1
|
Santinha J, Pinto Dos Santos D, Laqua F, Visser JJ, Groot Lipman KBW, Dietzel M, Klontzas ME, Cuocolo R, Gitto S, Akinci D'Antonoli T. ESR Essentials: radiomics-practice recommendations by the European Society of Medical Imaging Informatics. Eur Radiol 2024:10.1007/s00330-024-11093-9. [PMID: 39453470 DOI: 10.1007/s00330-024-11093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 10/26/2024]
Abstract
Radiomics is a method to extract detailed information from diagnostic images that cannot be perceived by the naked eye. Although radiomics research carries great potential to improve clinical decision-making, its inherent methodological complexities make it difficult to comprehend every step of the analysis, often causing reproducibility and generalizability issues that hinder clinical adoption. Critical steps in the radiomics analysis and model development pipeline-such as image, application of image filters, and selection of feature extraction parameters-can greatly affect the values of radiomic features. Moreover, common errors in data partitioning, model comparison, fine-tuning, assessment, and calibration can reduce reproducibility and impede clinical translation. Clinical adoption of radiomics also requires a deep understanding of model explainability and the development of intuitive interpretations of radiomic features. To address these challenges, it is essential for radiomics model developers and clinicians to be well-versed in current best practices. Proper knowledge and application of these practices is crucial for accurate radiomics feature extraction, robust model development, and thorough assessment, ultimately increasing reproducibility, generalizability, and the likelihood of successful clinical translation. In this article, we have provided researchers with our recommendations along with practical examples to facilitate good research practices in radiomics. KEY POINTS: Radiomics' inherent methodological complexity should be understood to ensure rigorous radiomic model development to improve clinical decision-making. Adherence to radiomics-specific checklists and quality assessment tools ensures methodological rigor. Use of standardized radiomics tools and best practices enhances clinical translation of radiomics models.
Collapse
Affiliation(s)
- João Santinha
- Digital Surgery LAB, Champalimaud Research, Champalimaud Foundation, Av. Brasília, 1400-038, Lisbon, Portugal.
- Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Fabian Laqua
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jacob J Visser
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Kevin B W Groot Lipman
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Matthias Dietzel
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Michail E Klontzas
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Division of Radiology, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institute, Solna, Sweden
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Salvatore Gitto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
2
|
Hosseini MS, Aghamiri SMR, Fatemi Ardekani A, BagheriMofidi SM. Assessing the stability and discriminative ability of radiomics features in the tumor microenvironment: Leveraging peri-tumoral regions in vestibular schwannoma. Eur J Radiol 2024; 178:111654. [PMID: 39089057 DOI: 10.1016/j.ejrad.2024.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
PURPOSE The tumor microenvironment (TME) plays a crucial role in tumor progression and treatment response. Radiomics offers a non-invasive approach to studying the TME by extracting quantitative features from medical images. In this study, we present a novel approach to assess the stability and discriminative ability of radiomics features in the TME of vestibular schwannoma (VS). METHODS Magnetic Resonance Imaging (MRI) data from 242 VS patients were analyzed, including contrast-enhanced T1-weighted (ceT1) and high-resolution T2-weighted (hrT2) sequences. Radiomics features were extracted from concentric peri-tumoral regions of varying sizes. The intraclass correlation coefficient (ICC) was used to assess feature stability and discriminative ability, establishing quantile thresholds for ICCmin and ICCmax. RESULTS The identified thresholds for ICCmin and ICCmax were 0.45 and 0.72, respectively. Features were classified into four categories: stable and discriminative (S-D), stable and non-discriminative (S-ND), unstable and discriminative (US-D), and unstable and non-discriminative (US-ND). Different feature groups exhibited varying proportions of S-D features across ceT1 and hrT2 sequences. The similarity of S-D features between ceT1 and hrT2 sequences was evaluated using Jaccard's index, with a value of 0.78 for all feature groups which is ranging from 0.68 (intensity features) to 1.00 (Neighbouring Gray Tone Difference Matrix (NGTDM) features). CONCLUSIONS This study provides a framework for identifying stable and discriminative radiomics features in the TME, which could serve as potential biomarkers or predictors of patient outcomes, ultimately improving the management of VS patients.
Collapse
Affiliation(s)
| | | | - Ali Fatemi Ardekani
- Department of Physics, Jackson State University, Jackson, MS, USA; Merit Health Central, Department of Radiation Oncology,Gamma Knife Center, Jackson, MS, USA.
| | - Seyed Mehdi BagheriMofidi
- Department of Biomedical Engineering, Aliabad Katoul Branch Islamic Azad University, Aliabad-e-Katoul, Iran.
| |
Collapse
|
3
|
Mostafavi L, Homayounieh F, Lades F, Primak A, Muse V, Harris GJ, Kalra MK, Digumarthy SR. Correlation of Radiomics with Treatment Response in Liver Metastases. Acad Radiol 2024; 31:3133-3141. [PMID: 38087718 DOI: 10.1016/j.acra.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 08/31/2024]
Abstract
RATIONALE AND OBJECTIVES To assess differences in radiomics derived from semi-automatic segmentation of liver metastases for stable disease (SD), partial response (PR), and progressive disease (PD) based on RECIST1.1 and to assess if radiomics alone at baseline can predict response. MATERIALS AND METHODS Our IRB-approved study included 203 women (mean age 54 ± 11 years) with metastatic liver disease from breast cancer. All patients underwent contrast abdomen-pelvis CT in the portal venous phase at two points: baseline (pre-treatment) and follow-up (between 3 and 12 months following treatment). Patients were subcategorized into three subgroups based on RECIST 1.1 criteria (Response Evaluation Criteria in Solid Tumors version 1.1): 66 with SD, 69 with PR, and 68 with PD on follow-up CT. The deidentified baseline and follow-up CT images were exported to the radiomics prototype. The prototype enabled semi-automatic segmentation of the target liver lesions for the extraction of first and high order radiomics. Statistical analyses with logistic regression and random forest classifiers were performed to differentiate SD from PD and PR. RESULTS There was no significant difference between the radiomics on the baseline and follow-up CT images of patients with SD (area under the curve (AUC): 0.3). Random forest classifier differentiated patients with PR with an AUC of 0.845. The most relevant feature was the large dependence emphasis's high and low pass wavelet filter (derived gray level dependence matrix features). Random forest classifier differentiated PD with an AUC of 0.731, with the most relevant feature being the surface-to-volume ratio. There was no difference in radiomics among the three groups at baseline; therefore, a response could not be predicted. CONCLUSION Radiomics of liver metastases with semi-automatic segmentation demonstrate differences between SD from PR and PD. SUMMARY STATEMENT Semiautomatic segmentation and radiomics of metastatic liver disease demonstrate differences in SD from the PR and progressive metastatic on the baseline and follow-up CT. Despite substantial variations in the scanners, acquisition, and reconstruction parameters, radiomics had an AUC of 0.84-0.89 for differentiating stable hepatic metastases from decreasing and increasing metastatic disease.
Collapse
Affiliation(s)
- Leila Mostafavi
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.); Tumor Imaging Metrics Core (TIMC), Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA (L.M., G.J.H.).
| | - Fatemeh Homayounieh
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Felix Lades
- Siemens Healthcare GmbH, Forchheim, Germany (F.L.)
| | - Andrew Primak
- Siemens Healthineers, Malvern, Pennsylvania, USA (A.P.)
| | - Victorine Muse
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Gordon J Harris
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.); Tumor Imaging Metrics Core (TIMC), Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA (L.M., G.J.H.)
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Subba R Digumarthy
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| |
Collapse
|
4
|
Guo X, Ding Y, Xu W, Wang D, Yu H, Lin Y, Chang S, Zhang Q, Zhang Y. Predicting brain age gap with radiomics and automl: A Promising approach for age-Related brain degeneration biomarkers. J Neuroradiol 2024; 51:265-273. [PMID: 37722591 DOI: 10.1016/j.neurad.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The Brain Age Gap (BAG), which refers to the difference between chronological age and predicted neuroimaging age, is proposed as a potential biomarker for age-related brain degeneration. However, existing brain age prediction models usually rely on a single marker and can not discover meaningful hidden information in radiographic images. This study focuses on the application of radiomics, an advanced imaging analysis technique, combined with automated machine learning to predict BAG. Our methods achieve a promising result with a mean absolute error of 1.509 using the Alzheimer's Disease Neuroimaging Initiative dataset. Furthermore, we find that the hippocampus and parahippocampal gyrus play a significant role in predicting age with interpretable method called SHapley Additive exPlanations. Additionally, our investigation of age prediction discrepancies between patients with Alzheimer's disease (AD) and those with mild cognitive impairment (MCI) reveals a notable correlation with clinical cognitive assessment scale scores. This suggests that BAG has the potential to serve as a biomarker to support the diagnosis of AD and MCI. Overall, this study presents valuable insights into the application of neuroimaging models in the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoliang Guo
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yanhui Ding
- School of Information Science and Engineering, Shandong Normal University, Jinan, China.
| | - Weizhi Xu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Dong Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunication, Beijing, China
| | - Huiying Yu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yongkang Lin
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Shulei Chang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiqi Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yongxin Zhang
- School of Mathematics and Statistics, Shandong Normal University, Jinan, China.
| |
Collapse
|
5
|
Yang P, Shan J, Ge X, Zhou Q, Ding M, Niu T, Du J. Prediction of SBRT response in liver cancer by combining original and delta cone-beam CT radiomics: a pilot study. Phys Eng Sci Med 2024; 47:295-307. [PMID: 38165634 DOI: 10.1007/s13246-023-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024]
Abstract
This study aims to explore the feasibility of utilizing a combination of original and delta cone-beam CT (CBCT) radiomics for predicting treatment response in liver tumors undergoing stereotactic body radiation therapy (SBRT). A total of 49 patients are included in this study, with 36 receiving 5-fraction SBRT, 3 receiving 4-fraction SBRT, and 10 receiving 3-fraction SBRT. The CBCT and planning CT images from liver cancer patients who underwent SBRT are collected to extract overall 547 radiomics features. The CBCT features which are reproducible and interchangeable with pCT are selected for modeling analysis. The delta features between fractions are calculated to depict tumor change. The patients with 4-fraction SBRT are only used for screening robust features. In patients receiving 5-fraction SBRT, the predictive ability of both original and delta CBCT features for two-level treatment response (local efficacy vs. local non-efficacy; complete response (CR) vs. partial response (PR)) is assessed by utilizing multivariable logistic regression with leave-one-out cross-validation. Additionally, univariate analysis is conducted to validate the capability of CBCT features in identifying local efficacy in patients receiving 3-fraction SBRT. In patients receiving 5-fraction SBRT, the combined models incorporating original and delta CBCT radiomics features demonstrate higher area under the curve (AUC) values compared to models using either original or delta features alone for both classification tasks. The AUC values for predicting local efficacy vs. local non-efficacy are 0.58 for original features, 0.82 for delta features, and 0.90 for combined features. For distinguishing PR from CR, the respective AUC values for original, delta and combined features are 0.79, 0.80, and 0.89. In patients receiving 3-fraction SBRT, eight valuable CBCT radiomics features are identified for predicting local efficacy. The combination of original and delta radiomics derived from fractionated CBCT images in liver cancer patients undergoing SBRT shows promise in providing comprehensive information for predicting treatment response.
Collapse
Affiliation(s)
- Pengfei Yang
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, 100049, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jingjing Shan
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Ge
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qinxuan Zhou
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mingchao Ding
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Tianye Niu
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, 100049, China.
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Jichen Du
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, 100049, China.
| |
Collapse
|
6
|
Taddese AA, Tilahun BC, Awoke T, Atnafu A, Mamuye A, Mengiste SA. Deep-learning models for image-based gynecological cancer diagnosis: a systematic review and meta- analysis. Front Oncol 2024; 13:1216326. [PMID: 38273847 PMCID: PMC10809847 DOI: 10.3389/fonc.2023.1216326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Gynecological cancers pose a significant threat to women worldwide, especially those in resource-limited settings. Human analysis of images remains the primary method of diagnosis, but it can be inconsistent and inaccurate. Deep learning (DL) can potentially enhance image-based diagnosis by providing objective and accurate results. This systematic review and meta-analysis aimed to summarize the recent advances of deep learning (DL) techniques for gynecological cancer diagnosis using various images and explore their future implications. Methods The study followed the PRISMA-2 guidelines, and the protocol was registered in PROSPERO. Five databases were searched for articles published from January 2018 to December 2022. Articles that focused on five types of gynecological cancer and used DL for diagnosis were selected. Two reviewers assessed the articles for eligibility and quality using the QUADAS-2 tool. Data was extracted from each study, and the performance of DL techniques for gynecological cancer classification was estimated by pooling and transforming sensitivity and specificity values using a random-effects model. Results The review included 48 studies, and the meta-analysis included 24 studies. The studies used different images and models to diagnose different gynecological cancers. The most popular models were ResNet, VGGNet, and UNet. DL algorithms showed more sensitivity but less specificity compared to machine learning (ML) methods. The AUC of the summary receiver operating characteristic plot was higher for DL algorithms than for ML methods. Of the 48 studies included, 41 were at low risk of bias. Conclusion This review highlights the potential of DL in improving the screening and diagnosis of gynecological cancer, particularly in resource-limited settings. However, the high heterogeneity and quality of the studies could affect the validity of the results. Further research is necessary to validate the findings of this study and to explore the potential of DL in improving gynecological cancer diagnosis.
Collapse
Affiliation(s)
- Asefa Adimasu Taddese
- Department of Health Informatics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- eHealthlab Ethiopia Research Center, University of Gondar, Gondar, Ethiopia
| | - Binyam Chakilu Tilahun
- Department of Health Informatics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- eHealthlab Ethiopia Research Center, University of Gondar, Gondar, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Asmamaw Atnafu
- eHealthlab Ethiopia Research Center, University of Gondar, Gondar, Ethiopia
- Department of Health Systems and Policy, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Adane Mamuye
- eHealthlab Ethiopia Research Center, University of Gondar, Gondar, Ethiopia
- School of Information Technology and Engineering, Addis Ababa University, Addis Ababa, Ethiopia
| | - Shegaw Anagaw Mengiste
- Department of Business, History and Social Sciences, University of Southeastern Norway, Vestfold, Vestfold, Norway
| |
Collapse
|
7
|
Bordeau K, Michalet M, Dorion V, Keskes A, Valdenaire S, Debuire P, Cantaloube M, Cabaillé M, Draghici R, Ychou M, Assenat E, Jarlier M, Gourgou S, Guiu B, Ursic-Bedoya J, Aillères N, Fenoglietto P, Azria D, Riou O. A prospective registry study of stereotactic magnetic resonance guided radiotherapy (MRgRT) for primary liver tumors. Radiother Oncol 2023; 189:109912. [PMID: 37739315 DOI: 10.1016/j.radonc.2023.109912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND PURPOSE Stereotactic body radiation therapy (SBRT) has demonstrated safe and effective results for primary liver tumors. Magnetic Resonance guided Radiotherapy (MRgRT) is an innovative radiotherapy modality for abdominal tumors. The aim of this study is to report on acute and late toxicities and initial oncological results for primary liver tumors treated with MRgRT. MATERIALS AND METHODS We prospectively included in our cohort all patients treated by MRgRT for a primary liver tumor at the Montpellier Cancer Institute. The primary endpoint was acute and late toxicities assessed according to CTCAE v 5.0. The mean prescribed dose was 50 Gy in 5 fractions. RESULTS Between October 2019 and April 2022, MRgRT treated 56 patients for 72 primary liver lesions. No acute or late toxicities of CTCAE grade greater than 2 attributable to radiotherapy were noted during follow-up. No cases of radiation-induced liver disease (RILD), either classical or non-classical, occurred. After a median follow-up of 13.2 months (95% CI [8.8; 15.7]), overall survival was 85.1% (95% CI: [70.8; 92.7]) at 1 year and 74.2% at 18 months (95% CI [52.6; 87.0]). Local control was 98.1% (95% CI: [87.4; 99.7]) and 94.7% (95% CI: [79.5; 98.7]) at 12 and 18 months, respectively. Among the HCC subgroup, no local recurrences were observed. CONCLUSION MRgRT for primary liver tumors is safe without severe adverse events and reach excellent local control. Numerous studies are underway to better assess the value of MRI guidance and adaptive process in these indications.
Collapse
Affiliation(s)
- Karl Bordeau
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Morgan Michalet
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Valérie Dorion
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Aïcha Keskes
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Simon Valdenaire
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Pierre Debuire
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Marie Cantaloube
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Morgane Cabaillé
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Roxana Draghici
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Marc Ychou
- Medical oncology department, ICM, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France
| | - Eric Assenat
- Medical oncology department, CHU St Eloi 34000, Montpellier, France
| | - Marta Jarlier
- Biometrics Unit ICM, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France
| | - Sophie Gourgou
- Biometrics Unit ICM, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France
| | - Boris Guiu
- Radiology department, CHU St Eloi 34000, Montpellier, France
| | - José Ursic-Bedoya
- Liver Transplantation Unit, Department of Hepatology, Montpellier University Hospital, University of Montpellier, 34295, Montpellier, France
| | - Norbert Aillères
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Pascal Fenoglietto
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - David Azria
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Olivier Riou
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France.
| |
Collapse
|
8
|
Abbas E, Fanni SC, Bandini C, Francischello R, Febi M, Aghakhanyan G, Ambrosini I, Faggioni L, Cioni D, Lencioni RA, Neri E. Delta-radiomics in cancer immunotherapy response prediction: A systematic review. Eur J Radiol Open 2023; 11:100511. [PMID: 37520768 PMCID: PMC10371799 DOI: 10.1016/j.ejro.2023.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Background The new immunotherapies have not only changed the oncological therapeutic approach but have also made it necessary to develop new imaging methods for assessing the response to treatment. Delta radiomics consists of the analysis of radiomic features variation between different medical images, usually before and after therapy. Purpose This review aims to evaluate the role of delta radiomics in the immunotherapy response assessment. Methods A systematic search was performed in PubMed, Scopus, and Web Of Science using "delta radiomics AND immunotherapy" as search terms. The included articles' methodological quality was measured using the Radiomics Quality Score (RQS) tool. Results Thirteen articles were finally included in the systematic review. Overall, the RQS of the included studies ranged from 4 to 17, with a mean RQS total of 11,15 ± 4,18 with a corresponding percentage of 30.98 ± 11.61 %. Eleven articles out of 13 performed imaging at multiple time points. All the included articles performed feature reduction. No study carried out prospective validation, decision curve analysis, or cost-effectiveness analysis. Conclusions Delta radiomics has been demonstrated useful in evaluating the response in oncologic patients undergoing immunotherapy. The overall quality was found law, due to the lack of prospective design and external validation. Thus, further efforts are needed to bring delta radiomics a step closer to clinical implementation.
Collapse
Affiliation(s)
- Engy Abbas
- The Joint Department of Medical Imaging, University of Toronto, University Health Network, Sinai Health System, Women’s College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9
| | | | - Claudio Bandini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Roberto Francischello
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Maria Febi
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Gayane Aghakhanyan
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Lorenzo Faggioni
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Dania Cioni
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Emanuele Neri
- The Joint Department of Medical Imaging, University of Toronto, University Health Network, Sinai Health System, Women’s College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Park JW, Lee H, Hong H, Seong J. Efficacy of Radiomics in Predicting Oncologic Outcome of Liver-Directed Combined Radiotherapy in Locally Advanced Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5405. [PMID: 38001665 PMCID: PMC10670316 DOI: 10.3390/cancers15225405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE We investigated whether radiomic features extracted from three-phase dynamic contrast-enhanced computed tomography (CECT) can be used to predict clinical outcomes, including objective treatment response (OR) and in-field failure-free survival rate (IFFR), in patients with hepatocellular carcinoma (HCC) who received liver-directed combined radiotherapy (LD-CRT). METHODS We included 409 patients, and they were randomly divided into training (n = 307) and validation (n = 102) cohorts. For radiomics models, we extracted 116 radiomic features from the region of interest on the CECT images. Significant clinical prognostic factors are identified to predict the OR and IFFR in the clinical models. We developed clinical models, radiomics models, and a combination of both features (CCR model). RESULTS Among the radiomic models evaluated for OR, the OR-PVP-Peri-1cm model showed favorable predictive performance with an area under the curve (AUC) of 0.647. The clinical model showed an AUC of 0.729, whereas the CCR model showed better performance (AUC 0.759). For the IFFR, the IFFR-PVP-Peri-1cm model showed an AUC of 0.673, clinical model showed 0.687, and the CCR model showed 0.736. We also developed and validated a prognostic nomogram based on CCR models. CONCLUSION In predicting the OR and IFFR in patients with HCC undergoing LD-CRT, CCR models performed better than clinical and radiomics models. Moreover, the constructed nomograms based on these models may provide valuable information on the prognosis of these patients.
Collapse
Affiliation(s)
- Jong Won Park
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Hansang Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
| | - Helen Hong
- Department of Software Convergence, College of Interdisciplinary Studies for Emerging Industries, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| |
Collapse
|
10
|
Marinelli B, Chen M, Stocker D, Charles D, Radell J, Lee JY, Fauveau V, Bello-Martinez R, Kim E, Taouli B. Early Prediction of Response of Hepatocellular Carcinoma to Yttrium-90 Radiation Segmentectomy Using a Machine Learning MR Imaging Radiomic Approach. J Vasc Interv Radiol 2023; 34:1794-1801.e2. [PMID: 37364730 DOI: 10.1016/j.jvir.2023.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
PURPOSE To assess the accuracy of a machine learning (ML) approach based on magnetic resonance (MR) imaging radiomic quantification obtained before treatment and early after treatment for prediction of early hepatocellular carcinoma (HCC) response to yttrium-90 transarterial radioembolization (TARE). MATERIALS AND METHODS In this retrospective single-center study of 76 patients with HCC, baseline and early (1-2 months) post-TARE MR images were collected. Semiautomated tumor segmentation facilitated extraction of shape, first-order histogram, and custom signal intensity-based radiomic features, which were then trained (n = 46) using a ML XGBoost model and validated on a separate cohort (n = 30) not used in training to predict treatment response assessed at 4-6 months (based on modified Response and Evaluation Criteria in Solid Tumors criteria). Performance of this ML radiomic model was compared with those of models comprising clinical parameters and standard imaging characteristics using area under the receiver operating curve (AUROC) analysis for prediction of complete response (CR). RESULTS Seventy-six tumors with a mean (±SD) diameter of 2.6 cm ± 1.6 were included. Sixty, 12, 1, and 3 patients were classified as having CR, partial response, stable disease, and progressive disease, respectively, at 4-6 months posttreatment on the basis of MR images. In the validation cohort, the radiomic model showed good performance (AUROC, 0.89) for prediction of CR, compared with models comprising clinical and standard imaging criteria (AUROC, 0.58 and 0.59, respectively). Baseline imaging features appeared to be more heavily weighted in the radiomic model. CONCLUSIONS The use of ML modeling of radiomic data combining baseline and early follow-up MR imaging could predict HCC response to TARE. These models need to be investigated further in an independent cohort.
Collapse
Affiliation(s)
- Brett Marinelli
- Biomedical Engineering and Imaging Institute; Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Mark Chen
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Stocker
- Institute of Interventional and Diagnostic Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dudley Charles
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Jake Radell
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Yoep Lee
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Edward Kim
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bachir Taouli
- Biomedical Engineering and Imaging Institute; Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
11
|
Hunter B, Bunce C, Blackledge M, Aboagye E, Lee R. Response to A. Eleuteri regarding "A radiomics-based decision support tool improves lung cancer diagnosis in combination with the Herder score in large lung nodules". EBioMedicine 2023; 94:104687. [PMID: 37392598 PMCID: PMC10338198 DOI: 10.1016/j.ebiom.2023.104687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023] Open
Affiliation(s)
- Benjamin Hunter
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK; Lung Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Catey Bunce
- Clinical Trials Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, UK
| | - Matthew Blackledge
- Computational Imaging Group, The Institute of Cancer Research, Cotswold Road, Sutton, SM2 5NG, UK
| | - Eric Aboagye
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Richard Lee
- Lung Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK; Early Diagnosis and Detection Centre, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK; National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK.
| |
Collapse
|
12
|
Wang X, Dai Y, Lin H, Cheng J, Zhang Y, Cao M, Zhou Y. Shape and texture analyses based on conventional MRI for the preoperative prediction of the aggressiveness of pituitary adenomas. Eur Radiol 2023; 33:3312-3321. [PMID: 36738323 DOI: 10.1007/s00330-023-09412-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Pituitary adenomas can exhibit aggressive behavior, characterized by rapid growth, resistance to conventional treatment, and early recurrence. This study aims to evaluate the clinical value of shape-related features combined with textural features based on conventional MRI in evaluating the aggressiveness of pituitary adenomas and develop the best diagnostic model. METHODS Two hundred forty-six pituitary adenoma patients (84 aggressive, 162 non-aggressive) who underwent preoperative MRI were retrospectively reviewed. The patients were divided into training (n = 193) and testing (n = 53) sets. Clinical information, shape-related, and textural features extracted from the tumor volume on contrast-enhanced T1-weighted images (CE-T1WI), were compared between aggressive and non-aggressive groups. Variables with significant differences were enrolled into Pearson's correlation analysis to weaken multicollinearity. Logistic regression models based on the selected features were constructed to predict tumor aggressiveness under fivefold cross-validation. RESULTS Sixty-five imaging features, including five shape-related and sixty textural features, were extracted from volumetric CE-T1WI. Forty-seven features were significantly different between aggressive and non-aggressive groups (all p values < 0.05). After feature selection, four features (SHAPE_Sphericity, SHAPE_Compacity, DISCRETIZED_Q3, and DISCRETIZED_Kurtosis) were put into logistic regression analysis. Based on the combination of these features and Knosp grade, the model yielded an area under the curve value of 0.935, with a sensitivity of 94.4% and a specificity of 82.9%, to discriminate between aggressive and non-aggressive pituitary adenomas in the testing set. CONCLUSION The radiomic model based on tumor shape and textural features study from CE-T1WI might potentially assist in the preoperative aggressiveness diagnosis of pituitary adenomas. KEY POINTS • Pituitary adenomas with aggressive behavior exhibit rapid growth, resistance to conventional treatment, and early recurrence despite gross resection and may require multiline treatments. • Shape-related features and texture features based on CE-T1WI were significantly correlated with the Ki-67 labeling index, mitotic count, and p53 expression, and the proposed model achieved a favorable prediction of the aggressiveness of PAs with an AUC value of 0.935. • The prediction model might provide valuable guidance for individualized treatment in patients with PAs.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Dai
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jiahui Cheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengqiu Cao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis. Diagnostics (Basel) 2023; 13:diagnostics13030552. [PMID: 36766656 PMCID: PMC9914401 DOI: 10.3390/diagnostics13030552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND To study the additive value of radiomics features to the BCLC staging system in clustering HCC patients. METHODS A total of 266 patients with HCC were included in this retrospective study. All patients had undergone baseline MR imaging, and 95 radiomics features were extracted from 3D segmentations representative of lesions on the venous phase and apparent diffusion coefficient maps. A random forest algorithm was utilized to extract the most relevant features to transplant-free survival. The selected features were used alongside BCLC staging to construct Kaplan-Meier curves. RESULTS Out of 95 extracted features, the three most relevant features were incorporated into random forest classifiers. The Integrated Brier score of the prediction error curve was 0.135, 0.072, and 0.048 for the BCLC, radiomics, and combined models, respectively. The mean area under the receiver operating curve (ROC curve) over time for the three models was 81.1%, 77.3%, and 56.2% for the combined radiomics and BCLC models, respectively. CONCLUSIONS Radiomics features outperformed the BCLC staging system in determining prognosis in HCC patients. The addition of a radiomics classifier increased the classification capability of the BCLC model. Texture analysis features could be considered as possible biomarkers in predicting transplant-free survival in HCC patients.
Collapse
|
14
|
Bodard S, Liu Y, Guinebert S, Kherabi Y, Asselah T. Performance of Radiomics in Microvascular Invasion Risk Stratification and Prognostic Assessment in Hepatocellular Carcinoma: A Meta-Analysis. Cancers (Basel) 2023; 15:cancers15030743. [PMID: 36765701 PMCID: PMC9913680 DOI: 10.3390/cancers15030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death. Advances in phenomenal imaging are paving the way for application in diagnosis and research. The poor prognosis of advanced HCC warrants a personalized approach. The objective was to assess the value of imaging phenomics for risk stratification and prognostication of HCC. METHODS We performed a meta-analysis of manuscripts published to January 2023 on MEDLINE addressing the value of imaging phenomics for HCC risk stratification and prognostication. Publication information for each were collected using a standardized data extraction form. RESULTS Twenty-seven articles were analyzed. Our study shows the importance of imaging phenomics in HCC MVI prediction. When the training and validation datasets were analyzed separately by the random-effects model, in the training datasets, radiomics had good MVI prediction (AUC of 0.81 (95% CI 0.76-0.86)). Similar results were found in the validation datasets (AUC of 0.79 (95% CI 0.72-0.85)). Using the fixed effects model, the mean AUC of all datasets was 0.80 (95% CI 0.76-0.84). CONCLUSIONS Imaging phenomics is an effective solution to predict microvascular invasion risk, prognosis, and treatment response in patients with HCC.
Collapse
Affiliation(s)
- Sylvain Bodard
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- CNRS, INSERM, UMR 7371, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, 75006 Paris, France
- Correspondence: ; Tel.: +33-6-18-81-62-10
| | - Yan Liu
- Faculty of Life Science and Medicine, King’s College London, London WC2R 2LS, UK
- Median Technologies, 1800 Route des Crêtes, 06560 Valbonne, France
| | - Sylvain Guinebert
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Yousra Kherabi
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Tarik Asselah
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- Service d’Hépatologie, INSERM, UMR1149, Hôpital Beaujon, AP-HP.Nord, 92110 Clichy, France
| |
Collapse
|
15
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
16
|
Wang J, Mao Y, Gao X, Zhang Y. Recurrence risk stratification for locally advanced cervical cancer using multi-modality transformer network. Front Oncol 2023; 13:1100087. [PMID: 36874136 PMCID: PMC9978213 DOI: 10.3389/fonc.2023.1100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Objectives Recurrence risk evaluation is clinically significant for patients with locally advanced cervical cancer (LACC). We investigated the ability of transformer network in recurrence risk stratification of LACC based on computed tomography (CT) and magnetic resonance (MR) images. Methods A total of 104 patients with pathologically diagnosed LACC between July 2017 and December 2021 were enrolled in this study. All patients underwent CT and MR scanning, and their recurrence status was identified by the biopsy. We randomly divided patients into training cohort (48 cases, non-recurrence: recurrence = 37: 11), validation cohort (21 cases, non-recurrence: recurrence = 16: 5), and testing cohort (35 cases, non-recurrence: recurrence = 27: 8), upon which we extracted 1989, 882 and 315 patches for model's development, validation and evaluation, respectively. The transformer network consisted of three modality fusion modules to extract multi-modality and multi-scale information, and a fully-connected module to perform recurrence risk prediction. The model's prediction performance was assessed by six metrics, including the area under the receiver operating characteristic curve (AUC), accuracy, f1-score, sensitivity, specificity and precision. Univariate analysis with F-test and T-test were conducted for statistical analysis. Results The proposed transformer network is superior to conventional radiomics methods and other deep learning networks in both training, validation and testing cohorts. Particularly, in testing cohort, the transformer network achieved the highest AUC of 0.819 ± 0.038, while four conventional radiomics methods and two deep learning networks got the AUCs of 0.680 ± 0.050, 0.720 ± 0.068, 0.777 ± 0.048, 0.691 ± 0.103, 0.743 ± 0.022 and 0.733 ± 0.027, respectively. Conclusions The multi-modality transformer network showed promising performance in recurrence risk stratification of LACC and may be used as an effective tool to help clinicians make clinical decisions.
Collapse
Affiliation(s)
- Jian Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Yixiao Mao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinna Gao
- Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yu Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Yang X, Yuan C, Zhang Y, Li K, Wang Z. Predicting hepatocellular carcinoma early recurrence after ablation based on magnetic resonance imaging radiomics nomogram. Medicine (Baltimore) 2022; 101:e32584. [PMID: 36596081 PMCID: PMC9803514 DOI: 10.1097/md.0000000000032584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim of this study is to investigate a model for predicting the early recurrence of hepatocellular carcinoma (HCC) after ablation. METHODS A total of 181 patients with HCC after ablation (train group was 119 cases; validation group was 62 cases) were enrolled. The cases of early recurrence in the set of train and validation were 63 and 31, respectively. Radiomics features were extracted from the enhanced magnetic resonance imaging scanning, including pre-contrast injection, arterial phase, late arterial phase, portal venous phase, and delayed phase. The least absolute shrinkage and selection operator cox proportional hazards regression after univariate and multivariate analysis was used to screen radiomics features and build integrated models. The nomograms predicting recurrence and survival of patients of HCC after ablation were established based on the clinical, imaging, and radiomics features. The area under the curve (AUC) of the receiver operating characteristic curve and C-index for the train and validation group was used to evaluate model efficacy. RESULTS Four radiomics features were selected out of 34 texture features to formulate the rad-score. Multivariate analyses suggested that the rad-score, number of lesions, integrity of the capsule, pathological type, and alpha-fetoprotein were independent influencing factors. The AUC of predicting early recurrence at 1, 2, and 3 years in the train group was 0.79 (95% CI: 0.72-0.88), 0.72 (95% CI: 0.63-0.82), and 0.71 (95% CI: 0.61-0.83), respectively. The AUC of predicting early recurrence at 1, 2, and 3 years in the validation group was 0.72 (95% CI: 0.58-0.84), 0.61 (95% CI: 0.45-0.78) and 0.64 (95% CI: 0.40-0.87). CONCLUSION The model for early recurrence of HCC after ablation based on the clinical, imaging, and radiomics features presented good predictive performance. This may facilitate the early treatment of patients.
Collapse
Affiliation(s)
- Xiaozhen Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chunwang Yuan
- Department of Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yinghua Zhang
- Department of Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Kang Li
- Biomedical Information Center, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- * Correspondence: Zhenchang Wang, Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China (e-mail: )
| |
Collapse
|
18
|
He Y, Liang T, Chen Z, Mo S, Liao Y, Gao Q, Huang K, Peng T, Zhou W, Han C. Recurrence of Early Hepatocellular Carcinoma after Surgery May Be Related to Intestinal Oxidative Stress and the Development of a Predictive Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7261786. [PMID: 36238647 PMCID: PMC9553367 DOI: 10.1155/2022/7261786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
Background Early stage hepatocellular carcinoma (HCC) has a high recurrence rate after surgery and lacks reliable predictive tools. We explored the potential of combining enhanced CT with gut microbiome to develop a predictive model for recurrence after early HCC surgery. Methods A total of 112 patients with early HCC who underwent hepatectomy from September 2018 to December 2020 were included in this study, and the machine learning method was divided into a training group (N = 71) and a test group (N = 41) with the observed endpoint of recurrence-free survival (RFS). Features were extracted from the arterial and portal phases of enhanced computed tomography (CT) images and gut microbiome, and features with minimum absolute contraction and selection operator regression were created, and the extracted features were scored to create a preoperative prediction model by using the multivariate Cox regression analysis with risk stratification analysis. Results In the study cohort, the model constructed by combining radiological and gut flora features provided good predictive performance (C index, 0.811 (0.650-0.972)). The combined radiology and gut flora-based model constructed risk strata with high, intermediate, or low risk of recurrence and different characteristics of recurrent tumor imaging and gut flora. Recurrence of early stage hepatocellular carcinoma may be associated with oxidative stress in the intestinal flora. Conclusions This study successfully constructs a risk model integrating enhanced CT and gut microbiome characteristics that can be used for the risk of postoperative recurrence in patients with early HCC. In addition, intestinal flora associated with HCC recurrence may be involved in oxidative stress.
Collapse
Affiliation(s)
- Yongfei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tianyi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zijun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuan Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiang Gao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weijie Zhou
- Deputy Chief Technician of Laboratory, Baise People's Hospital, Baise, Guangxi Zhuang Autonomous Region, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
19
|
Huang YM, Wang TE, Chen MJ, Lin CC, Chang CW, Tai HC, Hsu SM, Chen YJ. Radiomics-based nomogram as predictive model for prognosis of hepatocellular carcinoma with portal vein tumor thrombosis receiving radiotherapy. Front Oncol 2022; 12:906498. [PMID: 36203419 PMCID: PMC9530279 DOI: 10.3389/fonc.2022.906498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background This study aims to establish and validate a predictive model based on radiomics features, clinical features, and radiation therapy (RT) dosimetric parameters for overall survival (OS) in hepatocellular carcinoma (HCC) patients treated with RT for portal vein tumor thrombosis (PVTT). Methods We retrospectively reviewed 131 patients. Patients were randomly divided into the training (n = 105) and validation (n = 26) cohorts. The clinical target volume was contoured on pre-RT computed tomography images and 48 textural features were extracted. The least absolute shrinkage and selection operator regression was used to determine the radiomics score (rad-score). A nomogram based on rad-score, clinical features, and dosimetric parameters was developed using the results of multivariate regression analysis. The predictive nomogram was evaluated using Harrell’s concordance index (C-index), area under the curve (AUC), and calibration curve. Results Two radiomics features were extracted to calculate the rad-score for the prediction of OS. The radiomics-based nomogram had better performance than the clinical nomogram for the prediction of OS, with a C-index of 0.73 (95% CI, 0.67–0.79) and an AUC of 0.71 (95% CI, 0.62–0.79). The predictive accuracy was assessed by a calibration curve. Conclusion The radiomics-based predictive model significantly improved OS prediction in HCC patients treated with RT for PVTT.
Collapse
Affiliation(s)
- Yu-Ming Huang
- Department of Radiation Oncology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsang-En Wang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Ming-Jen Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Ching-Chung Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Ching-Wei Chang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Hung-Chi Tai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ming Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Yu-Jen Chen, ; Shih-Ming Hsu,
| | - Yu-Jen Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Yu-Jen Chen, ; Shih-Ming Hsu,
| |
Collapse
|
20
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
21
|
Balsano C, Alisi A, Brunetto MR, Invernizzi P, Burra P, Piscaglia F. The application of artificial intelligence in hepatology: A systematic review. Dig Liver Dis 2022; 54:299-308. [PMID: 34266794 DOI: 10.1016/j.dld.2021.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The integration of human and artificial intelligence (AI) in medicine has only recently begun but it has already become obvious that intelligent systems can dramatically improve the management of liver diseases. Big data made it possible to envisage transformative developments of the use of AI for diagnosing, predicting prognosis and treating liver diseases, but there is still a lot of work to do. If we want to achieve the 21st century digital revolution, there is an urgent need for specific national and international rules, and to adhere to bioethical parameters when collecting data. Avoiding misleading results is essential for the effective use of AI. A crucial question is whether it is possible to sustain, technically and morally, the process of integration between man and machine. We present a systematic review on the applications of AI to hepatology, highlighting the current challenges and crucial issues related to the use of such technologies.
Collapse
Affiliation(s)
- Clara Balsano
- Dept. of Life, Health and Environmental Sciences MESVA, University of L'Aquila, Piazza S. Salvatore Tommasi 1, 67100, Coppito, L'Aquila. Italy; Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy.
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maurizia R Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, University Hospital of Pisa, Pisa, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology, Gastroenterology, Padua University Hospital, Padua, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | | |
Collapse
|
22
|
Corrias G, Micheletti G, Barberini L, Suri JS, Saba L. Texture analysis imaging "what a clinical radiologist needs to know". Eur J Radiol 2021; 146:110055. [PMID: 34902669 DOI: 10.1016/j.ejrad.2021.110055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/09/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Texture analysis has arisen as a tool to explore the amount of data contained in images that cannot be explored by humans visually. Radiomics is a method that extracts a large number of features from radiographic medical images using data-characterisation algorithms. These features, termed radiomic features, have the potential to uncover disease characteristics. The goal of both radiomics and texture analysis is to go beyond size or human-eye based semantic descriptors, to enable the non-invasive extraction of quantitative radiological data to correlate them with clinical outcomes or pathological characteristics. In the latest years there has been a flourishing sub-field of radiology where texture analysis and radiomics have been used in many settings. It is difficult for the clinical radiologist to cope with such amount of data in all the different radiological sub-fields and to identify the most significant papers. The aim of this review is to provide a tool to better understand the basic principles underlining texture analysis and radiological data mining and a summary of the most significant papers of the latest years.
Collapse
Affiliation(s)
| | | | | | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA, USA and Knowledge Engineering Center, Global Biomedical Technologies, Inc, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy.
| |
Collapse
|
23
|
Zhang L, Ge Y, Gao Q, Zhao F, Cheng T, Li H, Xia Y. Machine Learning-Based Radiomics Nomogram With Dynamic Contrast-Enhanced MRI of the Osteosarcoma for Evaluation of Efficacy of Neoadjuvant Chemotherapy. Front Oncol 2021; 11:758921. [PMID: 34868973 PMCID: PMC8634262 DOI: 10.3389/fonc.2021.758921] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES This study aims to evaluate the value of machine learning-based dynamic contrast-enhanced MRI (DCE-MRI) radiomics nomogram in prediction treatment response of neoadjuvant chemotherapy (NAC) in patients with osteosarcoma. METHODS A total of 102 patients with osteosarcoma and who underwent NAC were enrolled in this study. All patients received a DCE-MRI scan before NAC. The Response Evaluation Criteria in Solid Tumors was used as the standard to evaluate the NAC response with complete remission and partial remission in the effective group, stable disease, and progressive disease in the ineffective group. The following semi-quantitative parameters of DCE-MRI were calculated: early dynamic enhancement wash-in slope (Slope), time to peak (TTP), and enhancement rate (R). The acquired data is randomly divided into 70% for training and 30% for testing. Variance threshold, univariate feature selection, and least absolute shrinkage and selection operator were used to select the optimal features. Three classifiers (K-nearest neighbor, KNN; support vector machine, SVM; and logistic regression, LR) were implemented for model establishment. The performance of different classifiers and conventional semi-quantitative parameters was evaluated by confusion matrix and receiver operating characteristic curves. Furthermore, clinically relevant risk factors including age, tumor size and site, pathological fracture, and surgical staging were collected to evaluate their predictive values for the efficacy of NAC. The selected clinical features and imaging features were combined to establish the model and the nomogram, and then the predictive efficacy was evaluated. RESULTS The clinical relevance risk factor analysis demonstrates that only surgical stage was an independent predictor of NAC. A total of seven radiomic features were selected, and three machine learning models (KNN, SVM, and LR) were established based on such features. The prediction accuracy (ACC) of these three models was 0.89, 0.84, and 0.84, respectively. The area under the subject curve (AUC) of these three models was 0.86, 0.92, and 0.93, respectively. As for Slope, TTP, and R parameters, the prediction ACC was 0.91, 0.89, and 0.81, respectively, while the AUC was 0.87, 0.85, and 0.83, respectively. In both the training and testing sets, the ACC and AUC of the combined model were higher than those of the radiomics models (ACC = 0.91 and AUC = 0.95), which indicate an outstanding performance of our proposed model. CONCLUSIONS The radiomics nomogram demonstrates satisfactory predictive results for the treatment response of patients with osteosarcoma before NAC. This finding may provide a new decision basis to improve the treatment plan.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Medical Imaging, People's Hospital of Zhengzhou University Henan Provincial People's Hospital, Zhengzhou, China
| | - Yinghui Ge
- Department of Medical Imaging, People's Hospital of Zhengzhou University Henan Provincial People's Hospital, Zhengzhou, China
| | - Qiuru Gao
- Department of Medical Imaging, People's Hospital of Zhengzhou University Henan Provincial People's Hospital, Zhengzhou, China
| | - Fei Zhao
- Department of Orthopedics, People's Hospital of Zhengzhou University Henan Provincial People's Hospital, Zhengzhou, China
| | - Tianming Cheng
- Department of Medical Imaging, People's Hospital of Zhengzhou University Henan Provincial People's Hospital, Zhengzhou, China
| | - Hailiang Li
- Department of Radiology, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Yuwei Xia
- Huiying Medical Technology Co., Ltd., Beijing, China
| |
Collapse
|
24
|
Radiomic analysis to predict local response in locally advanced pancreatic cancer treated with stereotactic body radiation therapy. Radiol Med 2021; 127:100-107. [PMID: 34724139 DOI: 10.1007/s11547-021-01422-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Aim of this study is to assess the ability of contrast-enhanced CT image-based radiomic analysis to predict local response (LR) in a retrospective cohort of patients affected by pancreatic cancer and treated with stereotactic body radiation therapy (SBRT). Secondary aim is to evaluate progression free survival (PFS) and overall survival (OS) at long-term follow-up. METHODS Contrast-enhanced-CT images of 37 patients who underwent SBRT were analyzed. Two clinical variables (BED, CTV volume), 27 radiomic features were included. LR was used as the outcome variable to build the predictive model. The Kaplan-Meier method was used to evaluate PFS and OS. RESULTS Three variables were statistically correlated with the LR in the univariate analysis: Intensity Histogram (StdValue feature), Gray Level Cooccurrence Matrix (GLCM25_Correlation feature) and Neighbor Intensity Difference (NID25_Busyness feature). Multivariate model showed GLCM25_Correlation (P = 0.007) and NID25_Busyness (P = 0.03) as 2 independent predictive variables for LR. The odds ratio values of GLCM25_Correlation and NID25_Busyness were 0.07 (95%CI 0.01-0.49) and 8.10 (95%CI 1.20-54.40), respectively. The area under the curve for the multivariate logistic regressive model was 0.851 (95%CI 0.724-0.978). At a median follow-up of 30 months, median PFS was 7 months (95%CI 6-NA); median OS was 11 months (95%CI 10-22 months). CONCLUSIONS This analysis identified a radiomic signature that correlates with LR. To confirm these results, prospective studies could identify patient sub-groups with different rates of radiation dose-response to define a more personalized SBRT approach.
Collapse
|
25
|
Harding-Theobald E, Louissaint J, Maraj B, Cuaresma E, Townsend W, Mendiratta-Lala M, Singal AG, Su GL, Lok AS, Parikh ND. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma. Aliment Pharmacol Ther 2021; 54:890-901. [PMID: 34390014 PMCID: PMC8435007 DOI: 10.1111/apt.16563] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Advances in imaging technology have the potential to transform the early diagnosis and treatment of hepatocellular carcinoma (HCC) through quantitative image analysis. Computational "radiomic" techniques extract biomarker information from images which can be used to improve diagnosis and predict tumour biology. AIMS To perform a systematic review on radiomic features in HCC diagnosis and prognosis, with a focus on reporting metrics and methodologic standardisation. METHODS We performed a systematic review of all full-text articles published from inception through December 1, 2019. Standardised data extraction and quality assessment metrics were applied to all studies. RESULTS A total of 54 studies were included for analysis. Radiomic features demonstrated good discriminatory performance to differentiate HCC from other solid lesions (c-statistics 0.66-0.95), and to predict microvascular invasion (c-statistic 0.76-0.92), early recurrence after hepatectomy (c-statistics 0.71-0.86), and prognosis after locoregional or systemic therapies (c-statistics 0.74-0.81). Common stratifying features for diagnostic and prognostic radiomic tools included analyses of imaging skewness, analysis of the peritumoural region, and feature extraction from the arterial imaging phase. The overall quality of the included studies was low, with common deficiencies in both internal and external validation, standardised imaging segmentation, and lack of comparison to a gold standard. CONCLUSIONS Quantitative image analysis demonstrates promise as a non-invasive biomarker to improve HCC diagnosis and management. However, standardisation of protocols and outcome measurement, sharing of algorithms and analytic methods, and external validation are necessary prior to widespread application of radiomics to HCC diagnosis and prognosis in clinical practice.
Collapse
Affiliation(s)
- Emily Harding-Theobald
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Jeremy Louissaint
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Bharat Maraj
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Edward Cuaresma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Whitney Townsend
- Division of Library Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | - Amit G Singal
- Division of Digestive and Liver Diseases, University of Texas Southwestern, Dallas, TX, USA
| | - Grace L Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| |
Collapse
|
26
|
De la Pinta C. Toward Personalized Medicine in Radiotherapy of Hepatocellular Carcinoma: Emerging Radiomic Biomarker Candidates of Response and Toxicity. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:537-544. [PMID: 34448625 DOI: 10.1089/omi.2021.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiology and radiotherapy are currently undergoing radical transformation with use of biomarkers and digital technologies such as artificial intelligence. These current and upcoming changes in radiology speak of an overarching new vision for personalized medicine. This is particularly evident in the case of radiotherapy of cancers, and of liver cancer in particular. The development of modern radiotherapy with stereotactic body radiotherapy allows targeted treatments to be delivered to the tumor site, limiting the dose to surrounding healthy organs, thus becoming a new therapeutic alternative for hepatocellular carcinoma and other liver tumors. However, not all patients have the same response to radiotherapy or display the same side-effect profile. Biomarkers of response and toxicity in liver radiotherapy would facilitate the vision and practice of personalized medicine. This expert review examines the available molecular, radiomic, and radiogenomic biomarker candidates for acute liver toxicity with potential use for prediction of radiotherapy-induced liver toxicity. To this end, I highlight for oncologists and life scientists that radiomics allows diagnostic images to be analyzed using computer algorithms to extract information imperceptible to the human eye and of relevance to forecasting clinical outcomes. This article underscores particularly (1) the microRNA-based biomarker candidates as among the most promising predictors of radiation-induced liver toxicity and (2) the texture features in radiomic analyses for response prediction. Radiotherapy of hepatocellular carcinoma is edging toward personalized medicine with emerging radiomic biomarker candidates. Future large-scale biomarker studies are called for to enable personalized medicine in liver cancers.
Collapse
Affiliation(s)
- Carolina De la Pinta
- Radiation Oncology Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain
| |
Collapse
|
27
|
Chong GO, Park SH, Jeong SY, Kim SJ, Park NJY, Lee YH, Lee SW, Hong DG, Park JY, Han HS. Prediction Model for Tumor Budding Status Using the Radiomic Features of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Cervical Cancer. Diagnostics (Basel) 2021; 11:1517. [PMID: 34441452 PMCID: PMC8392321 DOI: 10.3390/diagnostics11081517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To compare the radiomic features of F-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and intratumoral heterogeneity according to tumor budding (TB) status and to develop a prediction model for the TB status using the radiomic feature of 18F-FDG PET/CT in patients with cervical cancer. MATERIALS AND METHODS Seventy-six patients with cervical cancer who underwent radical hysterectomy and preoperative 18F-FDG PET/CT were included. We assessed the status of intratumoral budding (ITP) and peritumoral budding (PTB) in all available hematoxylin and eosin-stained specimens. Three conventional metabolic parameters and fifty-nine features were extracted and analyzed. Univariate analysis was used to identify significant metabolic parameters and radiomic findings for TB status. The prediction model for TB status was built using 3 machine learning classifiers (random forest, support vector machine, and neural network). RESULTS Univariate analysis led to the identification of 2 significant metabolic parameters and 12 significant radiomic features according to intratumoral budding (ITB) status. Among these parameters, following multivariate analysis for the ITB status, only compacity remained significant (odds ratio, 5.0047; 95% confidence interval, 1.1636-21.5253; p = 0.0305). Two conventional metabolic parameters and 25 radiomic features were selected by the Lasso regularization, and the prediction model for the ITB status had a mean area under the curve of 0.762 in the test dataset. CONCLUSION Radiomic features of 18F-FDG PET/CT were associated with the ITB status. The prediction model using radiomic features successfully predicted the TB status in patients with cervical cancer. The prediction models for the ITB status may contribute to personalized medicine in the management of patients with cervical cancer.
Collapse
Affiliation(s)
- Gun Oh Chong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (G.O.C.); (S.J.K.); (Y.H.L.); (D.G.H.)
- Department of Obstetrics and Gynecology, Chilgok Hospital, Kyungpook National University, Daegu 41404, Korea
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (N.J.-Y.P.); (H.S.H.)
| | - Shin-Hyung Park
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, Chilgok Hospital, Kyungpook National University Daegu, Daegu 41404, Korea
| | - Su Jeong Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (G.O.C.); (S.J.K.); (Y.H.L.); (D.G.H.)
- Department of Obstetrics and Gynecology, Chilgok Hospital, Kyungpook National University, Daegu 41404, Korea
| | - Nora Jee-Young Park
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (N.J.-Y.P.); (H.S.H.)
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Yoon Hee Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (G.O.C.); (S.J.K.); (Y.H.L.); (D.G.H.)
- Department of Obstetrics and Gynecology, Chilgok Hospital, Kyungpook National University, Daegu 41404, Korea
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (N.J.-Y.P.); (H.S.H.)
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, Chilgok Hospital, Kyungpook National University Daegu, Daegu 41404, Korea
| | - Dae Gy Hong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (G.O.C.); (S.J.K.); (Y.H.L.); (D.G.H.)
- Department of Obstetrics and Gynecology, Chilgok Hospital, Kyungpook National University, Daegu 41404, Korea
| | - Ji Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Hyung Soo Han
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (N.J.-Y.P.); (H.S.H.)
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
28
|
Yang P, Xu L, Wan Y, Yang J, Xue Y, Jiang Y, Luo C, Wang J, Niu T. Deep neural network-based approach to improving radiomics analysis reproducibility in liver cancer: effect on image resampling. Phys Med Biol 2021; 66. [PMID: 34293730 DOI: 10.1088/1361-6560/ac16e8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Objectives.To test the effect of traditional up-sampling slice thickness (ST) methods on the reproducibility of CT radiomics features of liver tumors and investigate the improvement using a deep neural network (DNN) scheme.Methods.CT images with ≤ 1 mm ST in the public dataset were converted to low-resolution (3 mm, 5 mm) CT images. A DNN model was trained for the conversion from 3 mm ST and 5 mm ST to 1 mm ST and compared with conventional interpolation-based methods (cubic, linear, nearest) using structural similarity (SSIM) and peak-signal-to-noise-ratio (PSNR). Radiomics features were extracted from the tumor and tumor ring regions. The reproducibility of features from images converted using DNN and interpolation schemes were assessed using the concordance correlation coefficients (CCC) with the cutoff of 0.85. The paired t-test and Mann-Whitney U test were used to compare the evaluation metrics, where appropriate.Results.CT images of 108 patients were used for training (n = 63), validation (n = 11) and testing (n = 34). The DNN method showed significantly higher PSNR and SSIM values (p < 0.05) than interpolation-based methods. The DNN method also showed a significantly higher CCC value than interpolation-based methods. For features in the tumor region, compared with the cubic interpolation approach, the reproducible features increased from 393 (82%) to 422(88%) for the conversion of 3-1 mm, and from 305(64%) to 353(74%) for the conversion of 5-1 mm. For features in the tumor ring region, the improvement was from 395 (82%) to 431 (90%) and from 290 (60%) to 335 (70%), respectively.Conclusions.The DNN based ST up-sampling approach can improve the reproducibility of CT radiomics features in liver tumors, promoting the standardization of CT radiomics studies in liver cancer.
Collapse
Affiliation(s)
- Pengfei Yang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lei Xu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yidong Wan
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jing Yang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Xue
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yangkang Jiang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Luo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, People's Republic of China
| | - Jing Wang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Tianye Niu
- Nuclear & Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| |
Collapse
|
29
|
Ko CC, Yeh LR, Kuo YT, Chen JH. Imaging biomarkers for evaluating tumor response: RECIST and beyond. Biomark Res 2021; 9:52. [PMID: 34215324 PMCID: PMC8252278 DOI: 10.1186/s40364-021-00306-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Response Evaluation Criteria in Solid Tumors (RECIST) is the gold standard for assessment of treatment response in solid tumors. Morphologic change of tumor size evaluated by RECIST is often correlated with survival length and has been considered as a surrogate endpoint of therapeutic efficacy. However, the detection of morphologic change alone may not be sufficient for assessing response to new anti-cancer medication in all solid tumors. During the past fifteen years, several molecular-targeted therapies and immunotherapies have emerged in cancer treatment which work by disrupting signaling pathways and inhibited cell growth. Tumor necrosis or lack of tumor progression is associated with a good therapeutic response even in the absence of tumor shrinkage. Therefore, the use of unmodified RECIST criteria to estimate morphological changes of tumor alone may not be sufficient to estimate tumor response for these new anti-cancer drugs. Several studies have reported the low reliability of RECIST in evaluating treatment response in different tumors such as hepatocellular carcinoma, lung cancer, prostate cancer, brain glioma, bone metastasis, and lymphoma. There is an increased need for new medical imaging biomarkers, considering the changes in tumor viability, metabolic activity, and attenuation, which are related to early tumor response. Promising imaging techniques, beyond RECIST, include dynamic contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI), diffusion-weight imaging (DWI), magnetic resonance spectroscopy (MRS), and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET). This review outlines the current RECIST with their limitations and the new emerging concepts of imaging biomarkers in oncology.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lee-Ren Yeh
- Department of Radiology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan.,Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jeon-Hor Chen
- Department of Radiology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan. .,Tu & Yuan Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, 164 Irvine Hall, Irvine, CA, 92697 - 5020, USA.
| |
Collapse
|
30
|
Chen Z, Chen J, Zhou J, Lei F, Zhou F, Qin JJ, Zhang XJ, Zhu L, Liu YM, Wang H, Chen MM, Zhao YC, Xie J, Shen L, Song X, Zhang X, Yang C, Liu W, Zhang X, Guo D, Yan Y, Liu M, Mao W, Liu L, Ye P, Xiao B, Luo P, Zhang Z, Lu Z, Wang J, Lu H, Xia X, Wang D, Liao X, Peng G, Liang L, Yang J, Chen G, Azzolini E, Aghemo A, Ciccarelli M, Condorelli G, Stefanini GG, Wei X, Zhang BH, Huang X, Xia J, Yuan Y, She ZG, Guo J, Wang Y, Zhang P, Li H. A risk score based on baseline risk factors for predicting mortality in COVID-19 patients. Curr Med Res Opin 2021; 37:917-927. [PMID: 33729889 PMCID: PMC8054492 DOI: 10.1080/03007995.2021.1904862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND To develop a sensitive and clinically applicable risk assessment tool identifying coronavirus disease 2019 (COVID-19) patients with a high risk of mortality at hospital admission. This model would assist frontline clinicians in optimizing medical treatment with limited resources. METHODS 6415 patients from seven hospitals in Wuhan city were assigned to the training and testing cohorts. A total of 6351 patients from another three hospitals in Wuhan, 2169 patients from outside of Wuhan, and 553 patients from Milan, Italy were assigned to three independent validation cohorts. A total of 64 candidate clinical variables at hospital admission were analyzed by random forest and least absolute shrinkage and selection operator (LASSO) analyses. RESULTS Eight factors, namely, Oxygen saturation, blood Urea nitrogen, Respiratory rate, admission before the date the national Maximum number of daily new cases was reached, Age, Procalcitonin, C-reactive protein (CRP), and absolute Neutrophil counts, were identified as having significant associations with mortality in COVID-19 patients. A composite score based on these eight risk factors, termed the OURMAPCN-score, predicted the risk of mortality among the COVID-19 patients, with a C-statistic of 0.92 (95% confidence interval [CI] 0.90-0.93). The hazard ratio for all-cause mortality between patients with OURMAPCN-score >11 compared with those with scores ≤ 11 was 18.18 (95% CI 13.93-23.71; p < .0001). The predictive performance, specificity, and sensitivity of the score were validated in three independent cohorts. CONCLUSIONS The OURMAPCN score is a risk assessment tool to determine the mortality rate in COVID-19 patients based on a limited number of baseline parameters. This tool can assist physicians in optimizing the clinical management of COVID-19 patients with limited hospital resources.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jing Chen
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan, China
| | - Jianghua Zhou
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Fang Lei
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Feng Zhou
- Institute of Model Animal, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Lihua Zhu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ye-Mao Liu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Haitao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming-Ming Chen
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Ci Zhao
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jing Xie
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Lijun Shen
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiaohui Song
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xingyuan Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Chengzhang Yang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Weifang Liu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Deliang Guo
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Youqin Yan
- Infections Department, Wuhan Seventh Hospital, Wuhan, China
| | - Mingyu Liu
- The Ninth Hospital of Wuhan City, Wuhan, China
| | - Weiming Mao
- Department of General Surgery, Huanggang Central Hospital, Huanggang, China
| | - Liming Liu
- Department of General Surgery, Ezhou Central Hospital, Ezhou, China
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xiao
- Department of Stomatology, Xiantao First People’s Hospital, Xiantao, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Zixiong Zhang
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Zhigang Lu
- Department of Neurology, The First People’s Hospital of Jingmen affiliated to Hubei Minzu University, Jingmen, China
| | - Junhai Wang
- Department of Orthopedics, The First People’s Hospital of Jingmen affiliated to Hubei Minzu University, Jingmen, China
| | - Haofeng Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Changjiang University, Jingzhou, China
| | - Xigang Xia
- Department of Hepatobiliary Surgery, Jingzhou Central Hospital, Jingzhou, China
| | - Daihong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Xianning Central Hospital, Hubei Province, Xianning, China
| | - Xiaofeng Liao
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Gang Peng
- Department of Hepatobiliary and Pancreatic Surgery, Suizhou Central Hospital Affiliated to Hubei Medical College, Suizhou, China
| | - Liang Liang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People's Hospital and Institute of Cardiovascular Diseases, China Three Gorges University, Yichang China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People's Hospital and Institute of Cardiovascular Diseases, China Three Gorges University, Yichang China
| | - Guohua Chen
- Department of Neurology, Wuhan First Hospital/Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Elena Azzolini
- Humanitas Clinical and Research Hospital IRCCS, Rozzano-Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
| | - Alessio Aghemo
- Humanitas Clinical and Research Hospital IRCCS, Rozzano-Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
| | - Michele Ciccarelli
- Humanitas Clinical and Research Hospital IRCCS, Rozzano-Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Hospital IRCCS, Rozzano-Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
| | - Giulio G. Stefanini
- Humanitas Clinical and Research Hospital IRCCS, Rozzano-Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing-Hong Zhang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Jiahong Xia
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- CONTACT Jiao Guo Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou510006, China
| | - Yibin Wang
- Departments of Anesthesiology, Physiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Yibin Wang Departments of Anesthesiology, Physiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, CHS 37-200J, Los Angeles, 90095CA, USA
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Peng Zhang Medical Science Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan430071, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hongliang Li Department of Cardiology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan430060, China; Institute of Model Animal of Wuhan University, 169 Donghu Road, Wuhan430071, China
| |
Collapse
|
31
|
Tipaldi MA, Ronconi E, Lucertini E, Krokidis M, Zerunian M, Polidori T, Begini P, Marignani M, Mazzuca F, Caruso D, Rossi M, Laghi A. Hepatocellular Carcinoma Drug-Eluting Bead Transarterial Chemoembolization (DEB-TACE): Outcome Analysis Using a Model Based On Pre-Treatment CT Texture Features. Diagnostics (Basel) 2021; 11:diagnostics11060956. [PMID: 34073545 PMCID: PMC8226518 DOI: 10.3390/diagnostics11060956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
(1) Introduction and Aim: The aim of this study is to investigate the prognostic value, in terms of response and survival, of CT-based radiomics features for patients with HCC undergoing drug-eluting beads transarterial chemoembolization (DEB-TACE). (2) Materials and Methods: Pre-treatment CT examinations of 50 patients with HCC, treated with DEB-TACE were manually segmented to obtain the tumor volumetric region of interest, extracting radiomics features with TexRAD. Response to therapy evaluation was performed basing on post-procedural CT examination compared to pre-procedural CT, using modified RECIST criteria for HCC. The prognostic value of texture analysis was evaluated, investigating the correlation between radiomics features, response to therapy and overall survival. Three models based on texture and clinical variables and a combination of them were finally built; (3) Results: Entropy, skewness, MPP and kurtosis showed a significant correlation with complete response (CR) to TACE (all p < 0.001). A predictive model to identify patients with a high and low probability of CR was evaluated with an ROC curve, with an AUC of 0.733 (p < 0.001). The three models built for survival prediction yielded an HR of 2.19 (95% CI: 2.03-2.35) using texture features, of 1.7 (95% CI: 1.54-1.9) using clinical data and of 4.61 (95% CI: 4.24-5.01) combining both radiomics and clinical data (all p < 0.0001). (4) Conclusion: Texture analysis based on pre-treatment CT examination is associated with response to therapy and survival in patients with HCC undergoing DEB-TACE, especially if combined with clinical data.
Collapse
Affiliation(s)
- Marcello Andrea Tipaldi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza-University of Rome, 00189 Rome, Italy; (M.Z.); (M.R.); (A.L.)
- Department of Radiology, Sant’Andrea University of Hospital La Sapienza, 00189 Rome, Italy; (E.R.); (E.L.); (T.P.)
- Correspondence: ; Tel.: +39-06-33775391 (ext. 5893)
| | - Edoardo Ronconi
- Department of Radiology, Sant’Andrea University of Hospital La Sapienza, 00189 Rome, Italy; (E.R.); (E.L.); (T.P.)
| | - Elena Lucertini
- Department of Radiology, Sant’Andrea University of Hospital La Sapienza, 00189 Rome, Italy; (E.R.); (E.L.); (T.P.)
| | - Miltiadis Krokidis
- Department of Radiology, Areteion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Marta Zerunian
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza-University of Rome, 00189 Rome, Italy; (M.Z.); (M.R.); (A.L.)
| | - Tiziano Polidori
- Department of Radiology, Sant’Andrea University of Hospital La Sapienza, 00189 Rome, Italy; (E.R.); (E.L.); (T.P.)
| | - Paola Begini
- Department of Liver Diseases Section, AOU Sant’Andrea Hospital, University of Hospital La Sapienza, 00189 Rome, Italy; (P.B.); (M.M.)
| | - Massimo Marignani
- Department of Liver Diseases Section, AOU Sant’Andrea Hospital, University of Hospital La Sapienza, 00189 Rome, Italy; (P.B.); (M.M.)
| | - Federica Mazzuca
- Department of Clinical and Molecular Oncology-Sapienza, University of Rome, Sant’Andrea University Hospital, via di Grottarossa 1035, 00189 Rome, Italy;
| | - Damiano Caruso
- Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome Sapienza, Sant’Andrea University Hospital, 00189 Rome, Italy;
| | - Michele Rossi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza-University of Rome, 00189 Rome, Italy; (M.Z.); (M.R.); (A.L.)
- Department of Radiology, Sant’Andrea University of Hospital La Sapienza, 00189 Rome, Italy; (E.R.); (E.L.); (T.P.)
| | - Andrea Laghi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza-University of Rome, 00189 Rome, Italy; (M.Z.); (M.R.); (A.L.)
- Department of Radiology, Sant’Andrea University of Hospital La Sapienza, 00189 Rome, Italy; (E.R.); (E.L.); (T.P.)
| |
Collapse
|
32
|
Yang X, Yuan C, Zhang Y, Wang Z. Magnetic resonance radiomics signatures for predicting poorly differentiated hepatocellular carcinoma: A SQUIRE-compliant study. Medicine (Baltimore) 2021; 100:e25838. [PMID: 34106622 PMCID: PMC8133272 DOI: 10.1097/md.0000000000025838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Radiomics contributes to the extraction of undetectable features with the naked eye from high-throughput quantitative images. In this study, 2 predictive models were constructed, which allowed recognition of poorly differentiated hepatocellular carcinoma (HCC). In addition, the effectiveness of the as-constructed signature was investigated in HCC patients.A retrospective study involving 188 patients (age, 29-85 years) enrolled from November 2010 to April 2018 was carried out. All patients were divided randomly into 2 cohorts, namely, the training cohort (n = 141) and the validation cohort (n = 47). The MRI images (DICOM) were collected from PACS before ablation; in addition, the radiomics features were extracted from the 3D tumor area on T1-weighted imaging (T1WI) scans, T2-weighted imaging (T2WI) scans, arterial images, portal images and delayed phase images. In total, 200 radiomics features were extracted. t test and Mann-Whitney U test were performed to exclude some radiomics signatures. Afterwards, a radiomics signature model was built through LASSO regression by RStudio Software. We constructed 2 support vector machine (SVM)-based models: 1 with a radiomics signature only (model 1) and 1 that integrated clinical and radiomics signatures (model 2). Then, the diagnostic performance of the radiomics signature was evaluated through receiver operating characteristic (ROC) analysis.The classification accuracy in the training and validation cohorts was 80.9% and 72.3%, respectively, for model 1. In the training cohort, the area under the ROC curve (AUC) was 0.623, while it was 0.576 in the validation cohort. The classification accuracy in the training and validation cohorts were 79.4% and 74.5%, respectively, for model 2. In the training cohort, the AUC was 0.721, while it was 0.681 in the validation cohort.The MRI-based radiomics signature and clinical model can distinguish HCC patients that belong in a low differentiation group from other patients, which helps in the performance of personal medical protocols.
Collapse
Affiliation(s)
- Xiaozhen Yang
- Department of Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital
| | - Chunwang Yuan
- Department of Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital
| | - Yinghua Zhang
- Department of Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Radiomics MRI for lymph node status prediction in breast cancer patients: the state of art. J Cancer Res Clin Oncol 2021; 147:1587-1597. [PMID: 33758997 DOI: 10.1007/s00432-021-03606-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To create a review of the existing literature on the radiomic approach in predicting the lymph node status of the axilla in breast cancer (BC). MATERIALS AND METHODS Two reviewers conducted the literature search on MEDLINE databases independently. Ten articles on the prediction of sentinel lymph node metastasis in breast cancer with a radiomic approach were selected. The study characteristics and results were reported. The quality of the methodology was evaluated according to the Radiomics Quality Score (RQS). RESULTS All studies were retrospective in design and published between 2017 and 2020. The majority of studies used DCE-MRI sequences and two investigated only pre-contrast images. The sample size was lower than 200 patients for 7 studies. The pre-processing used software, feature extraction and selection methods and classifier development are heterogeneous and a standardization of results is not yet possible. The average RQS score was 11.1 (maximum possible value = 36). The criteria with the lowest scores were the type of study, validation, comparison with a gold standard, potential clinical utility, cost-effective analysis and open science data. CONCLUSION The field of radiomics is a diagnostic approach of relative recent development. The results in predicting axillary lymph node status are encouraging, but there are still weaknesses in the quality of studies that may limit the reproducibility of the results.
Collapse
|
34
|
Qi Y, Xu M, Wang W, Wang YY, Liu JJ, Ren HX, Liu MM, Li RL, Li HJ. Early prediction of putamen imaging features in HIV-associated neurocognitive impairment syndrome. BMC Neurol 2021; 21:106. [PMID: 33750319 PMCID: PMC7941706 DOI: 10.1186/s12883-021-02114-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background To explore the correlation between the volume of putamen and brain cognitive impairment in patients with HIV and to predict the feasibility of early-stage HIV brain cognitive impairment through radiomics. Method Retrospective selection of 90 patients with HIV infection, including 36 asymptomatic neurocognitive impairment (ANI) patients and 54 pre-clinical ANI patients in Beijing YouAn Hospital. All patients received comprehensive neuropsychological assessment and MRI scanning. 3D Slicer software was used to acquire volume of interest (VOI) and radiomics features. Clinical variables and volume of putamen were compared between patients with ANI and pre-clinical ANI. The Kruskal Wallis test was used to analysis multiple comparisons between groups. The relationship between cognitive scores and VOI was compared using linear regression. For radiomics, principal component analysis (PCA) was used to reduce model overfitting and calculations and then a support vector machine (SVM) was used to build a binary classification model. For model performance evaluation, we used an accuracy, sensitivity, specificity and receiver operating characteristic curve (ROC). Result There were no significant differences in clinical variables between ANI group and pre-clinical-ANI group (P>0.05). The volume of bilateral putamen was significantly different between AHI group and pre-clinical group (P<0.05), but there was only a trend in the left putamen between ANI-treatment group and pre-clinical treatment group(P = 0.063). Reduced cognitive scores in Verbal Fluency, Attention/Working Memory, Executive Functioning, memory and Speed of Information Processing were negatively correlated with the increased VOI (P<0.05), but the correlation was relatively low. In diagnosing the ANI from pre-clinical ANI, the mean area under the ROC curves (AUC) were 0.85 ± 0.22, the mean sensitivity and specificity were 63.12 ± 5.51 and 94.25% ± 3.08%. Conclusion The volumes of putamen in patients with ANI may be larger than patients with pre-clinical ANI, the change of the volume of the putamen may have a certain process; there is a relationship between putamen and cognitive impairment, but the exact mechanism is unclear. Radiomics may be a useful tool for predicting early stage HAND in patients with HIV.
Collapse
Affiliation(s)
- Yu Qi
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China
| | - Man Xu
- Information and Communication Engineering Department Beijing University of Posts and Telecommunications, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China
| | - Yuan-Yuan Wang
- Department of Radiology, Beijing Second Hospital, Beijing, China
| | - Jiao-Jiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China
| | - Hai-Xia Ren
- Information and Communication Engineering Department Beijing University of Posts and Telecommunications, Beijing, China
| | - Ming-Ming Liu
- Physical Examination Center, Cang zhou Central Hospital, Cang zhou, China
| | - Rui-Li Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China.
| | - Hong-Jun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
35
|
Wei L, Owen D, Rosen B, Guo X, Cuneo K, Lawrence TS, Ten Haken R, El Naqa I. A deep survival interpretable radiomics model of hepatocellular carcinoma patients. Phys Med 2021; 82:295-305. [PMID: 33714190 PMCID: PMC8035300 DOI: 10.1016/j.ejmp.2021.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
This work aims to identify a new radiomics signature using imaging phenotypes and clinical variables for risk prediction of overall survival (OS) in hepatocellular carcinoma (HCC) patients treated with stereotactic body radiation therapy (SBRT). 167 patients were retrospectively analyzed with repeated nested cross-validation to mitigate overfitting issues. 56 radiomic features were extracted from pre-treatment contrast-enhanced (CE) CT images. 37 clinical factors were obtained from patients' electronic records. Variational autoencoders (VAE) based survival models were designed for radiomics and clinical features and a convolutional neural network (CNN) survival model was used for the CECT. Finally, radiomics, clinical and raw image deep learning network (DNN) models were combined to predict the risk probability for OS. The final models yielded c-indices of 0.579 (95%CI: 0.544-0.621), 0.629 (95%CI: 0.601-0.643), 0.581 (95%CI: 0.553-0.613) and 0.650 (95%CI: 0.635-0.683) for radiomics, clinical, image input and combined models on nested cross validation scheme, respectively. Integrated gradients method was used to interpret the trained models. Our interpretability analysis of the DNN showed that the top ranked features were clinical liver function and liver exclusive of tumor radiomics features, which suggests a prominent role of side effects and toxicities in liver outside the tumor region in determining the survival rate of these patients. In summary, novel deep radiomic analysis provides improved performance for risk assessment of HCC prognosis compared with Cox survival models and may facilitate stratification of HCC patients and personalization of their treatment strategies. Liver function was found to contribute most to the OS for these HCC patients and radiomics can aid in their management.
Collapse
Affiliation(s)
- Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin Rosen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Xinzhou Guo
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Kyle Cuneo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Randall Ten Haken
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
36
|
Koh DM, Ba-Ssalamah A, Brancatelli G, Fananapazir G, Fiel MI, Goshima S, Ju SH, Kartalis N, Kudo M, Lee JM, Murakami T, Seidensticker M, Sirlin CB, Tan CH, Wang J, Yoon JH, Zeng M, Zhou J, Taouli B. Consensus report from the 9 th International Forum for Liver Magnetic Resonance Imaging: applications of gadoxetic acid-enhanced imaging. Eur Radiol 2021; 31:5615-5628. [PMID: 33523304 PMCID: PMC8270799 DOI: 10.1007/s00330-020-07637-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Objectives The 9th International Forum for Liver Magnetic Resonance Imaging (MRI) was held in Singapore in September 2019, bringing together radiologists and allied specialists to discuss the latest developments in and formulate consensus statements for liver MRI, including the applications of gadoxetic acid–enhanced imaging. Methods As at previous Liver Forums, the meeting was held over 2 days. Presentations by the faculty on days 1 and 2 and breakout group discussions on day 1 were followed by delegate voting on consensus statements presented on day 2. Presentations and discussions centered on two main meeting themes relating to the use of gadoxetic acid–enhanced MRI in primary liver cancer and metastatic liver disease. Results and conclusions Gadoxetic acid–enhanced MRI offers the ability to monitor response to systemic therapy and to assist in pre-surgical/pre-interventional planning in liver metastases. In hepatocellular carcinoma, gadoxetic acid–enhanced MRI provides precise staging information for accurate treatment decision-making and follow-up post therapy. Gadoxetic acid–enhanced MRI also has potential, currently investigational, indications for the functional assessment of the liver and the biliary system. Additional voting sessions at the Liver Forum debated the role of multidisciplinary care in the management of patients with liver disease, evidence to support the use of abbreviated imaging protocols, and the importance of standardizing nomenclature in international guidelines in order to increase the sharing of scientific data and improve the communication between centers. Key Points • Gadoxetic acid–enhanced MRI is the preferred imaging method for pre-surgical or pre-interventional planning for liver metastases after systemic therapy. • Gadoxetic acid–enhanced MRI provides accurate staging of HCC before and after treatment with locoregional/biologic therapies. • Abbreviated protocols for gadoxetic acid–enhanced MRI offer potential time and cost savings, but more evidence is necessary. The use of gadoxetic acid–enhanced MRI for the assessment of liver and biliary function is under active investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-020-07637-4.
Collapse
Affiliation(s)
- Dow-Mu Koh
- Department of Diagnostic Radiology, Royal Marsden Hospital, Sutton, UK.
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Giuseppe Brancatelli
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BiND), University of Palermo, Palermo, Italy
| | | | - M Isabel Fiel
- Department of Pathology, Molecular and Cell Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satoshi Goshima
- Department of Diagnostic Radiology & Nuclear Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sheng-Hong Ju
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Nikolaos Kartalis
- Department of Radiology Huddinge, Karolinska University Hospital, Stockholm, Sweden.,Division of Radiology, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Masatoshi Kudo
- Department of Hepatology and Gastroenterology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Jeong Min Lee
- Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Max Seidensticker
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Claude B Sirlin
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Jin Wang
- Department of Radiology, Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, People's Republic of China
| | - Jeong Hee Yoon
- Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Bachir Taouli
- Department of Diagnostic, Molecular, and Interventional Radiology, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
37
|
CT-Based Radiomics Analysis Before Thermal Ablation to Predict Local Tumor Progression for Colorectal Liver Metastases. Cardiovasc Intervent Radiol 2021; 44:913-920. [PMID: 33506278 DOI: 10.1007/s00270-020-02735-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Predicting early local tumor progression after thermal ablation treatment for colorectal liver metastases patients is critical for the decision of subsequent follow-up and treatment. Radiomics features derived from medical images show great potential for prediction and prognosis. The aim is to develop and validate a machine learning radiomics model to predict local tumor progression based on the pre-ablation CT scan of colorectal liver metastases patients. MATERIALS AND METHODS Ninety patients with colorectal liver metastases (140 lesions) treated by ablation were included in the study and were randomly divided into a training (n = 63 patients/n = 94 lesions) and validation (n = 27 patients/n = 46 lesions) cohort. After manual lesion volume segmentation and preprocessing, 1593 radiomics features were extracted for each lesion. Three machine learning survival models were constructed based on (1) radiomics features, (2) clinical features and (3) a combination of clinical and radiomics features to predict local tumor progression free survival. Feature reduction and machine learning modeling were performed and optimized with sequential model-based optimization. RESULTS Median follow-up was 24 months (range 6-115). Thirty-one (22%) lesions developed local tumor progression. The concordance index in the validation set to predict local tumor progression free survival was 0.78 (95% confidence interval [CI]: 0.77-0.79) for the radiomics model, 0.56 (95%CI: 0.55-0.57) for the clinical model and 0.79 (95%CI: 0.78-0.80) for the combined model. CONCLUSION A machine learning-based radiomics analysis of routine clinical CT imaging pre-ablation could act as a valuable biomarker model to predict local tumor progression with curative intent for colorectal liver metastases patients.
Collapse
|
38
|
Beaumont H, Iannessi A, Bertrand AS, Cucchi JM, Lucidarme O. Harmonization of radiomic feature distributions: impact on classification of hepatic tissue in CT imaging. Eur Radiol 2021; 31:6059-6068. [PMID: 33459855 DOI: 10.1007/s00330-020-07641-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Following the craze for radiomic features (RF), their lack of reliability raised the question of the generalizability of classification models. Inter-site harmonization of images therefore becomes a central issue. We compared RF harmonization processing designed to detect liver diseases in CT images. METHODS We retrospectively analyzed 76 multi-center portal CT series of non-diseased (NDL) and diseased liver (DL) patients. In each series, we positioned volumes of interest in spleen and liver, then extracted 9 RF (histogram and texture). We evaluated two RF harmonization approaches. First, in each series, we computed the Z-score of liver measurements based on those computed in the spleen. Second, we evaluated the ComBat method according to each imaging center; parameters were computed in the spleen and applied to the liver. We compared RF distributions and classification performances before/after harmonization. We classified NDL versus spleen and versus DL tissues. RESULTS The RF distributions were all different between liver and spleen (p < 0.05). The Z-score harmonization outperformed for the detection of liver versus spleen: AUC = 93.1% (p < 0.001). For the detection of DL versus NDL, in a case/control setting, we found no differences between the harmonizations: mean AUC = 73.6% (p = 0.49). Using the whole datasets, the performances were improved using ComBat (p = 0.05) AUC = 82.4% and degraded with Z-score AUC = 67.4% (p = 0.008). CONCLUSIONS Data harmonization requires to first focus on data structuring to not degrade the performances of subsequent classifications. Liver tissue classification after harmonization of spleen-based RF is a promising strategy for improving the detection of DL tissue. KEY POINTS • Variability of acquisition parameter makes radiomics of CT features non-reproducible. • Data harmonization can help circumvent the inter-site variability of acquisition protocols. • Inter-site harmonization must be carefully implemented and requires designing consistent data sets.
Collapse
Affiliation(s)
| | | | | | - Jean Michel Cucchi
- Centre Hospitalier Princesse Grâce, Avenue Pasteur, 98000, Monaco, Monaco
| | | |
Collapse
|
39
|
Abstract
The diagnosis of hepatocellular carcinoma relies largely on non-invasive imaging, and is well suited for radiomics analysis. Radiomics is an emerging method for quantification of tumor heterogeneity by mathematically analyzing the spatial distribution and relationships of gray levels in medical images. The published studies on radiomics analysis of HCC provide encouraging data demonstrating potential utility for prediction of tumor biology, molecular profiles, post-therapy response, and outcome. The combination of radiomics data and clinical/laboratory information provides added value in many studies. Radiomics is a multi-step process that requires optimization and standardization, the development of semi-automated or automated segmentation methods, robust data quality control, and refinement of algorithms and modeling approaches for high-throughput data analysis. While radiomics remains largely in the research setting, the strong associations of predictive models and nomograms with certain pathologic, molecular, and immune markers with tumor aggressiveness and patient outcomes, provide great potential for clinical applications to inform optimized treatment strategies and patient prognosis.
Collapse
|
40
|
Taghavi M, Trebeschi S, Simões R, Meek DB, Beckers RCJ, Lambregts DMJ, Verhoef C, Houwers JB, van der Heide UA, Beets-Tan RGH, Maas M. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases. Abdom Radiol (NY) 2021; 46:249-256. [PMID: 32583138 DOI: 10.1007/s00261-020-02624-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Early identification of patients at risk of developing colorectal liver metastases can help personalizing treatment and improve oncological outcome. The aim of this study was to investigate in patients with colorectal cancer (CRC) whether a machine learning-based radiomics model can predict the occurrence of metachronous metastases. METHODS In this multicentre study, the primary staging portal venous phase CT of 91 CRC patients were retrospectively analysed. Two groups were assessed: patients without liver metastases at primary staging, or during follow-up of ≥ 24 months (n = 67) and patients without liver metastases at primary staging but developed metachronous liver metastases < 24 months after primary staging (n = 24). After liver parenchyma segmentation, 1767 radiomics features were extracted for each patient. Three predictive models were constructed based on (1) radiomics features, (2) clinical features and (3) a combination of clinical and radiomics features. Stability of features across hospitals was assessed by the Kruskal-Wallis test and inter-correlated features were removed if their correlation coefficient was higher than 0.9. Bayesian-optimized random forest with wrapper feature selection was used for prediction models. RESULTS The three predictive models that included radiomics features, clinical features and a combination of radiomics with clinical features resulted in an AUC in the validation cohort of 86% (95%CI 85-87%), 71% (95%CI 69-72%) and 86% (95% CI 85-87%), respectively. CONCLUSION A machine learning-based radiomics analysis of routine clinical CT imaging at primary staging can provide valuable biomarkers to identify patients at high risk for developing colorectal liver metastases.
Collapse
|
41
|
Advanced analytics and artificial intelligence in gastrointestinal cancer: a systematic review of radiomics predicting response to treatment. Eur J Nucl Med Mol Imaging 2020; 48:1785-1794. [PMID: 33326049 PMCID: PMC8113210 DOI: 10.1007/s00259-020-05142-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/29/2020] [Indexed: 02/08/2023]
Abstract
Purpose Advanced medical image analytics is increasingly used to predict clinical outcome in patients diagnosed with gastrointestinal tumors. This review provides an overview on the value of radiomics in predicting response to treatment in patients with gastrointestinal tumors. Methods A systematic review was conducted, according to PRISMA guidelines. The protocol was prospectively registered (PROSPERO: CRD42019128408). PubMed, Embase, and Cochrane databases were searched. Original studies reporting on the value of radiomics in predicting response to treatment in patients with a gastrointestinal tumor were included. A narrative synthesis of results was conducted. Results were stratified by tumor type. Quality assessment of included studies was performed, according to the radiomics quality score. Results The comprehensive literature search identified 1360 unique studies, of which 60 articles were included for analysis. In 37 studies, radiomics models and individual radiomic features showed good predictive performance for response to treatment (area under the curve or accuracy > 0.75). Various strategies to construct predictive models were used. Internal validation of predictive models was often performed, while the majority of studies lacked external validation. None of the studies reported predictive models implemented in clinical practice. Conclusion Radiomics is increasingly used to predict response to treatment in patients suffering from gastrointestinal cancer. This review demonstrates its great potential to help predict response to treatment and improve patient selection and early adjustment of treatment strategy in a non-invasive manner. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-020-05142-w.
Collapse
|
42
|
Radiomics of Liver Metastases: A Systematic Review. Cancers (Basel) 2020; 12:cancers12102881. [PMID: 33036490 PMCID: PMC7600822 DOI: 10.3390/cancers12102881] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Patients with liver metastases can be scheduled for different therapies (e.g., chemotherapy, surgery, radiotherapy, and ablation). The choice of the most appropriate treatment should rely on adequate understanding of tumor biology and prediction of survival, but reliable biomarkers are lacking. Radiomics is an innovative approach to medical imaging: it identifies invisible-to-the-human-eye radiological patterns that can predict tumor aggressiveness and patients outcome. We reviewed the available literature to elucidate the role of radiomics in patients with liver metastases. Thirty-two papers were analyzed, mostly (56%) concerning metastases from colorectal cancer. Even if available studies are still preliminary, radiomics provided effective prediction of response to chemotherapy and of survival, allowing more accurate and earlier prediction than standard predictors. Entropy and homogeneity were the radiomic features with the strongest clinical impact. In the next few years, radiomics is expected to give a consistent contribution to the precision medicine approach to patients with liver metastases. Abstract Multidisciplinary management of patients with liver metastases (LM) requires a precision medicine approach, based on adequate profiling of tumor biology and robust biomarkers. Radiomics, defined as the high-throughput identification, analysis, and translational applications of radiological textural features, could fulfill this need. The present review aims to elucidate the contribution of radiomic analyses to the management of patients with LM. We performed a systematic review of the literature through the most relevant databases and web sources. English language original articles published before June 2020 and concerning radiomics of LM extracted from CT, MRI, or PET-CT were considered. Thirty-two papers were identified. Baseline higher entropy and lower homogeneity of LM were associated with better survival and higher chemotherapy response rates. A decrease in entropy and an increase in homogeneity after chemotherapy correlated with radiological tumor response. Entropy and homogeneity were also highly predictive of tumor regression grade. In comparison with RECIST criteria, radiomic features provided an earlier prediction of response to chemotherapy. Lastly, texture analyses could differentiate LM from other liver tumors. The commonest limitations of studies were small sample size, retrospective design, lack of validation datasets, and unavailability of univocal cut-off values of radiomic features. In conclusion, radiomics can potentially contribute to the precision medicine approach to patients with LM, but interdisciplinarity, standardization, and adequate software tools are needed to translate the anticipated potentialities into clinical practice.
Collapse
|
43
|
Dreher C, Linde P, Boda-Heggemann J, Baessler B. Radiomics for liver tumours. Strahlenther Onkol 2020; 196:888-899. [PMID: 32296901 PMCID: PMC7498486 DOI: 10.1007/s00066-020-01615-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
Current research, especially in oncology, increasingly focuses on the integration of quantitative, multiparametric and functional imaging data. In this fast-growing field of research, radiomics may allow for a more sophisticated analysis of imaging data, far beyond the qualitative evaluation of visible tissue changes. Through use of quantitative imaging data, more tailored and tumour-specific diagnostic work-up and individualized treatment concepts may be applied for oncologic patients in the future. This is of special importance in cross-sectional disciplines such as radiology and radiation oncology, with already high and still further increasing use of imaging data in daily clinical practice. Liver targets are generally treated with stereotactic body radiotherapy (SBRT), allowing for local dose escalation while preserving surrounding normal tissue. With the introduction of online target surveillance with implanted markers, 3D-ultrasound on conventional linacs and hybrid magnetic resonance imaging (MRI)-linear accelerators, individualized adaptive radiotherapy is heading towards realization. The use of big data such as radiomics and the integration of artificial intelligence techniques have the potential to further improve image-based treatment planning and structured follow-up, with outcome/toxicity prediction and immediate detection of (oligo)progression. The scope of current research in this innovative field is to identify and critically discuss possible application forms of radiomics, which is why this review tries to summarize current knowledge about interdisciplinary integration of radiomics in oncologic patients, with a focus on investigations of radiotherapy in patients with liver cancer or oligometastases including multiparametric, quantitative data into (radio)-oncologic workflow from disease diagnosis, treatment planning, delivery and patient follow-up.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1–3, 68167 Mannheim, Germany
| | - Philipp Linde
- Department of Radiation Oncology, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1–3, 68167 Mannheim, Germany
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
44
|
Value of volumetric and textural analysis in predicting the treatment response in patients with locally advanced rectal cancer. Ann Nucl Med 2020; 34:960-967. [PMID: 32951129 DOI: 10.1007/s12149-020-01527-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to assess the value of baseline 18F-FDG PET/CT in predicting the response to neoadjuvant chemo-radiotherapy (NCRT) in patients with locally advanced rectal cancer (LARC) via the volumetric and texture data obtained from 18F-FDG PET/CT images. METHODS In total, 110 patients who had undergone NCRT after initial PET/CT and followed by surgical resection were included in this study. Patients were divided into two groups randomly as a train set (n: 88) and test set (n: 22). Pathological response using three-point tumor regression grade (TRG) and metastatic lymph nodes in PET/CT images were determined. TRG1 were accepted as responders and TRG2-3 as non-responders. Region of interest for the primary tumors was drawn and volumetric features (metabolic tumor volume (MTV) and total lesion glycolysis (TLG)) and texture features were calculated. In train set, the relationship between these features and TRG was investigated with Mann-Whitney U test. Receiver operating curve analysis was performed for features with p < 0.05. Correlation between features were evaluated with Spearman correlation test, features with correlation coefficient < 0.8 were evaluated with the logistic regression analysis for creating a model. The model obtained was tested with a test set that has not been used in modeling before. RESULTS In train set 32 (36.4%) patients were responders. The rate of visually detected metastatic lymph node at baseline PET/CT was higher in non-responders than responders (71.4% and 46.9%, respectively, p = 0.022). There was a statistically significant difference between TLG, MTV, SHAPE_compacity, NGLDMcoarseness, GLRLM_GLNU, GLRLM_RLNU, GLZLM_LZHGE and GLZLM_GLNU between responders and non-responders. MTV and NGLDMcoarseness demonstrated the most significance (p = 0.011). A multivariate logistic regression analysis that included MTV, coarseness, GLZLM_LZHGE and lymph node metastasis was performed. Multivariate analysis demonstrated MTV and lymph node metastasis were the most meaningful parameters. The model's AUC was calculated as 0.714 (p = 0.001,0.606-0.822, 95% CI). In test set, AUC was determined 0.838 (p = 0.008,0.671-1.000, 95% CI) in discriminating non-responders. CONCLUSIONS Although there were points where textural features were found to be significant, multivariate analysis revealed no diagnostic superiority over MTV in predicting treatment response. In this study, it was thought higher MTV value and metastatic lymph nodes in PET/CT images could be a predictor of low treatment response in patients with LARC.
Collapse
|
45
|
Zhu HB, Zheng ZY, Zhao H, Zhang J, Zhu H, Li YH, Dong ZY, Xiao LS, Kuang JJ, Zhang XL, Liu L. Radiomics-based nomogram using CT imaging for noninvasive preoperative prediction of early recurrence in patients with hepatocellular carcinoma. ACTA ACUST UNITED AC 2020; 26:411-419. [PMID: 32490826 DOI: 10.5152/dir.2020.19623] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE The aim of this study was to develop and validate a radiomics nomogram based on radiomics features and clinical data for the non-invasive preoperative prediction of early recurrence (≤2 years) in patients with hepatocellular carcinoma (HCC). METHODS We enrolled 262 HCC patients who underwent preoperative contrast-enhanced computed tomography and curative resection (training cohort, n=214; validation cohort, n=48). We applied propensity score matching (PSM) to eliminate redundancy between clinical characteristics and image features, and the least absolute shrinkage and selection operator (LASSO) was used to prevent overfitting. Next, a radiomics signature, clinical nomogram, and combined clinical-radiomics nomogram were built to predict early recurrence, and we compared the performance and generalization of these models. RESULTS The radiomics signature stratified patients into low-risk and high-risk, which show significantly difference in recurrence free survival and overall survival (P ≤ 0.01). Multivariable analysis identified dichotomised radiomics signature, alpha fetoprotein, and tumour number and size as key early recurrence indicators, which were incorporated into clinical and radiomics nomograms. The radiomics nomogram showed the highest area under the receiver operating characteristic curve (AUC), with significantly superior predictive performance over the clinical nomogram in the training cohort (0.800 vs 0.716, respectively; P = 0.001) and the validation cohort (0.785 vs 0.654, respectively; P = 0.039). CONCLUSION The radiomics nomogram is a non-invasive preoperative biomarker for predicting early recurrence in patients with HCC. This model may be of clinical utility for guiding surveillance follow-ups and identifying optimal interventional strategies.
Collapse
Affiliation(s)
- Hong-Bo Zhu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China;Department of Oncology, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Ze-Yu Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heng Zhao
- Department of Radiology, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Zhu
- Information Management and Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue-Hua Li
- Department of Oncology, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhong-Yi Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu-Shan Xiao
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Jie Kuang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Li Zhang
- Department of Pathology, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, Song B, Tian J. Radiomics in liver diseases: Current progress and future opportunities. Liver Int 2020; 40:2050-2063. [PMID: 32515148 PMCID: PMC7496410 DOI: 10.1111/liv.14555] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
Liver diseases, a wide spectrum of pathologies from inflammation to neoplasm, have become an increasingly significant health problem worldwide. Noninvasive imaging plays a critical role in the clinical workflow of liver diseases, but conventional imaging assessment may provide limited information. Accurate detection, characterization and monitoring remain challenging. With progress in quantitative imaging analysis techniques, radiomics emerged as an efficient tool that shows promise to aid in personalized diagnosis and treatment decision-making. Radiomics could reflect the heterogeneity of liver lesions via extracting high-throughput and high-dimensional features from multi-modality imaging. Machine learning algorithms are then used to construct clinical target-oriented imaging biomarkers to assist disease management. Here, we review the methodological process in liver disease radiomics studies in a stepwise fashion from data acquisition and curation, region of interest segmentation, liver-specific feature extraction, to task-oriented modelling. Furthermore, the applications of radiomics in liver diseases are outlined in aspects of diagnosis and staging, evaluation of liver tumour biological behaviours, and prognosis according to different disease type. Finally, we discuss the current limitations of radiomics in liver disease studies and explore its future opportunities.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular ImagingInstitute of AutomationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Molecular ImagingBeijingChina
| | - Hanyu Jiang
- Department of RadiologyWest China HospitalSichuan UniversityChengduChina
| | - Dongsheng Gu
- Key Laboratory of Molecular ImagingInstitute of AutomationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Molecular ImagingBeijingChina
| | - Meng Niu
- Department of Interventional RadiologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Fangfang Fu
- Department of Medical ImagingHenan Provincial People’s HospitalZhengzhouHenanChina
- Department of Medical ImagingPeople’s Hospital of Zhengzhou University. ZhengzhouHenanChina
| | - Yuqi Han
- Key Laboratory of Molecular ImagingInstitute of AutomationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Molecular ImagingBeijingChina
| | - Bin Song
- Department of RadiologyWest China HospitalSichuan UniversityChengduChina
| | - Jie Tian
- Key Laboratory of Molecular ImagingInstitute of AutomationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Molecular ImagingBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineSchool of MedicineBeihang UniversityBeijingChina
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of EducationSchool of Life Science and TechnologyXidian UniversityXi’anShaanxiChina
| |
Collapse
|
47
|
Discovery and Validation of a CT-Based Radiomic Signature for Preoperative Prediction of Early Recurrence in Hypopharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4340521. [PMID: 32851071 PMCID: PMC7436349 DOI: 10.1155/2020/4340521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Purpose In the clinical management of hypopharyngeal squamous cell carcinoma (HSCC), preoperative identification of early recurrence (≤2 years) after curative resection is essential. Thus, we aimed to develop a CT-based radiomic signature to predict early recurrence in HSCC patients preoperatively. Methods In total, 167 HSCC patients who underwent partial surgery were enrolled in this retrospective study and divided into two groups, i.e., the training cohort (n = 133) and the validation cohort (n = 34). Each individual was followed up for at least for 2 years. Radiomic features were extracted from CT images, and the radiomic signature was built with the least absolute shrinkage and selection operator (LASSO) logistic regression (LR) model. The associations of preoperative clinical factors with early recurrence were evaluated. A radiomic signature-combined model was built, and the area under the curve (AUC) was used to explore their performance in discriminating early recurrence. Results Among the 1415 features, 335 of them were selected using the variance threshold method. Then, the SelectKBest method was further used for the selection of 31 candidate features. Finally, 11 out of 31 optimal features were identified with the LASSO algorithm. In the LR classifier, the AUCs of the training and validation sets in discriminating early recurrence were 0.83 (95% CI: 0.76-0.90) (sensitivity 0.8 and specificity 0.83) and 0.83 (95% CI: 0.67-0.99) (sensitivity 0.69 and specificity 0.71), respectively. Conclusions Using the radiomic signature, we developed a radiomic signature to preoperatively predict early recurrence in patients with HSCC, which may serve as a potential noninvasive tool to guide personalized treatment.
Collapse
|
48
|
Zhang J, Wang X, Zhang L, Yao L, Xue X, Zhang S, Li X, Chen Y, Pang P, Sun D, Xu J, Shi Y, Chen F. Radiomics predict postoperative survival of patients with primary liver cancer with different pathological types. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:820. [PMID: 32793665 PMCID: PMC7396247 DOI: 10.21037/atm-19-4668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Radiomics can be used to determine the prognosis of liver cancer, but it might vary among cancer types. This study aimed to explore the clinicopathological features, radiomics, and survival of patients with hepatocellular carcinoma (HCC), mass-type cholangiocarcinoma (MCC), and combined hepatocellular-cholangiocarcinoma (CHCC). Methods This was a retrospective cohort study of patients with primary liver cancer operated at the department of hepatobiliary surgery of the First Affiliated Hospital of Zhejiang University from 07/2013 to 11/2015. All patients underwent preoperative liver enhanced MRI scans and diffusion-weighted imaging (DWI). The radiomics characteristics of DWI and the enhanced equilibrium phase (EP) images were extracted. The mRMR (minimum redundancy maximum relevance) was applied to filter the parameters. Results There were 44 patients with MCC, 59 with HCC, and 33 with CHCC. Macrovascular invasion, tumor diameter, positive ferritin preoperatively, positive AFP preoperatively, positive CEA preoperatively, Correlation, Inverse Difference Moment, and Cluster Prominence in model A (DWI and clinicopathological parameters) were independently associated with overall survival (OS) (P<0.05). Lymphadenopathy, gender, positive ferritin preoperatively, positive AFP preoperatively, positive CEA preoperatively, Uniformity, and Cluster Prominence in model B (EP and clinicopathological parameters) were independently associated with OS (P<0.05). Macrovascular invasion, lymphadenopathy, gender, positive ferritin preoperatively, positive CEA preoperatively, Uniformity_EP, GLCMEnergy_DWI, and Cluster Prominence_EP in model C (image texture and clinicopathological parameters) were independently associated with OS (P<0.05). Those factors were used to construct three nomograms to predict OS. Conclusions Clinicopathological and radiomics features are independently associated with the OS of patients with primary liver cancer.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Radiology, Hangzhou Third Hospital, Hangzhou, China
| | - Xiaoli Wang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lixia Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linpeng Yao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siying Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Li
- GE China Medical Life Sciences Division Core Image Senior Application Team, Guangzhou, China
| | - Yuanjun Chen
- GE China Medical Life Sciences Division Core Image Senior Application Team, Guangzhou, China
| | - Peipei Pang
- GE China Medical Life Sciences Division Core Image Senior Application Team, Guangzhou, China
| | | | - Juan Xu
- Medical Big Data, AliHealth, Hangzhou, China
| | - Yanjun Shi
- Department of Hepatobiliary and Pancreas Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
49
|
Fan L, Cao Q, Ding X, Gao D, Yang Q, Li B. Radiotranscriptomics signature-based predictive nomograms for radiotherapy response in patients with nonsmall cell lung cancer: Combination and association of CT features and serum miRNAs levels. Cancer Med 2020; 9:5065-5074. [PMID: 32458566 PMCID: PMC7367624 DOI: 10.1002/cam4.3115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/10/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose We aimed to establish radiotranscriptomics signatures based on serum miRNA levels and computed tomography (CT) texture features and develop nomogram models for predicting radiotherapy response in patients with nonsmall cell lung cancer (NSCLC). Methods We first used established radioresistant NSCLC cell lines for miRNA selection. At the same time, patients (103 for training set and 71 for validation set) with NSCLC were enrolled. Their pretreatment contrast‐enhanced CT texture features were extracted and their serum miRNA levels were obtained. Then, radiotranscriptomics feature selection was implemented with the least absolute shrinkage and selection operator (LASSO), and signatures were generated by logistic or Cox regression for objective response rate (ORR), overall survival (OS), and progression‐free survival (PFS). Afterward, radiotranscriptomics signature‐based nomograms were constructed and assessed for clinical use. Results Four miRNAs and 22 reproducible contrast‐enhanced CT features were used for radiotranscriptomics feature selection and we generated ORR‐, OS‐, and PFS‐ related radiotranscriptomics signatures. In patients with NSCLC who received radiotherapy, the radiotranscriptomics signatures were independently associated with ORR, OS, and PFS in both the training (OR: 2.94, P < .001; HR: 2.90, P < .001; HR: 3.58, P = .001) and validation set (OR: 2.94, P = .026; HR: 2.14, P = .004; HR: 2.64, P = .016). We also obtained a satisfactory nomogram for ORR. The C‐index values for the ORR nomogram were 0.86 [95% confidence interval (CI), 0.75 to 0.92] in the training set and 0.81 (95% CI, 0.69 to 0.89) in the validation set. The calibration‐in‐the‐large and calibration slope performed well. Decision curve analysis indicated a satisfactory net benefit. Conclusions The radiotranscriptomics signature could be an independent biomarker for evaluating radiotherapeutic responses in patients with NSCLC. The radiotranscriptomics signature‐based nomogram could be used to predict patients’ ORR, which would represent progress in individualized medicine.
Collapse
Affiliation(s)
- Liyuan Fan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Huaiyin Region, Jinan, Shandong, China
| | - Qiang Cao
- School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Xiuping Ding
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Huaiyin Region, Jinan, Shandong, China
| | - Dongni Gao
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiwei Yang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Huaiyin Region, Jinan, Shandong, China
| |
Collapse
|
50
|
Chen L, Wang H, Zeng H, Zhang Y, Ma X. Evaluation of CT-based radiomics signature and nomogram as prognostic markers in patients with laryngeal squamous cell carcinoma. Cancer Imaging 2020; 20:28. [PMID: 32321585 PMCID: PMC7178759 DOI: 10.1186/s40644-020-00310-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Background The aim of this study was to evaluate the prognostic value of radiomics signature and nomogram based on contrast-enhanced computed tomography (CT) in patients after surgical resection of laryngeal squamous cell carcinoma (LSCC). Methods All patients (n = 136) were divided into the training cohort (n = 96) and validation cohort (n = 40). The LASSO regression method was performed to construct radiomics signature from CT texture features. Then a radiomics nomogram incorporating the radiomics signature and clinicopathologic factors was established to predict overall survival (OS). The validation of nomogram was evaluated by calibration curve, concordance index (C-index) and decision curve. Results Based on three selected texture features, the radiomics signature showed high C-indexes of 0.782 (95%CI: 0.656–0.909) and 0.752 (95%CI, 0.614–0.891) in the two cohorts. The radiomics nomogram had significantly better discrimination capability than cancer staging in the training cohort (C-index, 0.817 vs. 0.682; P = 0.009) and validation cohort (C-index, 0.913 vs. 0.699; P = 0.019), as well as a good agreement between predicted and actual survival in calibration curves. Decision curve analysis also suggested improved clinical utility of radiomics nomogram. Conclusions Radiomics signature and nomogram showed favorable prediction accuracy for OS, which might facilitate the individualized risk stratification and clinical decision-making in LSCC patients.
Collapse
Affiliation(s)
- Linyan Chen
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Haiyang Wang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hao Zeng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Yi Zhang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|