-372-3p) has been demonstrated to play a crucial role in cellular proliferation, apoptosis and metastasis of various cancers including Hepatocellular Carcinoma (HCC). However, its contribution towards Doxorubicin (Dox) chemosensitivity in HCC has never been studied. OBJECTIVE This study aims to investigate the potential role of miR-372-3p in enhancing Dox effects on HCC cell line (HepG2). Additionally, the correlation between miR-372-3p and HCC patients who received Transarterial Chemoembolization (TACE) with Dox treatment has been analyzed. METHODS Different cell processes were elucidated by cell viability, colony formation, apoptosis and wound healing assays after miR-372-3p transfection in HepG2 cells Furthermore, the miR-372-3p level has been estimated in the blood of primary HCC patients treated with TACE/Dox by quantitative real-time PCR assay. Receiver Operating Curve (ROC) analysis for serum miR-372-3p was constructed for its prognostic significance. Finally, the protein level of Mcl-1, the anti-apoptotic player, has been evaluated using western blot. RESULTS We found a significantly higher level of miR-372-3p in the blood of the responder group of HCC patients who received TACE with Dox than of non-responders. Ectopic expression of miR-372-3p reduced cell proliferation, migration and significantly induced apoptosis in HepG2 cells which was coupled with a decrease of anti-apoptotic protein Mcl-1. CONCLUSION Our study demonstrated that miR-372-3p acts as a tumor suppressor in HCC and can act as a predictor biomarker for drug response. Furthermore, the data referred for the first time its potential role in drug sensitivity that might be a therapeutic target for HCC.
Collapse
Affiliation(s)
- Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Emad M Elzayat
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mervat S Mohamed
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Nada El-Ekiaby
- School of Medicine, New Giza University (NGU), Cairo, Egypt
| | | | | |
Collapse
|
8
|
Fan G, Zhang C, Wei X, Wei R, Qi Z, Chen K, Cai X, Xu L, Tang L, Zhou J, Zhang Z, Lin Z, Xie H, Zheng S, Fan W, Xu X. NEAT1/hsa-miR-372-3p axis participates in rapamycin-induced lipid metabolic disorder. Free Radic Biol Med 2021; 167:1-11. [PMID: 33705959 DOI: 10.1016/j.freeradbiomed.2021.02.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Rapamycin is a crucial immunosuppressive regimen for patients that have undergone liver transplantation (LT). However, one of the major side effects of rapamycin include metabolic disorders such as dyslipidemia, and the mechanism remains unknown. This study aims to explore the biomolecules that are responsible for rapamycin-induced dyslipidemia and the control strategies that can reverse the lipid metabolism disorder. In this study, data collected from LT patients, cell and mouse models treated with rapamycin were analyzed. Results showed an increase of triglycerides (TGs) induced by rapamycin. MicroRNAs (miRNAs) play important roles in many vital biological processes including TG metabolism. hsa-miR-372-3p was filtered using RNA sequencing and identified as a key regulator in rapamycin-induced TGs accumulation. Using bioinformatics and experimental analyses, target genes of hsa-miR-372-3p were predicted. These genes were alkylglycerone phosphate synthase (AGPS) and apolipoprotein C4 (APOC4), which are reported to be involved in TG metabolism. LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) was also identified as an upstream regulatory factor of hsa-miR-372-3p. From the results of this study, NEAT1/hsa-miR-372-3p/AGPS/APOC4 axis plays a vital role in rapamycin-disruption of lipid homeostasis. Therefore, targeting this axis is a potential therapeutic target combating rapamycin-induced dyslipidemia after LT.
Collapse
Affiliation(s)
- Guanghan Fan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Chenzhi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Rongli Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Zhetuo Qi
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Kangchen Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Xuechun Cai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Linsong Tang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Zhensheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 310000, China
| | - Weimin Fan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Shaker O, Mahfouz H, Salama A, Medhat E. Long Non-Coding HULC and miRNA-372 as Diagnostic Biomarkers in Hepatocellular Carcinoma. Rep Biochem Mol Biol 2020; 9:230-240. [PMID: 33178874 DOI: 10.29252/rbmb.9.2.230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background We aimed to evaluate the effectiveness of Highly Upregulated in Liver Cancer (HULC) and microRNA-372 (miR-372) as biochemical markers in Hepatocellular carcinoma (HCC) and HCV-infected patients. Methods The present study was conducted on 100 Egyptian individuals divided into 3 groups, 40 patients with HCC and HCV infection, 40 patients only HCV-infected, and 20 individuals as normal controls. They were subject to full history taking, full clinical and laboratory examination, and assessment of HULC and miR-372 levels by real-time PCR. Results A statistically significant difference was found with p< 0.05 between HCC and each of HCV and control groups as regards HULC level with high mean among HCC followed by HCV patients. Our results also show a statistically significant difference with p< 0.05 between each of HCC and HCV compared to control as regards miR-372 level with low mean among HCC patients. Conclusion HULC could be considered as a potential non-invasive marker for detection and early diagnosis of HCC. Also, it may play an important role in the early prophylaxis and control measures to reduce the incidence of HCC. However, miR-372 cannot be considered as a reliable marker as HULC for early detection of HCC especially in HCV patients.
Collapse
Affiliation(s)
- Olfat Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
| | - Hala Mahfouz
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Kafrelsheikh University, Egypt
| | - Ahmad Salama
- Tropical Medicine Department, Faculty of Medicine, Cairo University, Egypt
| | - Engy Medhat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
10
|
Integrated Bioinformatics Analysis of the Clinical Value and Biological Function of ATAD2 in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8657468. [PMID: 32462022 PMCID: PMC7225861 DOI: 10.1155/2020/8657468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2), a chromatin regulator and an oncogenic transcription cofactor, is frequently overexpressed in many cancers, particularly in hepatocellular carcinoma (HCC). By integrating open-access online mRNA datasets and our institutional tissue data on HCC, the clinical role and functions of ATAD2 were analyzed by bioinformatic algorithms. We systematically examined ATAD2 expression in HCC based on a large sample population, integrating data from our institution and the GEO, Oncomine, and TCGA datasets. Aberrant ATAD2 expression related to pathways was identified by bioinformatic algorithms. The effects of ATAD2 downregulation on the cycle cell were also determined. A pooled analysis from 28 datasets indicated that ATAD2 overexpression was found in HCC (SMD = 8.88, 95% CI: 5.96–11.81, P < 0.001) and was correlated with poor survival. Subgroup analysis of Asian patients with a serum alpha-fetoprotein (AFP) concentration < 200 ng/ml in stage I + II showed that the ATAD2-high group had a more unfavorable overall survival (OS) rate than the ATAD2-low group. The receiver operating characteristic curve indicated that the efficiency of ATAD2 for HCC diagnosis was considerable (area under the curve = 0.89, 95% CI: 0.86–0.91). Functional analysis based on bioinformatic algorithms demonstrated that ATAD2 participates in cell division, mitotic nuclear division, DNA replication, repair, and cell cycle processes. ATAD2 knockout in HCC cells downregulated cyclin C and cyclin D1 protein levels and resulted in G1/S phase arrest in vitro. The kinesin family member C1 (KIFC1), shugoshin 1 (SGO1), GINS complex subunit 1 (GINS1), and TPX2 microtubule nucleation factor (TPX2) genes were closely related to ATAD2 upregulation. ATAD2 may interact with TTK protein kinase (TTK) to accelerate HCC carcinogenesis. ATAD2 plays a vital role in HCC carcinogenesis by disturbing the interaction between chromatin proteins and DNA. Targeting ATAD2 represents a promising method for the development of therapeutic treatments for cancer.
Collapse
|
11
|
Ni X, Lin Z, Dai S, Chen H, Chen J, Zheng C, Wu B, Ao J, Shi K, Sun H. Screening and verification of microRNA promoter methylation sites in hepatocellular carcinoma. J Cell Biochem 2020; 121:3626-3641. [PMID: 32065423 DOI: 10.1002/jcb.29656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
The promoter methylation mode of microribonucleic acid (miRNA) plays a crucial role in the process of hepatocellular carcinoma (HCC). Therefore, the primary purpose of this study was to screen and verify the miRNA methylation sites associated with the overall survival (OS) and clinical characteristics of HCC patients. Methylation-related data were from the Cancer Genome Atlas (TCGA). R software was utilized to screen the methylation sites. The least absolute shrinkage and selection operator algorithm was utilized to develop the miRNA promoter methylation models. Then, methylation-specific polymerase chain reaction was performed with 146 HCC tissues to verify the accuracy of the vascular infiltration-related model. Additionally, we verified the functions of vascular infiltration-related miRNA by utilizing cells transfected with miR-199a-3p mimic. The model for predicting OS of HCC patients contained eight methylation sites. The Kaplan-Meier analysis suggested that the model could divide HCC patients into high- and low-risk groups (P < .0001). COX regression analysis suggested that the model (P < .001; 95% CI, 1.264-2.709) and T category (P < .001; 95% CI, 1.472-3.119) were independent risk factors for affecting OS of HCC patients. The model for predicting vascular infiltration, pathological grade, and clinical stage contained 7, 10, and 9 methylation sites respectively, with their area under the receiver operating characteristic curve (AUC) values 0.667, 0.745, and 0.725, respectively. The functional analysis suggested that miRNA methylation is involved in various biological processes such as WNT, MAPK, and mTOR signaling pathways. The accuracy of the vascular infiltration-related model was consistent with our previous bioinformatics assay. And upregulation of miR-199a-3p decreased migration and invasion abilities. The screened miRNA promoter methylation sites can be served as biomarkers for judging OS, vascular infiltration, pathology grade, and clinical stage. It can also provide new targets for improving the treatment and prognosis of HCC patients.
Collapse
Affiliation(s)
- Xiaofeng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuo Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Wenzhou Key Laboratory of Hepatology, Wenzhou, Zhejiang, China.,Hepatology Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjie Dai
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianhui Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Chinese Academy of Sciences Shanghai Branch, Shanghai, China
| | - Chenlei Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Boda Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianyang Ao
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keqing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Laboratory of Precision Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongwei Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Cao SQ, Zheng H, Sun BC, Wang ZL, Liu T, Guo DH, Shen ZY. Long non-coding RNA highly up-regulated in liver cancer promotes exosome secretion. World J Gastroenterol 2019; 25:5283-5299. [PMID: 31558873 PMCID: PMC6761235 DOI: 10.3748/wjg.v25.i35.5283] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/07/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Highly upregulated in liver cancer (HULC) is a long non-coding RNA (lncRNA) which has recently been identified as a key regulator in hepatocellular carcinoma (HCC) progression. However, its role in the secretion of exosomes from HCC cells remains unknown.
AIM To explore the mechanism by which HULC promotes the secretion of exosomes from HCC cells.
METHODS Serum and liver tissue samples were collected from 30 patients with HCC who had not received chemotherapy, radiotherapy, or immunotherapy before surgery. HULC expression in serum exosomes and liver cancer tissues of patients was measured, and compared with the data obtained from healthy controls and tumor adjacent tissues. The effect of HULC upregulation in HCC cell lines and the relationship between HULC and other RNAs were studied using qPCR and dual-luciferase reporter assays. Nanoparticle tracking analysis was performed to detect the quantity of exosomes.
RESULTS HULC expression in serum exosomes of patients with HCC was higher than that in serum exosomes of healthy controls, and HULC levels were higher in liver cancer tissues than in tumor adjacent tissues. The expression of HULC in serum exosomes and liver cancer tissues correlated with the tumor-node-metastasis (TNM) classification, and HULC expression in tissues correlated with that in serum exosomes. Upregulation of HULC promoted HCC cell growth and invasion and repressed apoptosis. Notably, it also facilitated the secretion of exosomes from HCC cells. Moreover, qPCR assays showed that HULC repressed microRNA-372-3p (miR-372-3p) expression. We also identified Rab11a as a downstream target of miR-372-3p. Dual-luciferase reporter assays suggested that miR-372-3p could directly bind both HULC and Rab11a.
CONCLUSION Our findings illustrate the importance of the HULC/miR-372-3p/Rab11a axis in HCC and provide new insights into the molecular mechanism regulating the secretion of exosomes from HCC cells.
Collapse
Affiliation(s)
- Shun-Qi Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, China
| | - Hong Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, China
| | - Bao-Cun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Zheng-Lu Wang
- Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Tao Liu
- NHC Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | - Dong-Hui Guo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
13
|
Pan B, He B, Xu X, Liu X, Xu T, Xu M, Chen X, Zeng K, Lin K, Hu X, Sun L, Pan Y, Sun H, Wang S. MicroRNA-371-3 cluster as biomarkers for the diagnosis and prognosis of cancers. Cancer Manag Res 2019; 11:5437-5457. [PMID: 31354351 PMCID: PMC6584301 DOI: 10.2147/cmar.s190833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/23/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: To date, increasing evidences have demonstrated that the aberrant expression of miR-371–3 cluster has been verified in various cancers and could be potentially used as a biomarker for tumor diagnosis and prognosis. To explore the role of miR-371–3 cluster in tumor diagnosis and prognosis, we conducted this study based on the published data. Methods: We searched electronic databases (PubMed, EMBASE and Web of Science databases) (Jan 1, 2007 to Jun 1, 2018). The pooled sensitivity, specificity and area under the curve (AUC) of summary receiver operator characteristic (SROC) curve were used for diagnostic values, meanwhile the pooled hazard ration (HR) and 95% CI were used to explore the prognosis capacity of miR-372 and miR-373. In addition, the publication bias of the enrolled studies was tested and a sensitivity analysis of each study was performed to evaluate the stability of the pooled result. Results: A total of eleven eligible studies containing six eligible studies containing 870 participants for diagnosis and 1218 cancer cases for prognosis were selected for this study. For diagnosis, the pooled results revealed that the miR-371 (sensitivity: 0.85, specificity: 0.92, AUC: 0.92) and miR-373 (sensitivity: 0.81, specificity: 0.93, AUC: 0.93) could be used as diagnostic biomarkers. For prognosis, we observed that elevated miR-372 indicated poor prognosis (HR=2.31, 95% CI: 1.04–5.14), especially in the cutoff value subgroup of median (HR=2.62, 95% CI: 1.54–4.46). In addition, pooled results showed that expression of miR-373 was not related to prognosis because of the significant heterogeneity, and the high miR-373 expression presented favorable prognosis in Asians (HR=0.34, 95% CI: 0.23–0.50) after omitting the study of heterogeneity origin. Conclusion: The current studies demonstrated that miR-371 and miR-373 could be predictive tumor diagnostic biomarkers and the expression of miR-372 and miR-373 may indicate prognosis of cancer patients.
Collapse
Affiliation(s)
- Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Xueni Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.,School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.,School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Kaixuan Zeng
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.,School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Kang Lin
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Xiuxiu Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.,School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Li Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Xue F, Shi C, Yang L, Li C, Liu Y, Sun Y, Ge R. WITHDRAWN: Prognostic biomarker AASS suppresses proliferation, migration and predicts a good survival of hepatocellular carcinoma in vivo and in vitro. Life Sci 2019:S0024-3205(19)30436-9. [PMID: 31158378 DOI: 10.1016/j.lfs.2019.05.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Feng Xue
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, No.225, Changhai Rd, Shanghai 200438, China
| | - Chunchao Shi
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, No.225, Changhai Rd, Shanghai 200438, China
| | - Lixue Yang
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, No.225, Changhai Rd, Shanghai 200438, China
| | - Chenqi Li
- Department of Nutrition, Eastern Hepatobiliary Surgery Hospital, No.225, Changhai Rd, Shanghai 200438, China
| | - Yang Liu
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, No.225, Changhai Rd, Shanghai 200438, China
| | - Yanfu Sun
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, No.225, Changhai Rd, Shanghai 200438, China.
| | - Ruiliang Ge
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, No.225, Changhai Rd, Shanghai 200438, China.
| |
Collapse
|
15
|
Klec C, Gutschner T, Panzitt K, Pichler M. Involvement of long non-coding RNA HULC (highly up-regulated in liver cancer) in pathogenesis and implications for therapeutic intervention. Expert Opin Ther Targets 2019; 23:177-186. [PMID: 30678498 DOI: 10.1080/14728222.2019.1570499] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION HULC (highly upregulated in liver cancer) is a long non-coding RNA (lncRNA) which is, as its name suggests, highly upregulated in hepatocellular carcinoma and in several other cancers. Increased HULC expression levels are strongly associated with clinicopathologic features such as tumor stages and overall survival and is a driver of tumor proliferation, migration, and invasion. Areas covered: This review addresses the discovery of HULC and discusses the consequences of HULC deregulation in cancer, the underlying molecular mechanisms and the potential of HULC as a biomarker and therapeutic target. Expert opinion: HULC is a promising candidate as a therapeutic target in cancer; however, more studies are necessary to further elucidate the underlying molecular mechanism(s), especially in cancer types other than hepatocellular carcinomas. Future studies that focus on an optimized HULC-targeting approach are necessary to clarify the best strategy to target this lncRNA in vivo and in patients.
Collapse
Affiliation(s)
- Christiane Klec
- a Division of Oncology, Department of Internal Medicine , Medical University of Graz (MUG) , Graz , Austria.,b Research Unit for Non-coding RNAs and Genome Editing , Medical University of Graz (MUG) , Graz , Austria
| | - Tony Gutschner
- c Faculty of Medicine , Martin-Luther-University Halle-Wittenberg , Halle , Germany
| | - Katrin Panzitt
- d Department of Hepatology and Gastroenterology , Medical University of Graz (MUG) , Graz , Austria
| | - Martin Pichler
- a Division of Oncology, Department of Internal Medicine , Medical University of Graz (MUG) , Graz , Austria.,b Research Unit for Non-coding RNAs and Genome Editing , Medical University of Graz (MUG) , Graz , Austria.,e Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
16
|
Yue C, Ren Y, Ge H, Liang C, Xu Y, Li G, Wu J. Comprehensive analysis of potential prognostic genes for the construction of a competing endogenous RNA regulatory network in hepatocellular carcinoma. Onco Targets Ther 2019; 12:561-576. [PMID: 30679912 PMCID: PMC6338110 DOI: 10.2147/ott.s188913] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an extremely common malignant tumor with worldwide prevalence. The aim of this study was to identify potential prognostic genes and construct a competing endogenous RNA (ceRNA) regulatory network to explore the mechanisms underlying the development of HCC. METHODS Integrated analysis was used to identify potential prognostic genes in HCC with R software based on the GSE14520, GSE17548, GSE19665, GSE29721, GSE60502, and the Cancer Genome Atlas databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway-enrichment analyses were performed to explore the molecular mechanisms of potential prognostic genes. Differentially expressed miRNAs (DEMs) and lncRNAs (DELs) were screened based on the Cancer Genome Atlas database. An lncRNA-miRNA-mRNA ceRNA regulatory network was constructed based on information about interactions derived from the miRcode, TargetScan, miRTarBase, and miRDB databases. RESULTS A total of 152 potential prognostic genes were screened that were differentially expressed in HCC tissue and significantly associated with overall survival of HCC patients. There were 13 key potential prognostic genes in the ceRNA regulatory network: eleven upregulated genes (CCNB1, CEP55, CHEK1, EZH2, KPNA2, LRRC1, PBK, RRM2, SLC7A11, SUCO, and ZWINT) and two downregulated genes (ACSL1 and CDC37L1) whose expression might be regulated by eight DEMs and 61 DELs. Kaplan-Meier curve analysis showed that nine DELs (AL163952.1, AL359878.1, AP002478.1, C2orf48, C10orf91, CLLU1, CLRN1-AS1, ERVMER61-1, and WARS2-IT1) in the ceRNA regulatory network were significantly associated with HCC-patient prognoses. CONCLUSION This study identified potential prognostic genes and constructed an lncRNA- miRNA-mRNA ceRNA regulatory network of HCC, which not only has important clinical significance for early diagnoses but also provides effective targets for HCC treatments and could provide new insights for HCC-interventional strategies.
Collapse
Affiliation(s)
- Chaosen Yue
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China, ;
| | - Yaoyao Ren
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hua Ge
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China, ;
| | - Chaojie Liang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China, ;
| | - Yingchen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China, ;
| | - Guangming Li
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China, ;
| | - Jixiang Wu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China, ;
| |
Collapse
|
17
|
Wei B, Kong W, Mou X, Wang S. Comprehensive analysis of tumor immune infiltration associated with endogenous competitive RNA networks in lung adenocarcinoma. Pathol Res Pract 2019; 215:159-170. [DOI: 10.1016/j.prp.2018.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/13/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022]
|
18
|
Ji S, Su X, Zhang H, Han Z, Zhao Y, Liu Q. MicroRNA-372 functions as a tumor suppressor in cell invasion, migration and epithelial-mesenchymal transition by targeting ATAD2 in renal cell carcinoma. Oncol Lett 2018; 17:2400-2408. [PMID: 30719113 PMCID: PMC6350190 DOI: 10.3892/ol.2018.9871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, renal cell carcinoma (RCC) has exhibited an increasing incidence and mortality rate worldwide. Accumulating evidence has identified that microRNAs (miRNAs) function as negative or positive regulators of many malignant tumors; however, the roles of miR-372 in RCC remain unclear. The focus of the present study was the functions of miR-372 in RCC metastasis and EMT. Data revealed that miR-372 expression levels were significantly downregulated in RCC tissue samples and cells. Moreover, the decreased expression levels were strongly associated with the poor survival rates and adverse clinical characteristics of RCC patients. Accordingly, miR-372 overexpression markedly inhibited RCC cell invasion, migration and EMT. In terms of the potential mechanisms, ATAD2, the expression of which was inversely correlated with miR-372 expression in RCC, was identified as a direct functional target of miR-372. Notably, ATAD2 silence exerted suppressive functions in RCC cells, being similar to the effects of miR-372 overexpression. In conclusion, findings of this study indicate that miR-372 repressed RCC EMT and metastasis via targeting ATAD2, suggesting that the miR-372/ATAD2 axis may be therapeutic biomarkers for RCC.
Collapse
Affiliation(s)
- Shiqi Ji
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Xiaolin Su
- Department of Emergency, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100021, P.R. China
| | - Haijian Zhang
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Zhixing Han
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Yuqian Zhao
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Qingjun Liu
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
19
|
Ding M, Lu X, Wang C, Zhao Q, Ge J, Xia Q, Wang J, Zen K, Zhang CY, Zhang C. The E2F1-miR-520/372/373-SPOP Axis Modulates Progression of Renal Carcinoma. Cancer Res 2018; 78:6771-6784. [PMID: 30348808 DOI: 10.1158/0008-5472.can-18-1662] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022]
Abstract
: Although renal cell carcinoma (RCC) is the most malignant urologic cancer, its pathogenesis remains unclear, and effective treatments for advanced RCC are still lacking. Here, we report that a novel E2F1-miR-520/372/373-SPOP axis controls RCC carcinogenesis. Speckle-type POZ protein (SPOP) was upregulated in over 90% of RCC tissues, whereas the miR-520/372/373 family was downregulated and correlated inversely with SPOP protein levels in RCC tissues. The miR-520/372/373 family targeted the SPOP 3'-UTR and suppressed SPOP protein expression, leading to elevation of PTEN and DUSP7 levels and, consequently, decreased proliferation, invasion/migration, and metastasis of RCC cells in vitro and in vivo. Tail-vein delivery of therapeutic miR-520/372/373 family significantly decreased both tumor size and lung metastasis ratio in mice bearing orthotopic xenograft tumors. Decreased expression of miR-520/372/373 family was mediated by transcription factor E2F1. In conclusion, our results demonstrate that the E2F1-miR-520/372/373-SPOP axis functions as a key signaling pathway in RCC progression and metastasis and represents a promising opportunity for targeted therapies. SIGNIFICANCE: These findings show that the E2F1-miR-520/372/373 family-SPOP axis promotes RCC progression, thereby contributing to our understanding of RCC pathogenesis and unveiling new avenues for more effective targeted therapies.
Collapse
Affiliation(s)
- Meng Ding
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing, China
| | - Xiaolan Lu
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing, China
| | - Quan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing, China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Qiuyuan Xia
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing, China.
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China. .,State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Verdelli C, Forno I, Morotti A, Creo P, Guarnieri V, Scillitani A, Cetani F, Vicentini L, Balza G, Beretta E, Ferrero S, Vaira V, Corbetta S. The aberrantly expressed miR-372 partly impairs sensitivity to apoptosis in parathyroid tumor cells. Endocr Relat Cancer 2018; 25:761-771. [PMID: 29724878 DOI: 10.1530/erc-17-0204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
Parathyroid tumors deregulate microRNAs belonging to the two clusters on the chromosome 19, the C19MC and miR-371-373 clusters. Here, we report that the embryonic miR-372 is aberrantly expressed in half of parathyroid adenomas (PAds) in most of atypical adenomas and carcinomas (n = 15). Through in situ hybridization, we identified that miR-372-positive parathyroid tumor cells were scattered throughout the tumor parenchyma. In PAd-derived cells, ectopic miR-372 inhibited the expression of its targets CDKN1A/p21 and LATS2 at both mRNA and protein levels. Although the viability of parathyroid cells was not affected by miR-372 overexpression, the miRNA blunted camptothecin-induced apoptosis in primary PAd-derived cultures. miR-372 overexpression in parathyroid tumor cells increased parathormone (PTH) mRNA levels, and it positively correlated in vivo with circulating PTH levels. Conversely, the parathyroid-specific genes TBX1 and GCM2 were not affected by miR-372 mimic transfection. Finally, miR-372 dampened the Wnt pathway in parathyroid tumor cells through DKK1 upregulation. In conclusion, miR-372 is a novel mechanism exploited by a subset of parathyroid tumor cells to partially decrease sensitivity to apoptosis, to increase PTH synthesis and to deregulate Wnt signaling.
Collapse
Affiliation(s)
- Chiara Verdelli
- Laboratory of Experimental EndocrinologyIRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Irene Forno
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
- Division of PathologyFondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annamaria Morotti
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
- Division of PathologyFondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pasquale Creo
- Laboratory of Stem Cells for Tissue EngineeringIRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Vito Guarnieri
- Medical GeneticsIRCCS Hospital Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Alfredo Scillitani
- Endocrine UnitIRCCS Hospital Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Filomena Cetani
- Department of Endocrinology and MetabolismUniversity of Pisa, Pisa, Italy
| | - Leonardo Vicentini
- Endocrine SurgeryIRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianni Balza
- Endocrinology UnitOspedale Manzoni, Lecco, Italy
| | | | - Stefano Ferrero
- Division of PathologyFondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of BiomedicalSurgical and Dental Sciences, University of Milan, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
- Division of PathologyFondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology UnitDepartment of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
21
|
Long Noncoding RNA uc002yug.2 Activates HIV-1 Latency through Regulation of mRNA Levels of Various RUNX1 Isoforms and Increased Tat Expression. J Virol 2018; 92:JVI.01844-17. [PMID: 29491162 DOI: 10.1128/jvi.01844-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
The HIV-1 reservoir is a major obstacle to complete eradication of the virus. Although many proteins and RNAs have been characterized as regulators in HIV-1/AIDS pathogenesis and latency, only a few long noncoding RNAs (lncRNAs) have been shown to be closely associated with HIV-1 replication and latency. In this study, we demonstrated that lncRNA uc002yug.2 plays a key role in HIV-1 replication and latency. uc002yug.2 potentially enhances HIV-1 replication, long terminal repeat (LTR) activity, and the activation of latent HIV-1 in both cell lines and CD4+ T cells from patients. Further investigation revealed that uc002yug.2 activates latent HIV-1 through downregulating RUNX1b and -1c and upregulating Tat protein expression. The accumulated evidence supports our model that the Tat protein has the key role in the uc002yug.2-mediated regulatory effect on HIV-1 reactivation. Moreover, uc002yug.2 showed an ability to activate HIV-1 similar to that of suberoylanilide hydroxamic acid or phorbol 12-myristate 13-acetate using latently infected cell models. These findings improve our understanding of lncRNA regulation of HIV-1 replication and latency, providing new insights into potential targeted therapeutic interventions.IMPORTANCE The latent viral reservoir is the primary obstacle to curing HIV-1 disease. To date, only a few lncRNAs, which play major roles in various biological processes, including viral infection, have been identified as regulators in HIV-1 latency. In this study, we demonstrated that lncRNA uc002yug.2 is important for both HIV-1 replication and activation of latent viruses. Moreover, uc002yug.2 was shown to activate latent HIV-1 through regulating alternative splicing of RUNX1 and increasing the expression of Tat protein. These findings highlight the potential merit of targeting lncRNA uc002yug.2 as an activating agent for latent HIV-1.
Collapse
|
22
|
Lin Z, Lu Y, Meng Q, Wang C, Li X, Yang Y, Xin X, Zheng Q, Xu J, Gui X, Li T, Pu H, Xiong W, Li J, Jia S, Lu D. miR372 Promotes Progression of Liver Cancer Cells by Upregulating erbB-2 through Enhancement of YB-1. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:494-507. [PMID: 29858084 PMCID: PMC5992473 DOI: 10.1016/j.omtn.2018.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
MicroRNAs are known to be involved in carcinogenesis. Recently, microRNA-372 (miR372) has been proven to play a substantial role in several human cancers, but its functions in liver cancer remain unclear. Herein, our results demonstrate that miR372 accelerates growth of liver cancer cells in vitro and in vivo. Mechanistically, miR372 enhances expression of Y-box-binding protein 1 (YB-1) by targeting for phosphatase and tensin homolog (PTEN) directly and consequently promotes phosphorylation of YB-1 via HULC looping dependent on ERK1/2 and PTEN. In particular, HULC knockdown or PTEN overexpression abrogated this miR372 action. Moreover, miR372 inhibits the degradation of β-catenin dependent on phosphorylation of YB-1 and then enhances the expression and activity of pyruvate kinase M2 isoform (PKM2) by β-catenin-LEF/TCF4 pathway. Furthermore, the loading of LEF/TCF4 on PKM2 promoter region was significantly increased in miR372 overexpressing Hep3B, and thus, glycolytic proton efflux rate (glycoPER) was significantly increased in rLV-miR372 group compared to the rLV group. Moreover, β-catenin knockdown abrogates this function of miR372. Ultimately, miR372 promotes the expression of erbB-2 through PKM2-pH3T11-acetylation on histone H3 lysine 9 (H3K9Ac) pathway. Of significance, both YB-1 knockdown and erbB-2 knockdown abrogate oncogenic action of miR372. Our observations suggest that miR372 promotes liver cancer cell cycle progress by activating cyclin-dependent kinase 2 (CDK2)-cyclin E-P21/Cip1 complex through miR372-YB-1-β-catenin-LEF/TCF4-PKM2-erbB-2 axis. This study elucidates a novel mechanism for miR372 in liver cancer cells and suggests that miR372 can be used as a novel therapeutic target of liver cancer.
Collapse
Affiliation(s)
- Zhuojia Lin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanan Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qiuyu Meng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chen Wang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaonan Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yuxin Yang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoru Xin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qidi Zheng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jie Xu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wujun Xiong
- Department of Hepatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
23
|
Wang Y, Hu Y, Wu G, Yang Y, Tang Y, Zhang W, Wang K, Liu Y, Wang X, Li T. Long noncoding RNA PCAT-14 induces proliferation and invasion by hepatocellular carcinoma cells by inducing methylation of miR-372. Oncotarget 2018; 8:34429-34441. [PMID: 28415780 PMCID: PMC5470980 DOI: 10.18632/oncotarget.16260] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate oncogenesis by inducing methylation of CpG islands to silence target genes. Here we show that the lncRNA PCAT-14 is overexpressed in patients with hepatocellular carcinoma (HCC), and is associated with a poor prognosis after surgery. Our results demonstrate that PCAT-14 promotes proliferation, invasion, and cell cycle arrest in HCC cells. In addition, PCAT-14 inhibits miR-372 expression by inducing methylation of the miR-372 promoter. Simultaneously, miR-372 eliminates the effects of PCAT-14 on proliferation, invasion, and cell cycle in HCC cells. Moreover, PCAT-14 regulates expression of ATAD2 and activation of the Hedgehog pathway via miR-372. These findings indicate that PCAT-14 plays an important role in HCC, and may serve as a novel prognostic factor and therapeutic target.
Collapse
Affiliation(s)
- Yawei Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ye Hu
- Department of Nephrology, Liaoning Provincial People's Hospital, Shenyang, Liaoning 110000, China
| | - Gang Wu
- Department of General Surgery, The First Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110001, China
| | - Ye Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanqing Tang
- Department of Psychology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wanchuan Zhang
- Department of General Surgery, The First Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110001, China
| | - Kaiyu Wang
- Department of General Surgery, The First Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110001, China
| | - Yu Liu
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Tiemin Li
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
24
|
Liang HW, Yang X, Wen DY, Gao L, Zhang XY, Ye ZH, Luo J, Li ZY, He Y, Pang YY, Chen G. Utility of miR‑133a‑3p as a diagnostic indicator for hepatocellular carcinoma: An investigation combined with GEO, TCGA, meta‑analysis and bioinformatics. Mol Med Rep 2018; 17:1469-1484. [PMID: 29138825 PMCID: PMC5780086 DOI: 10.3892/mmr.2017.8040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has demonstrated that microRNA (miR)‑133a‑3p is an important regulator of hepatocellular carcinoma (HCC). In the present study, the diagnostic role of miR‑133a‑3p in HCC, and the potential functional pathways, were both explored based on publicly available data. Eligible microarray datasets were collected from NCBI Gene Expression Omnibus (GEO) database and ArrayExpress database. The data related to HCC and matched adjacent normal tissues were also downloaded from The Cancer Genome Atlas (TCGA). Published studies reporting the association between miR‑133a‑3p expression and HCC were reviewed from multiple databases. By combining the data derived from three sources (GEO, TCGA and published studies), the authors analyzed the comprehensive relationship between miR‑133a‑3p expression and clinicopathological features of HCC. Eventually, putative targets of miR‑133a‑3p in HCC were selected for further bioinformatics prediction. A total of eight published microarray datasets were gathered, and the pooled results demonstrated that the expression of miR‑133a‑3p in the tumor group was lower than that in normal groups [standardized mean difference (SMD)=‑0.54; 95% confidence interval (CI), ‑0.74 to ‑0.35; P<0.001]. Consistently, the level of miR‑133a‑1 in HCC was reduced markedly compared to normal tissues (P<0.001) based on TCGA data, and the AUC value of low miR‑133a‑1 expression for HCC diagnosis was 0.670 (P<0.001). Furthermore, the combined SMD of all datasets (GEO, TCGA and literature) suggested that significant difference was observed between the HCC group and the normal control group, and lower miR‑133a‑3p expression in HCC group was noted (SMD=‑0.69; 95% CI, ‑1.10 to ‑0.29; P=0.001). In addition, the authors discovered five key genes of the calcium signaling pathway (NOS1, ADRA1A, ADRA1B, ADRA1D and TBXA2R) that may probably be targeted by miR‑133a‑3p in HCC. The study reveals that miR‑133a‑3p may function as a tumor suppressor in HCC. The prospective novel pathways and key genes of miR‑133a‑3p could offer potential biomarkers for HCC; however, the predictions require further confirmation.
Collapse
Affiliation(s)
- Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiang-Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Hua Ye
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Luo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zu-Yun Li
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
25
|
Prognostic value of microRNAs in hepatocellular carcinoma: a meta-analysis. Oncotarget 2017; 8:107237-107257. [PMID: 29291025 PMCID: PMC5739810 DOI: 10.18632/oncotarget.20883] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background Numerous articles reported that dysregulated expression levels of miRNAs correlated with survival time of HCC patients. However, there has not been a comprehensive meta-analysis to evaluate the accurate prognostic value of miRNAs in HCC. Design Meta-analysis. Materials and Methods Studies, published in English, estimating expression levels of miRNAs with any survival curves in HCC were identified up until 15 April, 2017 by performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two independent authors. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). Results 54 relevant articles about 16 miRNAs, with 6464 patients, were ultimately included. HCC patients with high expression of tissue miR-9 (HR = 2.35, 95% CI = 1.46–3.76), miR-21 (HR = 1.76, 95% CI = 1.29–2.41), miR-34c (HR = 1.64, 95% CI = 1.05–2.57), miR-155 (HR = 2.84, 95% CI = 1.46–5.51), miR-221 (HR = 1.76, 95% CI = 1.02–3.04) or low expression of tissue miR-22 (HR = 2.29, 95% CI = 1.63–3.21), miR-29c (HR = 1.35, 95% CI = 1.10–1.65), miR-34a (HR = 1.84, 95% CI = 1.30–2.59), miR-199a (HR = 2.78, 95% CI = 1.89–4.08), miR-200a (HR = 2.64, 95% CI = 1.86–3.77), miR-203 (HR = 2.20, 95% CI = 1.61–3.00) have significantly poor OS (P < 0.05). Likewise, HCC patients with high expression of blood miR-21 (HR = 1.73, 95% CI = 1.07–2.80), miR-192 (HR = 2.42, 95% CI = 1.15–5.10), miR-224 (HR = 1.56, 95% CI = 1.14–2.12) or low expression of blood miR-148a (HR = 2.26, 95% CI = 1.11–4.59) have significantly short OS (P < 0.05). Conclusions In conclusion, tissue miR-9, miR-21, miR-22, miR-29c, miR-34a, miR-34c, miR-155, miR-199a, miR-200a, miR-203, miR-221 and blood miR-21, miR-148a, miR-192, miR-224 demonstrate significantly prognostic value. Among them, tissue miR-9, miR-22, miR-155, miR-199a, miR-200a, miR-203 and blood miR-148a, miR-192 are potential prognostic candidates for predicting OS in HCC.
Collapse
|
26
|
Yu J, Wang L, Yang H, Ding D, Zhang L, Wang J, Chen Q, Zou Q, Jin Y, Liu X. Rab14 Suppression Mediated by MiR-320a Inhibits Cell Proliferation, Migration and Invasion in Breast Cancer. J Cancer 2016; 7:2317-2326. [PMID: 27994670 PMCID: PMC5166543 DOI: 10.7150/jca.15737] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022] Open
Abstract
We found that microRNA-320a (miR-320a) was an attractive prognostic biomarker in breast cancer (BC) previously, whereas its regulatory mechanism in BC was not well understood. Our aim was to identify miR-320a target gene, examine the clinical relationship between miR-320a and its target, and further explore the functions of its target in BC. In this study, miR-320a downstream target gene was determined in HEK-293T cells by dual luciferase reporter assay. Then western blotting and immunohistochemistry were used to assess miR-320a target gene expression in fresh frozen (n=19, breast cancer and matched non-malignant adjacent tissue samples) and formalin-fixed paraffin-embedded (FFPE) (n=130, invasive BC tissues, the same panel detected for miR-320a expression previously) breast tissues, respectively. The results suggested that miR-320a could significantly suppressed Rab14 3'-untranslated region luciferase-reporter activity, and thus Rab14 was first identified as miR-320a target in BC. In 19 matched breast tissues, 12 (63%) breast cancer tissues showed high expression of Rab14 compared with the corresponding normal tissues. Rab14 immunoreactivity was mainly detected in the cytoplasm, 77/130 (59.2%) showed high expression. Furthermore, Rab14 expression was found to be inversely correlated with miR-320a expression in fresh-frozen breast tissues as well as in FFPE invasive breast cancer samples. In addition, Rab14 expression levels were positively related to tumor size (P = 0.034), lymph node metastasis (P < 0.001), distant metastasis (P = 0.001), histological grade (P = 0.035) and clinical tumor lymph-node metastasis stage (P = 0.001). Patients with higher Rab14 expression showed shorter overall survival time. Moreover, silencing of Rab14 could suppress proliferation, migration and invasion in breast cancer cell lines. Collectively, our results indicate that miR-320a could target Rab14 and that they could interact biologically in BC.
Collapse
Affiliation(s)
- Juan Yu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haiping Yang
- Department of Pathology, People's Hospital, Linzi District, Zibo City, Shandong 255400, China
| | - Di Ding
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jigang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qi Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Zou
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiting Jin
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiuping Liu
- Department of Pathology, the Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
27
|
Yu X, Zheng H, Chan MTV, Wu WKK. HULC: an oncogenic long non-coding RNA in human cancer. J Cell Mol Med 2016; 21:410-417. [PMID: 27781386 PMCID: PMC5264137 DOI: 10.1111/jcmm.12956] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/17/2016] [Indexed: 12/17/2022] Open
Abstract
Highly up‐regulated in liver cancer (HULC) was originally identified as the most overexpressed long non‐coding RNA in hepatocellular carcinoma. Since its discovery, the aberrant up‐regulation of HULC has been demonstrated in other cancer types, including gastric cancer, pancreatic cancer, osteosarcoma and hepatic metastasis of colorectal cancer. Recent discoveries have also shed new light on the upstream molecular mechanisms underlying HULC deregulation. As an oncogene, HULC promotes tumorigenesis by regulating multiple pathways, such as down‐regulation of EEF1E1, promotion of abnormal lipid metabolism, and up‐regulation of sphingosine kinase 1. Pertinent to clinical practice, a genetic variant in the HULC gene has been found to alter the risk for hepatocellular carcinoma and oesophageal cancer, whereas cancer patients with high or low expression of HULC exhibit different clinical outcome. These findings highlighted the pathogenic role and clinical utility of HULC in human cancers. Further efforts are warranted to promote the development of HULC‐directed therapeutics.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Kong X, Qian X, Duan L, Liu H, Zhu Y, Qi J. microRNA-372 Suppresses Migration and Invasion by Targeting p65 in Human Prostate Cancer Cells. DNA Cell Biol 2016; 35:828-835. [PMID: 27673408 DOI: 10.1089/dna.2015.3186] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent malignant tumors. microRNAs (miRNAs) play an important role in cancer initiation, progression, and metastasis, and their roles in PCa are becoming more apparent. In this study, we found that microRNA-372 (miR-372) is downregulated in human PCa and inhibits the proliferation activity, migration, and invasion of DU145 cells. Subsequently, p65 is confirmed as a target of miR-372, and knockdown of p65 expression similarly resulted in decreased proliferation activity, migration, and invasion. CDK8, MMP-9, and prostate-specific antigen were involved in both these processes. Taken together, our results show evidence that miR-372 may function as a tumor suppressor gene by regulating p65 in PCa and may provide a strategy for blocking PCa metastasis.
Collapse
Affiliation(s)
- Xiangjie Kong
- 1 Department of Urology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Xiaoqiang Qian
- 2 Department of Urology, Ruijin Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Liujian Duan
- 1 Department of Urology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Hailong Liu
- 1 Department of Urology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Yingjian Zhu
- 1 Department of Urology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Jun Qi
- 1 Department of Urology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai, China
| |
Collapse
|
29
|
Bastos EP, Brentani H, Pereira CAB, Polpo A, Lima L, Puga RD, Pasini FS, Osorio CABT, Roela RA, Achatz MI, Trapé AP, Gonzalez-Angulo AM, Brentani MM. A Set of miRNAs, Their Gene and Protein Targets and Stromal Genes Distinguish Early from Late Onset ER Positive Breast Cancer. PLoS One 2016; 11:e0154325. [PMID: 27152840 PMCID: PMC4859528 DOI: 10.1371/journal.pone.0154325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/12/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Breast cancer (BC) in young adult patients (YA) has a more aggressive biological behavior and is associated with a worse prognosis than BC arising in middle aged patients (MA). We proposed that differentially expressed miRNAs could regulate genes and proteins underlying aggressive phenotypes of breast tumors in YA patients when compared to those arising in MA patients. OBJECTIVE Using integrated expression analyses of miRs, their mRNA and protein targets and stromal gene expression, we aimed to identify differentially expressed profiles between tumors from YA-BC and MA-BC. METHODOLOGY AND RESULTS Samples of ER+ invasive ductal breast carcinomas, divided into two groups: YA-BC (35 years or less) or MA-BC (50-65 years) were evaluated. Screening for BRCA1/2 status according to the BOADICEA program indicated low risk of patients being carriers of these mutations. Aggressive characteristics were more evident in YA-BC versus MA-BC. Performing qPCR, we identified eight miRs differentially expressed (miR-9, 18b, 33b, 106a, 106b, 210, 518a-3p and miR-372) between YA-BC and MA-BC tumors with high confidence statement, which were associated with aggressive clinicopathological characteristics. The expression profiles by microarray identified 602 predicted target genes associated to proliferation, cell cycle and development biological functions. Performing RPPA, 24 target proteins differed between both groups and 21 were interconnected within a network protein-protein interactions associated with proliferation, development and metabolism pathways over represented in YA-BC. Combination of eight mRNA targets or the combination of eight target proteins defined indicators able to classify individual samples into YA-BC or MA-BC groups. Fibroblast-enriched stroma expression profile analysis resulted in 308 stromal genes differentially expressed between YA-BC and MA-BC. CONCLUSION We defined a set of differentially expressed miRNAs, their mRNAs and protein targets and stromal genes that distinguish early onset from late onset ER positive breast cancers which may be involved with tumor aggressiveness of YA-BC.
Collapse
Affiliation(s)
- E. P. Bastos
- Oncology and Radiology Department, Laboratory of Medical Investigation 24 (LIM 24), University of Sao Paulo, Medical School, São Paulo, Brazil
| | - H. Brentani
- Laboratory of Medical Investigation 23 (LIM 23), Institute and Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, Brazil
| | - C. A. B. Pereira
- Mathematics and Statistic Institute, University of Sao Paulo, São Paulo, Brazil
| | - A. Polpo
- Department of Statistics, Federal University of Sao Carlos, São Paulo, Brazil
| | - L. Lima
- Laboratory of Medical Investigation 23 (LIM 23), Institute and Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, Brazil
| | | | - F. S. Pasini
- Oncology and Radiology Department, Laboratory of Medical Investigation 24 (LIM 24), University of Sao Paulo, Medical School, São Paulo, Brazil
| | - C. A. B. T. Osorio
- Department of Pathology of A.C. Camargo Cancer Center, São Paulo, Brazil
| | - R. A. Roela
- Oncology and Radiology Department, Laboratory of Medical Investigation 24 (LIM 24), University of Sao Paulo, Medical School, São Paulo, Brazil
| | - M. I. Achatz
- Department of Oncogenetics of A.C. Camargo Cancer Center, São Paulo, Brazil
| | - A. P. Trapé
- Department of Breast Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - A. M. Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - M. M. Brentani
- Oncology and Radiology Department, Laboratory of Medical Investigation 24 (LIM 24), University of Sao Paulo, Medical School, São Paulo, Brazil
| |
Collapse
|
30
|
Moyo B, Nicholson SA, Arbuthnot PB. The role of long non-coding RNAs in hepatitis B virus-related hepatocellular carcinoma. Virus Res 2016; 212:103-13. [DOI: 10.1016/j.virusres.2015.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023]
|
31
|
Fortes P, Morris KV. Long noncoding RNAs in viral infections. Virus Res 2015; 212:1-11. [PMID: 26454188 DOI: 10.1016/j.virusres.2015.10.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023]
Abstract
Viral infections induce strong modifications in the cell transcriptome. Among the RNAs whose expression is altered by infection are long noncoding RNAs (lncRNAs). LncRNAs are transcripts with potential to function as RNA molecules. Infected cells may express viral lncRNAs, cellular lncRNAs and chimeric lncRNAs formed by viral and cellular sequences. Some viruses express viral lncRNAs whose function is essential for viral viability. They are transcribed by polymerase II or III and some of them can be processed by unique maturation steps performed by host cell machineries. Some viral lncRNAs control transcription, stability or translation of cellular and viral genes. Surprisingly, similar functions can be exerted by cellular lncRNAs induced by infection. Expression of cellular lncRNAs may be altered in response to viral replication or viral protein expression. However, many cellular lncRNAs respond to the antiviral pathways induced by infection. In fact, many lncRNAs function as positive or negative regulators of the innate antiviral response. Our current knowledge about the identity and function of lncRNAs in infected cells is very limited. However, research into this field has already helped in the identification of novel cellular pathways and may help in the development of therapeutic tools for the treatment of viral infections, autoimmune diseases, neurological disorders and cancer.
Collapse
Affiliation(s)
- Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; School of Biotechnology and Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
32
|
Abstract
Viral infections induce strong modifications in the cell transcriptome. Among the RNAs whose expression is altered by infection are long noncoding RNAs (lncRNAs). LncRNAs are transcripts with potential to function as RNA molecules. Infected cells may express viral lncRNAs, cellular lncRNAs and chimeric lncRNAs formed by viral and cellular sequences. Some viruses express viral lncRNAs whose function is essential for viral viability. They are transcribed by polymerase II or III and some of them can be processed by unique maturation steps performed by host cell machineries. Some viral lncRNAs control transcription, stability or translation of cellular and viral genes. Surprisingly, similar functions can be exerted by cellular lncRNAs induced by infection. Expression of cellular lncRNAs may be altered in response to viral replication or viral protein expression. However, many cellular lncRNAs respond to the antiviral pathways induced by infection. In fact, many lncRNAs function as positive or negative regulators of the innate antiviral response. Our current knowledge about the identity and function of lncRNAs in infected cells is very limited. However, research into this field has already helped in the identification of novel cellular pathways and may help in the development of therapeutic tools for the treatment of viral infections, autoimmune diseases, neurological disorders and cancer.
Collapse
Affiliation(s)
- Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; School of Biotechnology and Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
33
|
Wang X, Wu Q, Xu B, Wang P, Fan W, Cai Y, Gu X, Meng F. MiR-124 exerts tumor suppressive functions on the cell proliferation, motility and angiogenesis of bladder cancer by fine-tuning UHRF1. FEBS J 2015; 282:4376-88. [PMID: 26310391 DOI: 10.1111/febs.13502] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/28/2015] [Accepted: 08/22/2015] [Indexed: 12/13/2022]
Abstract
UHRF1, an epigenetic factor, is implicated in various cellular processes of tumorigenesis. However, the modulation of UHRF1 expression in human bladder cancer at post-transcriptional levels remains unclear. Here, we report that miR-124 suppresses expression of UHRF1 to affect the progression of human bladder cancer through competitive binding of the same region of its 3'-UTR. We show that compared with corresponding normal tissues, UHRF1 is upregulated and miR-124 is downregulated in bladder cancer tissues, demonstrating an inverse correlation of miR-124 and UHRF1. Quantitative PCR and western blot assay demonstrated that over-expression of miR-124 resulted in the suppression of UHRF1. Furthermore, luciferase assay revealed that miR-124 could control the fate of target gene UHRF1 mRNA by binding 3'-UTR. The rescue experiment confirmed that miR-124 exerted its biological functions by targeting UHRF1. miR-124 over-expression significantly attenuated cellular proliferation, migration, invasion and vasculogenic mimicry in vitro, and tumor growth in vivo. UHRF1 siRNA showed significant inhibitory effects on bladder cancer cells. Collectively, our study demonstrates that miR-124 can impair the proliferation or metastasis of human bladder cancer cells by down-regulation of UHRF1.
Collapse
Affiliation(s)
- Xinsheng Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiaoli Wu
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, China
| | - Bin Xu
- The Graduate School, Tianjin Medical University, China
| | - Pengfei Wang
- The Graduate School, Tianjin Medical University, China
| | - Weijia Fan
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, China
| | - Ying Cai
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, China
| | - Xinquan Gu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fanping Meng
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|