1
|
Jia Q, Yang Y, Yao S, Chen X, Hu Z. Emerging Roles of Galectin-3 in Pulmonary Diseases. Lung 2024; 202:385-403. [PMID: 38850292 DOI: 10.1007/s00408-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
2
|
Xue R, Yiu WH, Chan KW, Lok SWY, Zou Y, Ma J, Li H, Chan LYY, Huang XR, Lai KN, Lan HY, Tang SCW. Long Non-coding RNA NEAT1 , NOD-Like Receptor Family Protein 3 Inflammasome, and Acute Kidney Injury. J Am Soc Nephrol 2024; 35:998-1015. [PMID: 39088708 PMCID: PMC11377806 DOI: 10.1681/asn.0000000000000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Key Points
Long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) was upregulated in human and murine AKI. It returned to baseline after recovery in humans. Its knockdown preserved kidney function in animals.
In vitro, LPS upregulated NEAT1 by TLR4/NF-κB signaling and caused its translocation into the cytoplasm where it activated nucleotide oligomerization domain-like receptor family protein 3 by binding receptor of activated protein C kinase 1.
Background
AKI is common in hospitalized patients and is associated with high mortality. Inflammation plays a key role in the pathophysiology of AKI. Long non-coding RNAs (lncRNAs) are increasingly recognized as regulators of the inflammatory and immune response, but its role in AKI remains unclear.
Methods
We explored the role of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in (1) a cross-sectional and longitudinal cohort of AKI in humans, (2) three murine models of septic and aseptic AKI, and (3) cultured C1.1 mouse kidney tubular cells.
Results
In humans, hospitalized patients with AKI (N=66) demonstrated significantly higher lncRNA NEAT1 levels in urinary sediment cells and buffy coat versus control participants (N=152) from a primary care clinic; among six kidney transplant recipients, NEAT1 levels were the highest immediately after transplant surgery, followed by a prompt decline to normal levels in parallel with recovery of kidney function. In mice with AKI induced by sepsis (by LPS injection or cecal ligation and puncture) and renal ischemia-reperfusion, kidney tubular Neat1 was increased versus sham-operated mice. Knockdown of Neat1 in the kidney using short hairpin RNA preserved kidney function and suppressed overexpression of the AKI biomarker neutrophil gelatinase-associated lipocalin, leukocyte infiltration, and both intrarenal and systemic inflammatory cytokines IL-6, CCL-2, and IL-1β. In LPS-treated C1.1 cells, Neat1 was overexpressed by TLR4/NF-κB signaling and translocated from the cell nucleus into the cytoplasm where it promoted activation of nucleotide oligomerization domain-like receptor family protein 3 inflammasomes by binding with the scaffold protein receptor of activated protein C kinase 1. Silencing Neat1 ameliorated LPS-induced cell inflammation, whereas its overexpression upregulated IL-6 and CCL-2 expression even without LPS stimulation.
Conclusions
Our findings demonstrate a pathogenic role of NEAT1 induction in human and mice during AKI with alleviation of kidney injury in three experimental models of septic and aseptic AKI after knockdown of Neat1. LPS/TLR4-induced Neat1 overexpression in tubular epithelial cells increased the inflammatory response by binding with the scaffold protein, receptor of activated protein C kinase 1, to activate nucleotide oligomerization domain-like receptor family protein 3 inflammasomes.
Collapse
Affiliation(s)
- Rui Xue
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Kam Wa Chan
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Sarah W Y Lok
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yixin Zou
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Jingyuan Ma
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Hongyu Li
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Loretta Y Y Chan
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Xiao Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
3
|
Saikh KU, Anam K, Sultana H, Ahmed R, Kumar S, Srinivasan S, Ahmed H. Targeting Myeloid Differentiation Primary Response Protein 88 (MyD88) and Galectin-3 to Develop Broad-Spectrum Host-Mediated Therapeutics against SARS-CoV-2. Int J Mol Sci 2024; 25:8421. [PMID: 39125989 PMCID: PMC11313481 DOI: 10.3390/ijms25158421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Nearly six million people worldwide have died from the coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths, the decline in vaccine-induced immunity over time and the continuing emergence of new viral variants or mutations underscore the need for an alternative strategy for developing broad-spectrum host-mediated therapeutics against SARS-CoV-2. A key feature of severe COVID-19 is dysregulated innate immune signaling, culminating in a high expression of numerous pro-inflammatory cytokines and chemokines and a lack of antiviral interferons (IFNs), particularly type I (alpha and beta) and type III (lambda). As a natural host defense, the myeloid differentiation primary response protein, MyD88, plays pivotal roles in innate and acquired immune responses via the signal transduction pathways of Toll-like receptors (TLRs), a type of pathogen recognition receptors (PRRs). However, recent studies have highlighted that infection with viruses upregulates MyD88 expression and impairs the host antiviral response by negatively regulating type I IFN. Galectin-3 (Gal3), another key player in viral infections, has been shown to modulate the host immune response by regulating viral entry and activating TLRs, the NLRP3 inflammasome, and NF-κB, resulting in the release of pro-inflammatory cytokines and contributing to the overall inflammatory response, the so-called "cytokine storm". These studies suggest that the specific inhibition of MyD88 and Gal3 could be a promising therapy for COVID-19. This review presents future directions for MyD88- and Gal3-targeted antiviral drug discovery, highlighting the potential to restore host immunity in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kamal U. Saikh
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| | | | | | | | | | | | - Hafiz Ahmed
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| |
Collapse
|
4
|
Bhattacharya A, Wang K, Penailillo J, Chan CN, Fushimi A, Yamashita N, Daimon T, Haratake N, Ozawa H, Nakashoji A, Shigeta K, Morimoto Y, Miyo M, Kufe DW. MUC1-C regulates NEAT1 lncRNA expression and paraspeckle formation in cancer progression. Oncogene 2024; 43:2199-2214. [PMID: 38802648 PMCID: PMC11226401 DOI: 10.1038/s41388-024-03068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The MUC1 gene evolved in mammals for adaptation of barrier tissues in response to infections and damage. Paraspeckles are nuclear bodies formed on the NEAT1 lncRNA in response to loss of homeostasis. There is no known intersection of MUC1 with NEAT1 or paraspeckles. Here, we demonstrate that the MUC1-C subunit plays an essential role in regulating NEAT1 expression. MUC1-C activates the NEAT1 gene with induction of the NEAT1_1 and NEAT1_2 isoforms by NF-κB- and MYC-mediated mechanisms. MUC1-C/MYC signaling also induces expression of the SFPQ, NONO and FUS RNA binding proteins (RBPs) that associate with NEAT1_2 and are necessary for paraspeckle formation. MUC1-C integrates activation of NEAT1 and RBP-encoding genes by recruiting the PBAF chromatin remodeling complex and increasing chromatin accessibility of their respective regulatory regions. We further demonstrate that MUC1-C and NEAT1 form an auto-inductive pathway that drives common sets of genes conferring responses to inflammation and loss of homeostasis. Of functional significance, we find that the MUC1-C/NEAT1 pathway is of importance for the cancer stem cell (CSC) state and anti-cancer drug resistance. These findings identify a previously unrecognized role for MUC1-C in the regulation of NEAT1, RBPs, and paraspeckles that has been co-opted in promoting cancer progression.
Collapse
Affiliation(s)
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Johany Penailillo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chi Ngai Chan
- Tissue Technologies Unit, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masaaki Miyo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Zhang Q, Li G, Zhao G, Yan C, Lv H, Fu Y, Li Y, Zhao Z. Preparation and evaluation of inhalable S-allylmercapto-N-acetylcysteine and nintedanib co-loaded liposomes for pulmonary fibrosis. Eur J Pharm Sci 2024; 197:106779. [PMID: 38670294 DOI: 10.1016/j.ejps.2024.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Orally marketed products nintedanib (NDNB) and pirfenidone (PFD) for pulmonary fibrosis (PF) are administered in high doses and have been shown to have serious toxic and side effects. NDNB can cause the elevation of galectin-3, which activates the NF-κB signaling pathway and causes the inflammatory response. S-allylmercapto-N-acetylcysteine (ASSNAC) can alleviate the inflammation response by inhibiting the TLR-4/NF-κB signaling pathway. Therefore, we designed and prepared inhalable ASSNAC and NDNB co-loaded liposomes for the treatment of pulmonary fibrosis. The yellow, spheroidal co-loaded liposomes with a particle size of 98.32±1.98 nm and zeta potential of -22.5 ± 1.58 mV were produced. The aerodynamic fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of NDNB were >50 % (81.14 %±0.22 %) and <5 μm (1.79 μm±0.06 μm) in the nebulized liposome solution, respectively. The results showed that inhalation improved the lung deposition and retention times of both drugs. DSPE-PEG 2000 in the liposome formulation enhanced the mucus permeability and reduced phagocytic efflux mediated by macrophages. ASSNAC reduced the mRNA over-expressions of TLR-4, MyD88 and NF-κB caused by NDNB, which could reduce the NDNB's side effects. The Masson's trichrome staining of lung tissues and the levels of CAT, TGF-β1, HYP, collagen III and mRNA expressions of Collagen I, Collagen III and α-SMA in lung tissues revealed that NDNB/Lip inhalation was more beneficial to alleviate fibrosis than oral NDNB. Although the dose of NDNB/Lip was 30 times lower than that in the oral group, the inhaled NDNB/Lip group had better or comparable anti-fibrotic effects to those in the oral group. According to the expressions of Collagen I, Collagen III and α-SMA in vivo and in vitro, the combination of ASSNAC and NDNB was more effective than the single drugs for pulmonary fibrosis. Therefore, this study provided a new scheme for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qinxiu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Guozhi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Chongzheng Yan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Huaiyou Lv
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yaqing Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yuhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, China.
| |
Collapse
|
6
|
Al-Salam S, Jagadeesh GS, Sudhadevi M, Yasin J. Galectin-3 and Autophagy in Renal Acute Tubular Necrosis. Int J Mol Sci 2024; 25:3604. [PMID: 38612416 PMCID: PMC11012141 DOI: 10.3390/ijms25073604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Acute kidney injury (AKI) is a public health burden with increasing morbidity and mortality rates and health care costs. Acute tubular necrosis (ATN) is the most common cause of AKI. Cisplatin (CIS) is a platinum-based chemotherapeutic agent used in the treatment of a wide variety of malignancies such as lung, breast, ovary, testis, bladder, cervix, and head and neck cancers. Autophagy plays an important role in AKI. Galectin-3 (Gal-3) is significantly increased in renal tubules in AKI; however, its role in autophagy is not well understood. Male C57B6/J and B6.Cg-Lgals3 /J Gal-3 knockout (KO) mice were used to induce AKI using a CIS mouse model of ATN. Renal Gal-3 and autophagy proteins' expression were measured using standard histologic, immunofluorescent, and enzyme-linked immunosorbent assay techniques. The data were presented as the mean ± S.E. Statistically significant differences (p < 0.05) were calculated between experimental groups and corresponding control groups by one-way analysis of variance. There was a significant increase in renal concentrations of Gal-3 in the Gal-3 wild-type CIS-treated mice when compared with sham control mice. There were significantly higher concentrations of renal LC3B, ATG13, Ulk-1, Beclin, ATG5, ATG12, ATG9A, and p-AMPK in the CIS-treated Gal-3 KO mice than in the Gal-3 wild-type CIS-treated mice. Further, there were significantly higher concentrations of mTOR, p- NF-κB, beta-catenin, and p62 in the kidneys of the Gal-3 wild-type CIS-treated mice than in the Gal-3 KO CIS-treated mice. Our findings affirm the connection between Gal-3 and autophagy, revealing its central role as a connector with prosurvival signaling proteins. Gal-3 plays a pivotal role in orchestrating cellular responses by interacting with prosurvival signal pathways and engaging with autophagy proteins. Notably, our observations highlight that the absence of Gal-3 can enhance autophagy in CIS-induced ATN.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Govindan S. Jagadeesh
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Manjusha Sudhadevi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
7
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Li Y, Shi J, Liu Z, Lin Y, Xie A, Sun W, Liu J, Liang J. Regulation of the migration of colorectal cancer stem cells via the TLR4/MyD88 signaling pathway by the novel surface marker CD14 following LPS stimulation. Oncol Lett 2024; 27:60. [PMID: 38192670 PMCID: PMC10773188 DOI: 10.3892/ol.2023.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Cell surface markers are most widely used in the study of cancer stem cells (CSCs). However, cell surface markers that are safely and stably expressed in CSCs have yet to be identified. Colonic CSCs express leukocyte CD14. CD14 binding to the ligand lipopolysaccharide (LPS) is involved in the inflammatory response via the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway. TLR4 and MyD88 have been reported to promote the proliferation, metastasis and tumorigenicity of colon cancer cells, which is consistent with the characteristics of CSCs. In the present study, the proposed experimental method to detect cell proliferation, metastasis and tumorigenesis was used to confirm that, under LPS stimulation, CD14 promoted the proliferation, migration and tumorigenesis of colonic CSCs via the TLR4/MyD88 signaling pathway. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to assess the proliferation and migration of the cells. Colony formation and nude mouse xenograft assays were used to assess the capacity of cells to form tumors. Using western blotting and reverse transcription-quantitative PCR, the mRNA and protein levels of CD14, TLR4 and MyD88 were examined. It was confirmed that CD14 promoted the proliferation, metastasis and tumorigenesis of colon CSCs in response to LPS stimulation via the TLR4/MyD88 signaling pathway, and CD14+ colon cancer cells were successfully isolated and sorted. According to the results of proliferation assay, it was determined that CD14 regulated the LPS-induced proliferation of colon CSCs. CD14, TLR4 and MyD88 protein and mRNA expression was upregulated in colon CSCs in response to LPS stimulation. This indicates a potential novel target for colon CSC-related studies.
Collapse
Affiliation(s)
- Yufei Li
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiayi Shi
- School of Life Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Zhixin Liu
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yonggang Lin
- Department of Extracorporeal Circulation, Mudanjiang Cardiovascular Disease Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - An Xie
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Wenxiu Sun
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiaqi Liu
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jun Liang
- Morphology Laboratory, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
9
|
Hussain MS, Afzal O, Gupta G, Goyal A, Almalki WH, Kazmi I, Alzarea SI, Alfawaz Altamimi AS, Kukreti N, Chakraborty A, Singh SK, Dua K. Unraveling NEAT1's complex role in lung cancer biology: a comprehensive review. EXCLI JOURNAL 2024; 23:34-52. [PMID: 38343745 PMCID: PMC10853633 DOI: 10.17179/excli2023-6553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 09/05/2024]
Abstract
This review delves into the pivotal role of the long non-coding RNA NEAT1 in cancer biology, particularly in lung cancer (LC). It emphasizes NEAT1's unique subcellular localization and active involvement in gene regulation and chromatin remodeling. The review highlights NEAT1's impact on LC development and progression, including cell processes such as proliferation, migration, invasion, and resistance to therapy, positioning it as a potential diagnostic marker and therapeutic target. The complex web of NEAT1's regulatory interactions with proteins and microRNAs is explored, alongside challenges in targeting it therapeutically. The review concludes optimistically, suggesting future avenues for research and personalized LC therapies, shedding light on NEAT1's crucial role in LC. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelam Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
10
|
Bhat AA, Afzal O, Agrawal N, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Altamimi ASA, Kukreti N, Chakraborty A, Singh SK, Dua K, Gupta G. A comprehensive review on the emerging role of long non-coding RNAs in the regulation of NF-κB signaling in inflammatory lung diseases. Int J Biol Macromol 2023; 253:126951. [PMID: 37734525 DOI: 10.1016/j.ijbiomac.2023.126951] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Public health globally faces significant risks from conditions like acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and various inflammatory lung disorders. The NF-κB signaling system partially controls lung inflammation, immunological responses, and remodeling. Non-coding RNAs (lncRNAs) are crucial in regulating gene expression. They are increasingly recognized for their involvement in NF-κB signaling and the development of inflammatory lung diseases. Disruption of lncRNA-NF-κB interactions is a potential cause and resolution factor for inflammatory respiratory conditions. This study explores the therapeutic potential of targeting lncRNAs and NF-κB signaling to alleviate inflammation and restore lung function. Understanding the intricate relationship between lncRNAs and NF-κB signaling could offer novel insights into disease mechanisms and identify therapeutic targets. Regulation of lncRNAs and NF-κB signaling holds promise as an effective approach for managing inflammatory lung disorders. This review aims to comprehensively analyze the interaction between lncRNAs and the NF-κB signaling pathway in the context of inflammatory lung diseases. It investigates the functional roles of lncRNAs in modulating NF-κB activity and the resulting inflammatory responses in lung cells, focusing on molecular mechanisms involving upstream regulators, inhibitory proteins, and downstream effectors.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| | - Gaurav Gupta
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| |
Collapse
|
11
|
Bai Q, Zhou Y, Cui X, Si H, Wu T, Nasir A, Ma H, Xing J, Wang Y, Cheng X, Liu X, Qi S, Li Z, Tang H. Mitochondria-targeting nanozyme alleviating temporomandibular joint pain by inhibiting the TNFα/NF-κB/NEAT1 pathway. J Mater Chem B 2023; 12:112-121. [PMID: 37655721 DOI: 10.1039/d3tb00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Inflammatory cytokines that are secreted into the spinal trigeminal nucleus caudalis (Sp5C) may augment inflammation and cause pain associated with temporomandibular joint disorders (TMD). In a two-step process, we attached triphenylphosphonium (TPP) to the surface of a cubic liposome metal-organic framework (MOF) loaded with ruthenium (Ru) nanozyme. The design targeted mitochondria and was designated Mito-Ru MOF. This structure scavenges free radicals and reactive oxygen species (ROS) and alleviates oxidative stress. The present study aimed to investigate the effects and mechanisms by which Mito-Ru MOF ameliorates TMD pain. Intra-temporomandibular joint (TMJ) injections of complete Freund's adjuvant (CFA) induced inflammatory pain for ≥10 d in the skin areas innervated by the trigeminal nerve. Tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1), and ROS also have been proved to be significantly upregulated in the Sp5C of TMD mice. Moreover, a single Mito-Ru MOF treatment alleviated TMD pain for 3 d and downregulated TNF-α, NF-κB, lncRNA NEAT1, and ROS. NF-κB knockdown downregulated NEAT1 in the TMD mice. Hence, Mito-Ru MOF inhibited the production of ROS and alleviated CFA-induced TMD pain via the TNF-α/NF-κB/NEAT1 pathway. Therefore, Mito-Ru MOF could effectively treat the pain related to TMD and other conditions associated with severe acute inflammatory activation.
Collapse
Affiliation(s)
- Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yaoyao Zhou
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaona Cui
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Haichao Si
- Department of Anesthesiology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Tingting Wu
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Abdul Nasir
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Heng Ma
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Xiaolei Cheng
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Xiaojun Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Shaoyan Qi
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| |
Collapse
|
12
|
Engfer ZJ, Lewandowski D, Dong Z, Palczewska G, Zhang J, Kordecka K, Płaczkiewicz J, Panas D, Foik AT, Tabaka M, Palczewski K. Distinct mouse models of Stargardt disease display differences in pharmacological targeting of ceramides and inflammatory responses. Proc Natl Acad Sci U S A 2023; 120:e2314698120. [PMID: 38064509 PMCID: PMC10723050 DOI: 10.1073/pnas.2314698120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
Mutations in many visual cycle enzymes in photoreceptors and retinal pigment epithelium (RPE) cells can lead to the chronic accumulation of toxic retinoid byproducts, which poison photoreceptors and the underlying RPE if left unchecked. Without a functional ATP-binding cassette, sub-family A, member 4 (ABCA4), there is an elevation of all-trans-retinal and prolonged buildup of all-trans-retinal adducts, resulting in a retinal degenerative disease known as Stargardt-1 disease. Even in this monogenic disorder, there is significant heterogeneity in the time to onset of symptoms among patients. Using a combination of molecular techniques, we studied Abca4 knockout (simulating human noncoding disease variants) and Abca4 knock-in mice (simulating human misfolded, catalytically inactive protein variants), which serve as models for Stargardt-1 disease. We compared the two strains to ascertain whether they exhibit differential responses to agents that affect cytokine signaling and/or ceramide metabolism, as alterations in either of these pathways can exacerbate retinal degenerative phenotypes. We found different degrees of responsiveness to maraviroc, a known immunomodulatory CCR5 antagonist, and to the ceramide-lowering agent AdipoRon, an agonist of the ADIPOR1 and ADIPOR2 receptors. The two strains also display different degrees of transcriptional deviation from matched WT controls. Our phenotypic comparison of the two distinct Abca4 mutant-mouse models sheds light on potential therapeutic avenues previously unexplored in the treatment of Stargardt disease and provides a surrogate assay for assessing the effectiveness for genome editing.
Collapse
Affiliation(s)
- Zachary J. Engfer
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Zhiqian Dong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Katarzyna Kordecka
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Jagoda Płaczkiewicz
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Damian Panas
- International Centre for Translational Eye Research, Warsaw01-224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Andrzej T. Foik
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw01-224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
13
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Wu J, Yang S, Wu H, Huang Y, Miao Y. Knockdown of LRRK2 inhibits the progression of lung cancer by regulating TLR4/NF-κB pathways and NLRP3 inflammasome. J Clin Biochem Nutr 2023; 73:178-184. [PMID: 37970545 PMCID: PMC10636582 DOI: 10.3164/jcbn.22-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/10/2022] [Indexed: 11/17/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) plays an important role in a variety of inflammatory diseases, as well as peripheral and central immune responses. At present, there are few reports about the role of LRRK2 in lung cancer, and need to be further explored. The main purpose of this study is to explore the role and mechanism of LRRK2 in lung cancer. The results revealed that the expression of LRRK2 was increased in the tissues of lung cancer patient and lung cancer cells. Further studies found that interference with LRRK2 expression significantly induced the apoptosis, and promoted the expression of caspase-3, caspase-9, and Bax. More importantly, si-LRRK2 inhibited the expression of VEGF and P-gp, indicating inhibition of cell proliferation and drug resistance. What's more, LRRK2 regulated TLR4/NF-κB signaling pathways and NLRP3 inflammasome, and TLR4/NF-κB pathways was involved in the molecular mechanism of LRRK2 on lung cancer cells. In conclusion, this study suggested that the mechanism of si-LRRK2 inhibiting the progression of lung cancer is to regulate the TLR4/NF-κB signaling pathways and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Respiratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Shumei Yang
- Department of Respiratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Hua Wu
- Department of Respiratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Yongcheng Huang
- Department of Pathology, Xi’an Central Hospital, Xi’an, Shaanxi 710004, China
| | - Yi Miao
- Department of Respiratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| |
Collapse
|
15
|
Mackinnon AC, Tonev D, Jacoby B, Pinzani M, Slack RJ. Galectin-3: therapeutic targeting in liver disease. Expert Opin Ther Targets 2023; 27:779-791. [PMID: 37705214 DOI: 10.1080/14728222.2023.2258280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION The rising incidence of liver diseases is a worldwide healthcare concern. However, the therapeutic options to manage chronic inflammation and fibrosis, the processes at the basis of morbidity and mortality of liver diseases, are very limited. Galectin 3 (Gal-3) is a protein implicated in fibrosis in multiple organs. Several Gal-3 inhibitors are currently in clinical development. AREAS COVERED This review describes our current understanding of the role of Gal-3 in chronic liver diseases, with special emphasis on fibrosis. Also, we review therapeutic advances based on Gal-3 inhibition, describing drug properties and their current status in clinical research. EXPERT OPINION Currently, the known effects of Gal-3 point to a direct activation of the NLRP3 inflammasome leading to its activation in liver macrophages and activated macrophages play a key role in tissue fibrogenesis. However, more research is needed to elucidate the role of Gal-3 in the different activation pathways, dissecting the intracellular and extracellular mechanisms of Gal-3, and its role in pathogenesis. Gal-3 could be a target for early therapy of numerous hepatic diseases and, given the lack of therapeutic options for liver fibrosis, there is a strong pharmacologic potential for Gal-3-based therapies.
Collapse
Affiliation(s)
| | - Dimitar Tonev
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| | - Brian Jacoby
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| | - Massimo Pinzani
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Robert J Slack
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| |
Collapse
|
16
|
Yang N, Zhang N, Wang Z, Cao W, He X, Zhang W, Xing Y. Galectin-1-dependent ceRNA network in HRMECs revealed its association with retinal neovascularization. BMC Genomics 2023; 24:327. [PMID: 37322431 DOI: 10.1186/s12864-023-09352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Retinal neovascularization (RNV) is a leading cause of blindness worldwide. Long non-coding RNA (lncRNA) and competing endogenous RNA (ceRNA) regulatory networks play vital roles in angiogenesis. The RNA-binding protein galectin-1 (Gal-1) participates in pathological RNV in oxygen-induced retinopathy mouse models. However, the molecular associations between Gal-1 and lncRNAs remain unclear. Herein, we aimed to explore the potential mechanism of action of Gal-1 as an RNA-binding protein. RESULTS A comprehensive network of Gal-1, ceRNAs, and neovascularization-related genes was constructed based on transcriptome chip data and bioinformatics analysis of human retinal microvascular endothelial cells (HRMECs). We also conducted functional enrichment and pathway enrichment analyses. Fourteen lncRNAs, twenty-nine miRNAs, and eleven differentially expressed angiogenic genes were included in the Gal-1/ceRNA network. Additionally, the expression of six lncRNAs and eleven differentially expressed angiogenic genes were validated by qPCR in HRMECs with or without siLGALS1. Several hub genes, such as NRIR, ZFPM2-AS1, LINC0121, apelin, claudin-5, and C-X-C motif chemokine ligand 10, were found to potentially interact with Gal-1 via the ceRNA axis. Furthermore, Gal-1 may be involved in regulating biological processes related to chemotaxis, chemokine-mediated signaling, the immune response, and the inflammatory response. CONCLUSIONS The Gal-1/ceRNA axis identified in this study may play a vital role in RNV. This study provides a foundation for the continued exploration of therapeutic targets and biomarkers associated with RNV.
Collapse
Affiliation(s)
- Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Xuejun He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Wenxi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
18
|
Li H, Cao Z, Wang L, Li J, Cheng X, Tang Y, Xing M, Yao P. Chronic high-fat diet induces galectin-3 and TLR4 to activate NLRP3 inflammasome in NASH. J Nutr Biochem 2023; 112:109217. [PMID: 36402251 DOI: 10.1016/j.jnutbio.2022.109217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 05/01/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome activation triggers inflammation progression in some metabolism disorders, frequently accompanying the up-regulation of galectin-3 (Gal-3). However, the precise mechanisms of Gal-3 activating NLRP3 inflammasome remain unclear in nonalcoholic steatohepatitis (NASH). Here, male C57BL/6J mice were fed by high-fat diet (HFD) for 32 weeks to induce NASH and then the hepatic damage, cytokines, Gal-3 and TLR4 expression, and NLRP3 inflammasome activation were examined. Such indicators were similarly determined when HepG2 cells were co-incubated with palmitic acid (PA, 200 μM), β-lactose, and TAK-242, or pre-transfected with TLR4. Immunofluorescence, immunohistochemistry, and co-immunoprecipitation were conducted to confirm the potential interaction between Gal-3 and TLR4. To further identify the inflammatory regulation roles of Gal-3 and its terminals in TLR4/NLRP3, HepG2 cells were transfected with Gal-3 and its variants. Chronic HFD induced sustained hepatic steatosis and inflammatory injury, with increased inflammatory cytokines, Gal-3 and TLR4 expression, and NLRP3 inflammasome activation. Similar changes were found in PA-dosed HepG2 cells, which were rescued by β-lactose but deteriorated with TLR4 overexpression. However, TAK-242 treatment decreased AST, ALT, cytokines, and normalized NLRP3, caspase-1, and ASC expression. Furthermore, TLR4 was pulled down when Gal-3 was enriched. Only full-length Gal-3 and its carbohydrate recognition domain (CRD) promoted cytokines, TLR4 expression, and NLRP3 inflammasome activation. Thus, gal-3 may induce chronic HFD-derived NASH progression by activating TLR4-mediating NLRP3 inflammasome via its CRD, which sheds new light on candidate target for the treatment and prevention of NASH inflammation despite further research for its precise roles in the future.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueer Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyou Xing
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Mansour AA, Krautter F, Zhi Z, Iqbal AJ, Recio C. The interplay of galectins-1, -3, and -9 in the immune-inflammatory response underlying cardiovascular and metabolic disease. Cardiovasc Diabetol 2022; 21:253. [PMID: 36403025 PMCID: PMC9675972 DOI: 10.1186/s12933-022-01690-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Galectins are β-galactoside-binding proteins that bind and crosslink molecules via their sugar moieties, forming signaling and adhesion networks involved in cellular communication, differentiation, migration, and survival. Galectins are expressed ubiquitously across immune cells, and their function varies with their tissue-specific and subcellular location. Particularly galectin-1, -3, and -9 are highly expressed by inflammatory cells and are involved in the modulation of several innate and adaptive immune responses. Modulation in the expression of these proteins accompany major processes in cardiovascular diseases and metabolic disorders, such as atherosclerosis, thrombosis, obesity, and diabetes, making them attractive therapeutic targets. In this review we consider the broad cellular activities ascribed to galectin-1, -3, and -9, highlighting those linked to the progression of different inflammatory driven pathologies in the context of cardiovascular and metabolic disease, to better understand their mechanism of action and provide new insights into the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Franziska Krautter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhaogong Zhi
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional -BIOPharm, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
21
|
Pan J, Hu Y, Yuan C, Wu Y, Zhu X. lncRNA NEAT1 promotes the proliferation and metastasis of hepatocellular carcinoma by regulating the FOXP3/PKM2 axis. Front Oncol 2022; 12:928022. [PMID: 36185217 PMCID: PMC9521570 DOI: 10.3389/fonc.2022.928022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is a malignant tumor. The occurrence of HCC is involved in the alteration of a variety of oncogenes or tumor suppressor genes, but the specific molecular mechanism remains unknown. This research proved the effects of long non-coding RNA NEAT1 (lncRNA NEAT1) on the viability, proliferation, migration, and invasion of hepatocellular carcinoma cells and explored the mechanism behind these effects. Methods NEAT1 in 97H and Huh7 cell lines was overexpressed or knocked down, respectively. The expression of FOXP3 and its target gene PKM2 was hinged on qRT-PCR and Western blot, respectively. RNA pulldown and RNA immunoprecipitation experiments were carried out to detect the interaction between NEAT1 and proteins. Finally, the effect of NEAT1 on the tumor volume of HCC was verified by animal experiments. Results A series of experiments have shown that NEAT1 knockdown can inhibit the viability, proliferation, migration, and invasion of HCC cells; NEAT1 can bind FOXP3 to promote PKM2 transcription; PKM2 knockdown can inhibit the viability, proliferation, migration, and invasion of HCC cells; and PKM2 knockdown reversed the function of NEAT1. Conclusion lncRNA NEAT1 can promote the malignant behavior of HCC cells, while silencing of NEAT1 can inhibit that behavior of HCC cells. Mechanically, NEAT1 promotes the transcriptional activation of PKM2 by binding FOXP3, and PKM2 knockout reverses the function of NEAT1.
Collapse
Affiliation(s)
- Junping Pan
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yingzhe Hu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenlu Yuan
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafu Wu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinhua Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Xinhua Zhu,
| |
Collapse
|
22
|
Reichelt-Wurm S, Pregler M, Wirtz T, Kretz M, Holler K, Banas B, Banas MC. The Interplay of NEAT1 and miR-339-5p Influences on Mesangial Gene Expression and Function in Various Diabetic-Associated Injury Models. Noncoding RNA 2022; 8:ncrna8040052. [PMID: 35893235 PMCID: PMC9326603 DOI: 10.3390/ncrna8040052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Mesangial cells (MCs), substantial cells for architecture and function of the glomerular tuft, take a key role in progression of diabetic kidney disease (DKD). Despite long standing researches and the need for novel therapies, the underlying regulatory mechanisms in MCs are elusive. This applies in particular to long non-coding RNAs (lncRNA) but also microRNAs (miRNAs). In this study, we investigated the expression of nuclear paraspeckle assembly transcript 1 (NEAT1), a highly conserved lncRNA, in several diabetes in-vitro models using human MCs. These cells were treated with high glucose, TGFβ, TNAα, thapsigargin, or tunicamycin. We analyzed the implication of NEAT1 silencing on mesangial cell migration, proliferation, and cell size as well as on mRNA and miRNA expression. Here, the miRNA hsa-miR-339-5p was not only identified as a potential interaction partner for NEAT1 but also for several coding genes. Furthermore, overexpression of hsa-miR-339-5p leads to a MC phenotype comparable to a NEAT1 knockdown. In-silico analyses also underline a relevant role of NEAT1 and hsa-miR-339-5p in mesangial physiology, especially in the context of DKD.
Collapse
Affiliation(s)
- Simone Reichelt-Wurm
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany; (M.P.); (T.W.); (K.H.); (B.B.); (M.C.B.)
- Correspondence: ; Tel.: +49-941-944-7388
| | - Matthias Pregler
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany; (M.P.); (T.W.); (K.H.); (B.B.); (M.C.B.)
| | - Tobias Wirtz
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany; (M.P.); (T.W.); (K.H.); (B.B.); (M.C.B.)
| | - Markus Kretz
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany;
| | - Kathrin Holler
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany; (M.P.); (T.W.); (K.H.); (B.B.); (M.C.B.)
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany; (M.P.); (T.W.); (K.H.); (B.B.); (M.C.B.)
| | - Miriam C. Banas
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany; (M.P.); (T.W.); (K.H.); (B.B.); (M.C.B.)
| |
Collapse
|
23
|
Sjöstedt S, Vieira FG, Karnov K, Agander TK, Willemoe GL, Rohrberg KS, Nielsen FC, von Buchwald C. Differences in gene expression despite identical histomorphology in sinonasal intestinal-type adenocarcinoma and metastases from colorectal adenocarcinoma. APMIS 2022; 130:551-559. [PMID: 35662259 DOI: 10.1111/apm.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Sinonasal intestinal-type adenocarcinoma (sITAC) is histomorphologically indistinguishable from colorectal adenocarcinoma (CRC) leading to diagnostic challenges. Metastases from CRCs to the sinonasal tract have been reported. The aim of the study was to identify a biomarker making it possible to distinguish between sITAC and metastases of colorectal origin. Formalin-fixated paraffin-embedded (FFPE) tissue from 20 consecutive patients with sITAC treated at Rigshospitalet, Denmark from 2005 to 2017, 20 patients with CRC, and second patients with both sinonasal and colorectal carcinomas were included, and RNA-sequencing was performed on all samples. Moreover, a series of 26 samples from metastasizing CRC were included (in-house data). 3139 differentially expressed genes were identified, of these several were deemed as possible biomarkers, including CSDE1, for which immunohistochemical staining was performed. sITAC and CRC differ in genomic expression. CSDE1, previously found upregulated in CRC, was significantly differentially expressed. Using immunohistochemical staining, no sITACs displayed strong and diffuse staining for CSDE1, which represents a potential marker to use in distinguishing sITAC from a metastasis of colorectal origin. This knowledge could improve the diagnostic process and hopefully the outcome in patients with this rare tumor.
Collapse
Affiliation(s)
- Sannia Sjöstedt
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Kirstine Karnov
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Gro Linno Willemoe
- Department of Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Finn Cilius Nielsen
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
24
|
Oxycodone Alleviates Endometrial Injury via the TLR4/NF- κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6153279. [PMID: 35310024 PMCID: PMC8933090 DOI: 10.1155/2022/6153279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Endometrial injury is a common female disease. This study was designed to illustrate the effects of oxycodone on mifepristone-induced human endometrial stromal cells (hEndoSCs) injury and delineate the underlying molecular mechanism. hEndoSCs were stimulated with mifepristone to generate the endometrial injury in vitro model. hEndoSCs viability, cytotoxicity, and apoptosis were measured by methyl thiazolyl tetrazolium (MTT) assay, lactate dehydrogenase assay (LDH), and flow cytometry (FCM) analysis, respectively. Meanwhile, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot assay were conducted to evaluate gene and protein expressions. The secretions of inflammatory cytokines (TNF-α, IL-1β, and IL-6) were measured using enzyme-linked immunosorbent assay (ELISA). The data revealed that mifepristone exposure memorably inhibited hEndoSCs viability and promoted cell apoptosis and inflammatory cytokines secretion, and oxycodone had no cytotoxicity on hEndoSCs. Oxycodone increased hEndoSCs growth, blocked cell apoptosis, enhanced Bcl-2 expression, reduced Bax levels, and decreased the secretion of inflammatory cytokines in mifepristone-induced hEndoSCs, exhibiting the protective effects in endometrial injury. In addition, the TLR4/NF-κB pathway-related protein levels (TLR4 and p-p65) in mifepristone-treated hEndoSCs were enhanced, while these enhancements were inhibited by oxycodone treatment. In conclusion, oxycodone exhibited the protective role in mifepristone-triggered endometrial injury via inhibiting the TLR4/NF-κB signal pathway.
Collapse
|
25
|
Huang CC, Chuang IC, Su YL, Luo HL, Chang YC, Chen JY, Hsiao CC, Huang EY. Prognostic Significance of Galectin-1 but Not Galectin-3 in Patients With Lung Adenocarcinoma After Radiation Therapy. Front Oncol 2022; 12:834749. [PMID: 35280768 PMCID: PMC8904358 DOI: 10.3389/fonc.2022.834749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction To investigate the role of tumor galectin-1 and galectin-3 in patients with lung adenocarcinoma after definitive radiation therapy. Methods A total of 41 patients with localized lung adenocarcinoma undergoing thoracic radiation therapy without concurrent chemotherapy were enrolled. Their paraffin-embedded lung tissues were sent for immunohistochemical staining for galectin-1 and galectin-3. The clinical treatment outcomes, including overall (OS), locoregional progression-free (LRPFS), and distant metastasis-free (DMFS) survivals, were evaluated. Univariable and multivariable Cox regression analyses were applied. Results Overexpression of tumor galectin-1 and galectin-3 were found in 26.8% and 19.5% of patients, respectively. Overexpression of tumor galectin-1 was the most significant prognosticator to predict worse LRPFS in both univariable (p = 0.007) and multivariable analyses (p = 0.022). Besides, patients with overexpression of tumor galectin-1 had a trend of worse OS (p = 0.066) than those with low expression in multivariable analysis, and worse DMFS (p = 0.035) in univariable analysis. The overexpression of tumor galectin-3 had no significant effect on survival outcomes. Conclusions The overexpression of tumor galectin-1, but not galectin-3, is associated with poor LRPFS of patients with lung adenocarcinoma after thoracic radiation therapy. Future research on the mechanism of galectin-1 affecting radiation response in lung adenocarcinoma may be worth exploring.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-Chieh Chuang
- Department of Anatomical Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Li Su
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Chun Chang
- Department of Internal Medicine, Kaohsiung Municipal Min-Sheng Hospital, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jo-Ying Chen
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
26
|
Expression and functions of long non-coding RNA NEAT1 and isoforms in breast cancer. Br J Cancer 2022; 126:551-561. [PMID: 34671127 PMCID: PMC8854383 DOI: 10.1038/s41416-021-01588-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/08/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
NEAT1 is a highly abundant nuclear architectural long non-coding RNA. There are two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, of which the latter is an essential scaffold for the assembly of a class of nuclear ribonucleoprotein bodies called paraspeckles. Paraspeckle formation is elevated by a wide variety of cellular stressors and in certain developmental processes, either through transcriptional upregulation of the NEAT1 gene or through a switch from NEAT1_1 to NEAT1_2 isoform production. In such conditions, paraspeckles modulate cellular processes by sequestering proteins or RNA molecules. NEAT1 is abnormally expressed in many cancers and a growing body of evidence suggests that, in many cases, high NEAT1 levels are associated with therapy resistance and poor clinical outcome. Here we review the current knowledge of NEAT1 expression and functions in breast cancer, highlighting its established role in postnatal mammary gland development. We will discuss possible isoform-specific roles of NEAT1_1 and NEAT1_2 in different breast cancer subtypes, which critically needs to be considered when studying NEAT1 and breast cancer.
Collapse
|
27
|
Feng L, Cheng P, Feng Z, Zhang X. Transmembrane p24 trafficking protein 2 regulates inflammation through the TLR4/NF-κB signaling pathway in lung adenocarcinoma. World J Surg Oncol 2022; 20:32. [PMID: 35135563 PMCID: PMC8826716 DOI: 10.1186/s12957-021-02477-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Background To investigate the role of transmembrane p24 trafficking protein 2 (TMED2) in lung adenocarcinoma (LUAD) and determine whether TMED2 knockdown could inhibit LUAD in vitro and in vivo. Methods TIMER2.0, Kaplan-Meier plotter, gene set enrichment analysis (GSEA), Target Gene, and pan-cancer systems were used to predict the potential function of TMED2. Western blotting and immunohistochemistry were performed to analyze TMED2 expression in different tissues or cell lines. The proliferation, development, and apoptosis of LUAD were observed using a lentivirus-mediated TMED2 knockdown. Bioinformatics and western blot analysis of TMED2 against inflammation via the TLR4/NF-κB signaling pathway were conducted. Results TMED2 expression in LUAD tumor tissues was higher than that in normal tissues and positively correlated with poor survival in lung cancer and negatively correlated with apoptosis in LUAD. The expression of TMED2 was higher in tumors or HCC827 cells. TMED2 knockdown inhibited LUAD development in vitro and in vivo and increased the levels of inflammatory factors via the TLR4/NF-κB signaling pathway. TMED2 was correlated with TME, immune score, TME-associated immune cells, their target markers, and some mechanisms and pathways, as determined using the TIMER2.0, GO, and KEGG assays. Conclusions TMED2 may regulate inflammation in LUAD through the TLR4/NF-κB signaling pathway and enhance the proliferation, development, and prognosis of LUAD by regulating inflammation, which provide a new strategy for treating LUAD by regulating inflammation.
Collapse
Affiliation(s)
- Longhua Feng
- Department of Respiratory, Qianjiang Central Hospital of Chongqing, Chongqing, 409000, People's Republic of China
| | - Pengjiang Cheng
- Department of Respiratory, Qianjiang Central Hospital of Chongqing, Chongqing, 409000, People's Republic of China
| | - Zhengyun Feng
- Department of Respiratory, Qianjiang Central Hospital of Chongqing, Chongqing, 409000, People's Republic of China
| | - Xiaoyu Zhang
- Department of Intensive Care Unit, Qianjiang Central Hospital of Chongqing, No.63, Chengxijiu Road, Qianjiang District, Chongqing, 409000, People's Republic of China.
| |
Collapse
|
28
|
Wang S, Xie Z, Wu Z. Establishment and Validation of a Ferroptosis-Related Gene Signature to Predict Overall Survival in Lung Adenocarcinoma. Front Genet 2022; 12:793636. [PMID: 35096011 PMCID: PMC8795866 DOI: 10.3389/fgene.2021.793636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the most common and lethal subtype of lung cancer. Ferroptosis, an iron-dependent form of regulated cell death, has emerged as a target in cancer therapy. However, the prognostic value of ferroptosis-related genes (FRGs)x in LUAD remains to be explored. Methods: In this study, we used RNA sequencing data and relevant clinical data from The Cancer Genome Atlas (TCGA) dataset and Gene Expression Omnibus (GEO) dataset to construct and validate a prognostic FRG signature for overall survival (OS) in LUAD patients and defined potential biomarkers for ferroptosis-related tumor therapy. Results: A total of 86 differentially expressed FRGs were identified from LUAD tumor tissues versus normal tissues, of which 15 FRGs were significantly associated with OS in the survival analysis. Through the LASSO Cox regression analysis, a prognostic signature including 11 FRGs was established to predict OS in the TCGA tumor cohort. Based on the median value of risk scores calculated according to the signature, patients were divided into high-risk and low-risk groups. Kaplan–Meier analysis indicated that the high-risk group had a poorer OS than the low-risk group. The area under the curve of this signature was 0.74 in the TCGA tumor set, showing good discrimination. In the GEO validation set, the prognostic signature also had good predictive performance. Functional enrichment analysis showed that some immune-associated gene sets were significantly differently enriched in two risk groups. Conclusion: Our study unearthed a novel ferroptosis-related gene signature for predicting the prognosis of LUAD, and the signature may provide useful prognostic biomarkers and potential treatment targets.
Collapse
Affiliation(s)
- Su Wang
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zenghong Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zenghong Wu,
| |
Collapse
|
29
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
30
|
Guo T, Xing Y, Chen Z, Zhu H, Yang L, Xiao Y, Xu J. Long Non-Coding RNA NEAT1 Knockdown Alleviates Rheumatoid Arthritis by Reducing IL-18 through p300/CBP Repression. Inflammation 2021; 45:100-115. [PMID: 34773548 DOI: 10.1007/s10753-021-01531-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023]
Abstract
Rheumatoid arthritis (RA) is chronic inflammatory autoimmune disease. The crucial role of long non-coding RNA (lncRNA) in the progression of RA has been highlighted. Hence, this study was designed to explore the specific downstream mechanism of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in RA. Initially, the expression of NEAT1, p-p65, p300, and IL-18 in clinical tissues and cells was determined. Then, interactions among p65, NEAT1, p300, CBP, and IL-18 were investigated by immunofluorescence staining, dual luciferase reporter gene assay, RT-qPCR assay ChIP assay, and RIP assay followed by the analysis of their effects on RA in vivo and in vitro after expression alteration. The expressions of NEAT1, p-p65, p300, and IL-18 were all upregulated in the synovial tissues from the mice and patients with RA. NEAT1 silencing reduced the infiltration of CD4+ T cells and macrophages in synovial tissues, downregulated expression of blood inflammatory factors, relieved RA severity, and lowered incidence of RA in mice. Further, p-p65 could increase the expression of NEAT1 by binding to the NEAT1 promoter region, NEAT1 could co-locate and interact with p300, thus regulating the expression of IL-18 by regulating histone acetylation modification in IL-18 promoter region. NEAT1 aggravated RA via p300/CBP/IL-18 axis, representing a promising therapeutic target in RA.
Collapse
Affiliation(s)
- Tuanmao Guo
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Yanli Xing
- Department of Pharmacy, Xianyang Central Hospital, No. 78, Renmin East Road, Xianyang, 712000, People's Republic of China. .,Department of Pharmacy, Xianyang Central Hospital, No. 78, Renmin East Road, Xianyang, 712000, People's Republic of China.
| | - Zhongning Chen
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Haiyun Zhu
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Lan Yang
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Yuan Xiao
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Jiang Xu
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| |
Collapse
|
31
|
Li Y, Zhou WW, Sun JH, Yang HX, Xu GR, Zhang Y, Song QH, Zhang C, Liu WZ, Liu XC, Li AY. Modified citrus pectin prevents isoproterenol-induced cardiac hypertrophy associated with p38 signalling and TLR4/JAK/STAT3 pathway. Biomed Pharmacother 2021; 143:112178. [PMID: 34649308 DOI: 10.1016/j.biopha.2021.112178] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/20/2022] Open
Abstract
Modified citrus pectin (MCP) is a specific inhibitor of galectin-3 (Gal-3) that is regarded as a new biomarker of cardiac hypertrophy, but its effect is unclear. The aim of this study is to investigate the role and mechanism of MCP in isoproterenol (ISO)-induced cardiac hypertrophy. Rats were injected with ISO to induce cardiac hypertrophy and treated with MCP. Cardiac function was detected by ECG and echocardiography. Pathomorphological changes were evaluated by the haematoxylin eosin (H&E) and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes for atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC), and the associated signal molecules were analysed by qRT-PCR and western blotting. The results show that MCP prevented cardiac hypertrophy and ameliorated cardiac dysfunction and structural disorder. MCP also decreased the levels of ANP, BNP, and β-MHC and inhibited the expression of Gal-3 and Toll-like receptor 4 (TLR4). Additionally, MCP blocked the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), but it promoted the phosphorylation of p38. Thus, MCP prevented ISO-induced cardiac hypertrophy by activating p38 signalling and inhibiting the Gal-3/TLR4/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Wei-Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jia-Huan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Hong-Xia Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Geng-Rui Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050091, Hebei, China
| | - Qiu-Hang Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050091, Hebei, China
| | - Chuang Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Wei-Zhe Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xing-Chao Liu
- Department of Pharmaceutics, College of Pharmacy, Hebei University of Traditional Chinese Medicine, Shijiazhuang 050200, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang 050091, Hebei, China.
| | - Ai-Ying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050091, Hebei, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang 050091, Hebei, China.
| |
Collapse
|
32
|
Ding DX, Li Q, Shi K, Li H, Guo Q, Zhang YQ. LncRNA NEAT1-miR-101-3p/miR-335-5p/miR-374a-3p/miR-628-5p-TRIM6 axis identified as the prognostic biomarker for lung adenocarcinoma via bioinformatics and meta-analysis. Transl Cancer Res 2021; 10:4870-4883. [PMID: 35116339 PMCID: PMC8798981 DOI: 10.21037/tcr-21-2181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Overexpression of the tripartite motif containing 6 (TRIM6) is associated with dismal prognosis in cancer patients, but its exact roles in lung adenocarcinoma (LUAD) have not been reported. METHODS The roles of TRIM6 are identified by using The Cancer Genome Atlas (TCGA), TIMER2, Gene Expression Omnibus (GEO), etc., and the regulatory networks and related-prognostic biomarkers of TRIM6 are identified via the ENCORI and LNCAR databases in the LUAD progression. RESULTS TRIM6 expression level in LUAD tissues was significantly increased. TRIM6 over-expression level in LUAD patients was associated with smoking, clinical stage, histological type, lymph node metastasis, TP53 mutation and dismal prognosis, and related to prognosis-related age, race, sex, clinical stage and tumor purity of LUAD patients. TRIM6 overexpression was associated with the levels of CD8+ T cells, macrophages, neutrophils and myeloid dendritic cells, and correlated with the levels of LUAD immune cell markers CD8A, IRF5, CD163, VSIG4, MS4A4A, ITGAM, HLA-DPA1, NRP1, ITGAX, etc. TRIM6 might influence the progression of LUAD by regulating homologous recombination, oocyte meiosis, and ubiquitin-mediated proteolysis. LUAD patients with overexpression of miR-101-3p, miR-335-5p, miR-374a-3p, miR-628-5p, and NEAT1 had a poor prognosis. CONCLUSIONS NEAT1-miR-101-3p/335-5p/374a-3p/628-5p-TRIM6 network, which we constructed from our results, might be an important factor in the dismal prognosis of LUAD patients.
Collapse
Affiliation(s)
- Dong-Xiao Ding
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo, China
| | - Qiao Li
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ke Shi
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo, China
| | - Hui Li
- Women and Children’s Hospital of Ningbo, Ningbo, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun-Qiang Zhang
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo, China
| |
Collapse
|
33
|
Yin H, Pu N, Chen Q, Zhang J, Zhao G, Xu X, Wang D, Kuang T, Jin D, Lou W, Wu W. Gut-derived lipopolysaccharide remodels tumoral microenvironment and synergizes with PD-L1 checkpoint blockade via TLR4/MyD88/AKT/NF-κB pathway in pancreatic cancer. Cell Death Dis 2021; 12:1033. [PMID: 34718325 PMCID: PMC8557215 DOI: 10.1038/s41419-021-04293-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharide (LPS) as an important inflammatory mediator activates the innate/adaptive immune system. The existence of LPS in pancreatic ductal adenocarcinoma (PDAC) has been reported, however, its biological function in PDAC remains unclear. Here, we demonstrated that circulating and tumoral LPS was significantly increased by intestinal leakage in the orthotopic murine PDAC model, and LPS administration promoted T cell infiltration but exhaustion paradoxically in the subcutaneous murine PDAC model. By bioinformatic analysis, Toll-like receptor 4 (TLR4), LPS receptor, was further found to enrich in immune tolerance signaling in PDAC tissues. Then, a significant positive correlation was found between TLR4 and programmed death ligand-1 (PD-L1) in clinical PDAC tissues, as well as serum LPS and tumoral PD-L1. Meanwhile, LPS stimulation in vitro and in vivo obviously upregulated tumor PD-L1 expression, and effectively promoted cancer cells resistance to T cell cytotoxicity. Mechanistically, the activation of TLR4/MyD88/AKT/NF-κB cascade was found to participate in LPS mediated PD-L1 transcription via binding to its promoter regions, which was enhanced by crosstalk between NF-κB and AKT pathways. Finally, PD-L1 blockade could significantly reverse LPS-induced immune escape, and synergized with LPS treatment. Taken together, LPS can remodel tumor microenvironment, and synergize with PD-L1 blockade to suppress tumor growth, which may be a promising comprehensive strategy for PDAC.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Aged
- Animals
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Disease Models, Animal
- Female
- Gastrointestinal Tract/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Evasion/drug effects
- Immune Tolerance/drug effects
- Lipopolysaccharides
- Lymphocytes, Tumor-Infiltrating/drug effects
- Male
- Mice, Inbred BALB C
- Models, Biological
- Myeloid Differentiation Factor 88/metabolism
- NF-kappa B/metabolism
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Toll-Like Receptor 4/metabolism
- Transcription, Genetic/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Mice
Collapse
Affiliation(s)
- Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiangda Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jicheng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guochao Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Nishimoto Y, Nakagawa S, Okano H. NEAT1 lncRNA and amyotrophic lateral sclerosis. Neurochem Int 2021; 150:105175. [PMID: 34481908 DOI: 10.1016/j.neuint.2021.105175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a representative neurological disease that is known to devastate entire motor neurons within a period of just a few years. Discoveries of the specific pathologies of relevant RNA-binding proteins, including TAR DNA-binding protein-43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS), and the causative genes of both familial and sporadic ALS have provided crucial information that could lead to a cure. In recent ALS research the GGGGCC-repeat expansion in the C9orf72 gene was identified as one of the most important pathological findings, suggesting the significance of both nuclear dysfunction due to dipeptide repeat proteins (DPRs) and RNA toxicity (such as pathological alterations of non-coding RNAs). In research on model animals carrying ALS-related molecules, the determination of whether a factor is protective or toxic has been controversial. Herein, we review the findings regarding NEAT1 RNA and C9orf72 GGGGCC repeats associated with ALS, from the viewpoint of conversion from the protective stage in the nucleus in early-phase ALS to late-phase induction of cell death. This review will provide insights for the development of RNA effectors as novel ALS treatments.
Collapse
Affiliation(s)
- Yoshinori Nishimoto
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| |
Collapse
|
35
|
Yin J, Han B, Shen Y. RETRACTED: LncRNA NEAT1 inhibition upregulates miR-16-5p to restrain the progression of sepsis-induced lung injury via suppressing BRD4 in a mouse model. Int Immunopharmacol 2021; 97:107691. [PMID: 33962228 DOI: 10.1016/j.intimp.2021.107691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 5B and 6B, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0 [docs.google.com]). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jianhong Yin
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China
| | - Bin Han
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China
| | - Yuan Shen
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China.
| |
Collapse
|
36
|
El-Sadek HM, Al-Shorbagy MY, Awny MM, Abdallah DM, El-Abhar HS. Pentoxifylline treatment alleviates kidney ischemia/reperfusion injury: Novel involvement of galectin-3 and ASK-1/JNK & ERK1/2/NF-κB/HMGB-1 trajectories. J Pharmacol Sci 2021; 146:136-148. [PMID: 34030796 DOI: 10.1016/j.jphs.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the documented renoprotective effect of pentoxifylline (PTX), a non-selective phosphodiesterase-4 inhibitor, the studies appraised only its anti-inflammatory/-oxidant/-apoptotic capacities without assessment of the possible involved trajectories. Here, we evaluated the potential role of galectin-3 and the ASK-1/NF-κB p65 signaling pathway with its upstream/downstream signals in an attempt to unveil part of the cascades involved in the renotherapeutic effect using a renal bilateral ischemia/reperfusion (I/R) model. Rats were randomized into sham-operated, renal I/R (45 min/72 h) and I/R + PTX (100 mg/kg; p.o). Post-treatment with PTX improved renal function and abated serum levels of cystatin C, creatinine, BUN and renal KIM-1 content, effects that were reflected on an improvement of the I/R-induced renal histological changes. On the molecular level, PTX reduced renal contents of galectin-3, ASK-1 with its downstream molecule JNK and ERK1/2, as well as NF-κB p65 and HMGB1. This inhibitory effect extended also to suppress neutrophil infiltration, evidenced by diminishing ICAM-1 and MPO, as well as inflammatory cytokines (TNF-α/IL-18), oxidative stress (MDA/TAC), and caspase-3. The PTX novel renotherapeutic effect involved in part the inhibition of galectin-3 and ASK-1/JNK and ERK1/2/NF-κB/HMGB-1 trajectories to mitigate renal I/R injury and to provide basis for its anti-inflammatory, antioxidant, and anti-apoptotic impacts.
Collapse
Affiliation(s)
- Hagar M El-Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| | - Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, 84518, Egypt
| |
Collapse
|
37
|
Ghafouri-Fard S, Abak A, Shoorei H, Talebi SF, Mohaqiq M, Sarabi P, Taheri M, Mokhtari M. Interaction between non-coding RNAs and Toll-like receptors. Biomed Pharmacother 2021; 140:111784. [PMID: 34087695 DOI: 10.1016/j.biopha.2021.111784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) are a large group of pattern recognition receptors which are involved in the regulation of innate immune responses. Based on the interplay between TLRs and adapter molecules, two distinctive signaling cascades, namely the MyD88-dependent and TRIF-dependent pathways have been recognized. TLRs are involved in the development of a wide variety of diseases including cancer and autoimmune disorders. A large body of evidence has shown interaction between two classes of non-coding RNAs, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). These interactions have prominent roles in the pathogenesis of several disorders including infectious disorders, autoimmune conditions and neoplastic disorders. This review aims at description of the interaction between these non-coding RNAs and TLRs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
| | - Parisa Sarabi
- Deputy for Research & Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
miR-133b inhibits cell proliferation, migration, and invasion of lung adenocarcinoma by targeting CDCA8. Pathol Res Pract 2021; 223:153459. [PMID: 33971546 DOI: 10.1016/j.prp.2021.153459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is the most common type of lung cancer. This study aims to explore the mechanism by which CDCA8 regulates cell proliferation, invasion, and migration of LUAD, and to generate novel insights into targeted therapy of LUAD. METHODS Expression profiles of mature microRNAs (miRNAs) and mRNAs, along with clinical data of LUAD were downloaded from TCGA database for differential analysis and survival analysis to mine differentially expressed mRNAs. qRT-PCR was used to detect the expression of CDCA8 and miR-133b in LUAD cell lines, and western blot was used to detect protein expression. The effects of CDCA8 on the proliferation, migration, and invasion of LUAD cells were detected by CCK-8 assay, scratch healing assay, and Transwell assay. Bioinformatics predicted the target miRNA of CDCA8, and dual-luciferase reporter gene assay was used to verify the binding relationship between miR-133b and CDCA8. RESULTS Data from TCGA-LUAD showed that CDCA8 was significantly overexpressed in LUAD tissue, while its upstream miRNA (miR-133b) was significantly lowly expressed. The result of dual-luciferase test showed that miR-133b targeted CDCA8. The results of in vitro functional experiments showed that overexpression of CDCA8 could promote the proliferation, invasion, and migration of LUAD cells, and miR-133b could reverse this promotion by targeting CDCA8. CONCLUSION This study found that CDCA8 was a carcinogenic factor in LUAD cells and it was regulated by upstream miR-133b. miR-133b could inhibit proliferation, invasion, and migration of LUAD cells by targeting CDCA8.
Collapse
|
39
|
LncRNA NEAT1 promotes malignant phenotypes and TMZ resistance in glioblastoma stem cells by regulating let-7g-5p/MAP3K1 axis. Biosci Rep 2021; 40:226679. [PMID: 33057597 PMCID: PMC7601351 DOI: 10.1042/bsr20201111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most malign brain tumors in adults. Temozolomide (TMZ) is an oral chemotherapy drug constituting the backbone of chemotherapy regimens utilized as first-line treatment of GBM. However, resistance to TMZ often leads to treatment failure. In the present study, we explored the expression and related mechanisms of nuclear enriched abundant transcript 1 (NEAT1) in glioma stem cells (GSCs). Quantitative real-time PCR (qRT-PCR) showed that NEAT1 was up-regulated in serum samples of GBM patients and GSCs isolated from U87, U251 cell lines. Functional experiments showed that NEAT1 knockdown restrained malignant behaviors of GSC, including proliferation, migration and invasion. Dual-luciferase assays identified let-7g-5p was a downstream target and negatively adjusted by NEAT1. Restoration of let-7g-5p impeded tumor progression by inhibiting proliferation, migration and invasion. Mitogen-activated protein kinase kinase kinase 1 (MAP3K1), as a direct target of let-7g-5p, was positively regulated by NEAT1 and involved to affect the regulation of NEAT1 on GSCs' behaviors. In conclusion, our results suggested that NEAT1 promoted GSCs progression via NEAT1/let-7g-5p/MAP3K1 axis, which provided a depth insight into TMZ resistance mechanism.
Collapse
|
40
|
Kusuhara S, Igawa S, Ichinoe M, Nagashio R, Kuchitsu Y, Hiyoshi Y, Shiomi K, Murakumo Y, Saegusa M, Satoh Y, Sato Y, Naoki K. Prognostic significance of galectin-3 expression in patients with resected NSCLC treated with platinum-based adjuvant chemotherapy. Thorac Cancer 2021; 12:1570-1578. [PMID: 33793071 PMCID: PMC8107024 DOI: 10.1111/1759-7714.13945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Galectin-3 (GAL3), a protein encoded by the LGALS3 gene, plays diverse roles in cancer initiation, progression, and drug resistance. Accordingly, high GAL3 expression in tumor cells is associated with poor prognosis in non-small cell lung cancer (NSCLC). However, the prognostic impact of GAL3 expression on patients with resected NSCLC receiving platinum-based adjuvant chemotherapy (AC) remains unclear. This study aimed to determine the prognostic significance of GAL3 expression in NSCLC patients receiving platinum-based AC. METHODS The study included 111 patients with completely resected stages II and IIIA NSCLC who were receiving platinum-based AC. GAL3 expression in cancer cells was evaluated immunohistochemically according to H-score ("histo score), with a score of ≥170 considered as high expression. The correlation of GAL3 expression with clinicopathological characteristics and survival was subsequently evaluated. RESULTS In survival analysis, GAL3 expression was significantly associated with recurrence-free survival (RFS) and overall survival (OS). In multivariate analysis, GAL3 expression was an independent predictive factor of RFS rather than OS. CONCLUSIONS GAL3 expression is a reliable biomarker to predict the prognosis of completely resected NSCLC patients receiving platinum-based AC.
Collapse
Affiliation(s)
- Seiichiro Kusuhara
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Satoshi Igawa
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Masaaki Ichinoe
- Department of Pathology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Ryo Nagashio
- Department of Pathology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Yuki Kuchitsu
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Yasuhiro Hiyoshi
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Kazu Shiomi
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Yoshiki Murakumo
- Department of Pathology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Makoto Saegusa
- Department of Pathology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Yukitoshi Satoh
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Katsuhiko Naoki
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Sagamihara, Japan
| |
Collapse
|
41
|
Jia M, Jia X, Zhang D, Liu W, Yi S, Li Z, Cong B, Ma C, Li S, Zhang J. CD2 + T-helper 17-like cells differentiated from a CD133 + subpopulation of non-small cell lung carcinoma cells promote the growth of lung carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:687. [PMID: 33987385 PMCID: PMC8106049 DOI: 10.21037/atm-21-980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Cancer stem cells (CSCs) give rise to a diverse variety of differentiated cells, which comprise the bulk of the tumor microenvironment (TME). However, the exact multi-directional differentiation potential of CSCs has not been fully clarified. This study was designed to explore whether CSCs differentiate into cellular components of the TME to promote the growth of lung carcinoma. Methods The present of CD133+, CD2+, and CD133+CD2+ cells in both clinical lung adenocarcinoma tissue and non-small cell lung carcinoma (NSCLC) cell lines were monitored using polymerase chain reaction (PCR) Array, flow cytometry (FCM), quantitative real-time PCR (qRT-PCR) and immunohistofluorescence (IF). Stem-like properties of CD133+ cells and CD2+ cells were detected by sphere formation assay, IF, and western blot. Colony formation and xenograft tumors experiments were performed to assess the malignant behaviors of CD2+ cells. The differentiation of CD133+ cells to CD2+ Th17-like cells was observed by FCM. The interleukin (IL)-2/phosphorylated signal transducer and activator of transcription protein 5 (pSTAT5)/retinoic acid receptor-related orphan receptor gamma t (RORγt) signaling pathway was evaluated by western blot and FCM. Results We found that CD133+ cells within both clinical lung adenocarcinoma tissue and NSCLC cell lines included a subset of CD2-expressing cells, which were correlated with the grade of malignancy (r=0.7835, P<0.01) and exhibited stem-like properties. Then, we determined the tumorigenic effects of CD2 on the growth of transplanted Lewis lung carcinoma cells (LLC1) in C57/BL6 mice. The results indicated that CD2+ cells were effective in promoting tumor growth in vivo (P<0.01). Furthermore, we obtained direct evidence of an ability of CD133+ cells to transform to T-helper 17-like cells via an intermediate CD133+CD2+ progenitor cell that is able to secrete IL-17A and IL-23. Furthermore, we found that IL-2 can inhibit the production of T-helper 17-like cells (P<0.001) by modulating the activation of STAT5 signaling pathways to downregulate the expression of RORγt (P<0.001). Conclusions Our data demonstrates that Th17-like cells generated from CSCs support cancer progression. These findings enrich the definition of multidirectional differentiation potential of CSCs and improve the understanding of the role of CSCs in cancer progression, which aids the improvement and creation of therapies.
Collapse
Affiliation(s)
- Miaomiao Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Dong Zhang
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenxuan Liu
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shanyong Yi
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Zhenhua Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China.,College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Chunling Ma
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China.,College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Shujin Li
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China.,College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Jun Zhang
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
42
|
Long non-coding RNA NEAT1 regulates endothelial functions in subclinical hypothyroidism through miR-126/TRAF7 pathway. Hum Cell 2021; 34:825-835. [PMID: 33677813 DOI: 10.1007/s13577-021-00508-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
Subclinical hypothyroidism (SCH) is associated with increased risks of endothelial dysfunction and atherosclerosis, but the mechanisms remain unclear. In our previous study, microRNA-126-3p was downregulated in SCH, but the role and regulatory mechanism of miR-126 in SCH has not been investigated. A SCH mouse model was established by feeding mice methimazole. Both primary endothelial cells (ECs) and HUVECs were cultured. The expression levels of key molecules were detected via quantitative RT-PCR, western blotting, and immunofluorescence. Wire myography was used to analyze the changes in vascular tones. A dual-luciferase assay was used to investigate the relationship between lncRNAs, microRNAs and target genes. In detail, it was shown that the expression levels of miR-126-3p were significantly decreased in both the SCH vasculature and HUVECs. MiR-126 supplementation suppressed HUVEC apoptosis and improved vascular function. Moreover, miR-126 could bind to the 3'-untranslated region of TRAF7, thus, regulating the C-FLIP pathway and endothelial apoptosis. Furthermore, lncRNA NEAT1 was upregulated upon TSH treatment and could function as a ceRNA and bind to miR-126, thus, modulating its expression level and vascular function. Finally, the NEAT1/miR-126/TRAF7 axis functions in response to TSH and regulates endothelial functions in SCH in vitro and in vivo. In conclusion, dysregulation of the NEAT1/miR-126/TRAF7 axis is responsible for impaired endothelial functions in SCH. Targeting this axis might become a promising treatment strategy or improving endothelial functions in SCH.
Collapse
|
43
|
Hu S, Martinez-Garcia FD, Moeun BN, Burgess JK, Harmsen MC, Hoesli C, de Vos P. An immune regulatory 3D-printed alginate-pectin construct for immunoisolation of insulin producing β-cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112009. [PMID: 33812628 DOI: 10.1016/j.msec.2021.112009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Different bioinks have been used to produce cell-laden alginate-based hydrogel constructs for cell replacement therapy but some of these approaches suffer from issues with print quality, long-term mechanical instability, and bioincompatibility. In this study, new alginate-based bioinks were developed to produce cell-laden grid-shaped hydrogel constructs with stable integrity and immunomodulating capacity. Integrity and printability were improved by including the co-block-polymer Pluronic F127 in alginate solutions. To reduce inflammatory responses, pectin with a low degree of methylation was included and tested for inhibition of Toll-Like Receptor 2/1 (TLR2/1) dimerization and activation and tissue responses under the skin of mice. The viscoelastic properties of alginate-Pluronic constructs were unaffected by pectin incorporation. The tested pectin protected printed insulin-producing MIN6 cells from inflammatory stress as evidenced by higher numbers of surviving cells within the pectin-containing construct following exposure to a cocktail of the pro-inflammatory cytokines namely, IL-1β, IFN-γ, and TNF-α. The results suggested that the cell-laden construct bioprinted with pectin-alginate-Pluronic bioink reduced tissue responses via inhibiting TLR2/1 and support insulin-producing β-cell survival under inflammatory stress. Our study provides a potential novel strategy to improve long-term survival of pancreatic islet grafts for Type 1 Diabetes (T1D) treatment.
Collapse
Affiliation(s)
- Shuxian Hu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands.
| | - Francisco Drusso Martinez-Garcia
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| | - Brenden N Moeun
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada
| | - Janette Kay Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| | - Corinne Hoesli
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC, Canada
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
44
|
Liu Z, Ding F, Shen X. Total flavonoids of Radix Tetrastigma suppress inflammation-related hepatocellular carcinoma cell metastasis. Mol Genet Genomics 2021; 296:571-579. [PMID: 33576897 PMCID: PMC8144124 DOI: 10.1007/s00438-020-01759-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the effects of the total flavonoids of Radix Tetrastigma (RTF) on inflammation-related hepatocellular carcinoma (HCC) development. Extracted RTF was diluted to different concentrations for subsequent experiments. HCC cells were cotreated with lipopolysaccharide (LPS) and RTF to investigate the effects of RTF on LPS-stimulated HCC cells. A CCK-8 kit was used to measure cell proliferation. Apoptosis was detected with a flow cytometer. Cell migration and invasion were quantified by wound healing and Transwell assays, respectively. The expression of TLR4 and COX-2 and activation of the NF-κB pathway were determined by Western blotting. Treatment with LPS significantly enhanced cell proliferation and decreased the apoptosis rate, while cell migration and invasion were notably upregulated. RTF suppressed the proliferation and invasion induced by LPS stimulation and promoted HCC cell apoptosis. The protein levels of Bax and cleaved caspase-3 were decreased and that of Bcl-2 was increased by LPS in HCC cells, which could be rescued by RTF. RTF significantly inhibited the LPS-induced expression of the proinflammatory mediators IL-6 and IL-8 in HCC cells. Mechanistically, with RTF treatment, the upregulated expression of TLR4 and COX-2 induced by LPS was obviously downregulated. Furthermore, the phosphorylation of NF-κB/p65 was significantly decreased in LPS-stimulated cells after supplementation with RTF. Our study suggests that RTF exerts a significant inhibitory effect on the LPS-induced enhancement of the malignant behaviors of HCC cells via inactivation of TLR4/NF-κB signaling. RTF may be a promising chemotherapeutic agent to limit HCC development and inflammation-mediated metastasis.
Collapse
Affiliation(s)
- Zhendong Liu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of TCM), Hangzhou, 310006, China
| | - Fangmi Ding
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of TCM), Hangzhou, 310006, China
| | - Xingyong Shen
- Department of Oncology, Xijing Hospital, Air Force Military Medical University, 15 Changle West Road, Xian, 710032, Shaanxi, China.
| |
Collapse
|
45
|
Silencing lncRNA DUXAP8 inhibits lung adenocarcinoma progression by targeting miR-26b-5p. Biosci Rep 2021; 41:227120. [PMID: 33269379 PMCID: PMC7791543 DOI: 10.1042/bsr20200884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Lung adenocarcinoma (LUAD), a common type of lung cancer, has become a popularly aggressive cancer. Long noncoding RNAs (lncRNAs) play a critical role in the pathogenesis of human cancers, while the function of double homeobox A pseudogene 8 (DUXAP8) in LUAD remains to be fully inquired. Therefore, our study was conducted to elucidate the DUXAP8 expression in LUAD and its mechanism on the biological features of LUAD cells. Loss-of-function experiments were performed to assess the function of DUXAP8 proliferation and apoptosis of H1975 and A549 cells. Functionally, silencing DUXAP8 inhibited proliferation and induced apoptosis of LUAD cells. Mechanistically, further correlation assay indicated a negative association between miR-26b-5p and DUXAP8 expression. Subsequently, we testified that DUXAP8 exerted its role in the progression and development of LUAD through targeting miR-26b-5p. In summary, our results elucidated that that DUXAP8 promoted tumor progression in LUAD by targeting miR-26b-5p, which provide a novel therapeutic target for diagnosis and therapy of LUAD.
Collapse
|
46
|
Wang Z, Liao W, Liu F, Yang T, Xie W, Liao M, Gu D, Zhang Y. Downregulation of lncRNA EPB41L4A-AS1 Mediates Activation of MYD88-Dependent NF-κB Pathway in Diabetes-Related Inflammation. Diabetes Metab Syndr Obes 2021; 14:265-277. [PMID: 33505165 PMCID: PMC7829128 DOI: 10.2147/dmso.s280765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) have been shown to be involved in many human diseases. In this study, we aimed to reveal the role and molecular mechanism of lncRNA EPB41L4A-AS1 in type 2 diabetic mellitus (T2DM)-related inflammation. METHODS To explore the relationships between the expression of EPB41L4A-AS1 and inflammatory factors in the blood of T2DM patients, we analyzed peripheral blood mononuclear cell (PBMC) expression microarrays of T2DM patients and expression microarrays of PBMC treated with lipopolysaccharide (LPS) from the GEO database. The relationship between EPB41L4A-AS1 and phospho-p65 was explored by Western blotting (WB) and immunofluorescence. The interactions between EPB41L4A-AS1 and myeloid differentiation factor 88 (MYD88) were also verified through quantitative real-time PCR, WB, and chromatin immunoprecipitation. Glycolysis and mitochondrial stress were detected by Seahorse. RESULTS EPB41L4A-AS1 showed very low expression, which was significantly negatively correlated with levels of inflammatory factors in PBMCs of T2DM patients and PBMCs treated with LPS. These results were verified by cell experiments on PBMC and THP-1 cells. Knockdown of EPB41L4A-AS1 led to the phosphorylation and nuclear translocation of p65 and thus activated the NF-κB signaling pathway; it also reduced the enrichment of H3K9me3 in the MYD88 promoter and increased expression of MYD88. Overall, EPB41L4A-AS1 knockdown promoted the level of glycolysis and ultimately enhanced the inflammatory response. CONCLUSION EPB41L4A-AS1 knockdown activated the NF-κB signaling pathway through a MYD88-dependent regulatory mechanism, promoted glycolysis, and ultimately enhanced the inflammatory response. These results demonstrate that EPB41L4A-AS1 is closely associated with inflammation in T2DM, and that low expression of EPB41L4A-AS1 may be used as an indicator of chronic inflammation and possible diabetic vascular complications in T2DM patients.
Collapse
Affiliation(s)
- Ziqing Wang
- School of Chemistry, Tsinghua University, Beijing100084, People’s Republic of China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
| | - Weijie Liao
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Key Laboratory in Healthy Science and Technology, Division of Life Science, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
| | - Fuhai Liu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Department of Pathology, Xuzhou Medical University, Xuzhou221104, People’s Republic of China
| | - Tingpeng Yang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Key Laboratory in Healthy Science and Technology, Division of Life Science, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
| | - Meijian Liao
- Key Laboratory in Healthy Science and Technology, Division of Life Science, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Department of Pathology, Xuzhou Medical University, Xuzhou221104, People’s Republic of China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen518035, People’s Republic of China
- Dayong Gu Department of Laboratory Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen518035, People’s Republic of ChinaTel +86-13602601597 Email
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Key Laboratory in Healthy Science and Technology, Division of Life Science, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of China
- Correspondence: Yaou Zhang State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen518055, People’s Republic of ChinaTel +86-755-2603-6884 Email
| |
Collapse
|
47
|
Zhao W, Wang J, Luo Q, Peng W, Li B, Wang L, Zhang C, Duan C. Identification of LINC02310 as an enhancer in lung adenocarcinoma and investigation of its regulatory network via comprehensive analyses. BMC Med Genomics 2020; 13:185. [PMID: 33308216 PMCID: PMC7731780 DOI: 10.1186/s12920-020-00834-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LADC) is a major subtype of non-small cell lung cancer and has one of the highest mortality rates. An increasing number of long non-coding RNAs (LncRNAs) were reported to be associated with the occurrence and progression of LADC. Thus, it is necessary and reasonable to find new prognostic biomarkers for LADC among LncRNAs. METHODS Differential expression analysis, survival analysis, PCR experiments and clinical feature analysis were performed to screen out the LncRNA which was significantly related to LADC. Its role in LADC was verified by CCK-8 assay and colony. Furthermore, competing endogenous RNA (ceRNA) regulatory network construction, enrichment analysis and protein-protein interaction (PPI) network construction were performed to investigate the downstream regulatory network of the selected LncRNA. RESULTS A total of 2431 differentially expressed LncRNAs (DELncRNAs) and 2227 differentially expressed mRNAs (DEmRNAs) were from The Cancer Genome Atlas database. Survival analysis results indicated that lnc-YARS2-5, lnc-NPR3-2 and LINC02310 were significantly related to overall survival. Their overexpression indicated poor prognostic. PCR experiments and clinical feature analysis suggested that LINC02310 was significantly correlated with TNM-stage and T-stage. CCK-8 assay and colony formation assay demonstrated that LINC02310 acted as an enhancer in LADC. In addition, 3 targeted miRNAs of LINC02310 and 414 downstream DEmRNAs were predicted. The downstream DEmRNAs were then enriched in 405 Gene Ontology terms and 11 Kyoto Encyclopedia of Genes and Genomes pathways, which revealed their potential functions and mechanisms. The PPI network showed the interactions among the downstream DEmRNAs. CONCLUSIONS This study verified LINC02310 as an enhancer in LADC and performed comprehensive analyses on its downstream regulatory network, which might benefit LADC prognoses and therapies.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qingxi Luo
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Peng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lei Wang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
48
|
Sun L, Sun M, Ma K, Liu J. Let-7d-5p suppresses inflammatory response in neonatal rats with necrotizing enterocolitis via LGALS3-mediated TLR4/NF-κB signaling pathway. Am J Physiol Cell Physiol 2020; 319:C967-C979. [PMID: 32667865 DOI: 10.1152/ajpcell.00571.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Necrotizing enterocolitis (NEC) is an acute intestinal condition accounting for severe mortality and morbidity in preterm infants. This study aimed to identify the possible roles of let-7d-5p in neonatal rats with NEC. The differentially expressed genes (DEGs) related to NEC were initially screened in silico. After establishment of NEC rat models, measurement of the expression of let-7d-5p, galectin-3 (LGALS3), Toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) as well as proinflammatory cytokines (TNF-α, IL-1β, and IL-6) was conducted. The interaction between let-7d-5p and LGALS3 or argonaute-2 (AGO2) was identified. Gain- and loss-of-function approaches were then performed in an attempt to investigate the regulatory roles of let-7d-5p and LGALS3 in inflammation and cell apoptosis in NEC neonatal rats. Let-7d-5p was poorly expressed, whereas LGALS3, TLR4, and NF-κB were highly expressed, in the intestinal tissues of NEC rats. Overexpression of let-7d-5p resulted in decreased levels of proinflammatory factors in the intestinal tissues of NEC rats. Through sequential experimentation, let-7d-5p was identified to target LGALS3 and bind to AGO2. In addition, LGALS3 silencing or LPS treatment blocked the TLR4/NF-κB signaling pathway, thereby suppressing intestinal epithelial cell apoptosis and inflammation in NEC. Collectively, let-7d-5p might exercise its inhibitory properties in the inflammatory response and intestinal epithelial cell apoptosis in NEC neonatal rats via inactivation of the LGALS3-dependent TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liqun Sun
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Meihua Sun
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ke Ma
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiangtao Liu
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
49
|
The Role of TLR-4 and Galectin-3 Interaction in Acute Pancreatitis. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2019-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Toll-like receptor-4 (TLR-4) is a member of evolutionarily conserved type I transmembrane proteins that can initiate sterile inflammatory cascade in the pancreas. Expression of TLR-4 is up-regulated in pancreatic tissue, as well as, on peripheral blood innate immune cells in human and experimental models of acute pancreatitis. TLR-4 plays important pro-inflammatory roles during development of acute pancreatitis: it recognize alarmins released from injured acinar cells and promotes activation and infiltration of innate immune cells after the premature and intraacinar activation of tripsinogen. Galectin-3 is β-galactoside-binding lectin that plays pro-inflammatory roles in a variety autoimmune diseases, acute bacterial infections and during tumorigenesis. It is reported that Galectin-3 is alarmin in experimental models of neuroinflammation and binds to TLR-4 promoting the pro-inflammatory phenotype of microglia. Also, in experimental model of acute pancreatitis Galectin-3 is colocalized with TLR-4 on innate inflammatory cells resulted in enhanced production of inflammatory cytokines, TNF-α and IL-1β, increased infiltration of pro-inflammatory N1 neutrophils, macrophages and dendritic cells and increased damage of pancreatic tissue. This review paper discusses the role of TLR-4/Gal-3 axis in the pathogenesis of acute pancreatitis.
Collapse
|
50
|
Wang Z, Li K, Huang W. Long non-coding RNA NEAT1-centric gene regulation. Cell Mol Life Sci 2020; 77:3769-3779. [PMID: 32219465 PMCID: PMC11104955 DOI: 10.1007/s00018-020-03503-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA that is widely expressed in a variety of mammalian cell types. An increasing number of studies have demonstrated that NEAT1 plays key roles in various biological and pathological processes; therefore, it is important to understand how its expression is regulated and how it regulates the expression of its target genes. Recently, we found that NEAT1 expression could be regulated by signal transducer and activator of transcription 3 and that altered NEAT1 expression epigenetically regulates downstream gene transcription during herpes simplex virus-1 infection and Alzheimer's disease, suggesting that NEAT1 acts as an important sensor and effector during stress and disease development. In this review, we summarize and discuss the molecules and regulatory patterns that control NEAT1 gene expression and the molecular mechanism via which NEAT1 regulates the expression of its target genes, providing novel insights into the central role of NEAT1 in gene regulation.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| | - Kun Li
- Department of Nuclear Medicine, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| |
Collapse
|