1
|
Hsu TH, Chang YC, Lee YY, Chen CL, Hsiao M, Lin FR, Chen LH, Lin CH, Angata T, Liu FT, Lin KI. B4GALT1-dependent galectin-8 binding with TGF-β receptor suppresses colorectal cancer progression and metastasis. Cell Death Dis 2024; 15:654. [PMID: 39231945 PMCID: PMC11375092 DOI: 10.1038/s41419-024-07028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Transforming growth factor (TGF)-β signaling is critical for epithelial-mesenchymal transition (EMT) and colorectal cancer (CRC) metastasis. Disruption of Smad-depednent TGF-β signaling has been shown in CRC cells. However, TGF-β receptor remains expressed on CRC cells. Here, we investigated whether the cooperation between tumor-associated N-glycosylation and a glycan-binding protein modulated the TGF-β-driven signaling and metastasis of CRC. We showed that galectin-8, a galactose-binding lectin, hampered TGF-β-induced EMT by interacting with the type II TGF-β receptor and competing with TGF-β binding. Depletion of galectin-8 promoted the migration of CRC cells by increasing TGF-β-receptor-mediated RAS and Src signaling, which was attenuated after recombinant galectin-8 treatment. Treatment with recombinant galectin-8 also induces JNK-dependent apoptosis in CRC cells. The anti-migratory effect of galectin-8 depended on β4-galactosyltransferase-I (B4GALT1), an enzyme involved in N-glycan synthesis. Increased B4GALT1 expression was observed in clinical CRC samples. Depletion of B4GALT1 reduced the metastatic potential of CRC cells. Furthermore, inducible expression of galectin-8 attenuated tumor development and metastasis of CRC cells in an intra-splenic injection model. Our results thus demonstrate that galectin-8 alters non-canonical TGF-β response in CRC cells and suppresses CRC progression.
Collapse
Affiliation(s)
- Tzu-Hui Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Yuan Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Fan-Ru Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Han Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Chen PD, Liao YY, Cheng YC, Wu HY, Wu YM, Huang MC. Decreased B4GALT1 promotes hepatocellular carcinoma cell invasiveness by regulating the laminin-integrin pathway. Oncogenesis 2023; 12:49. [PMID: 37907465 PMCID: PMC10618527 DOI: 10.1038/s41389-023-00494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Beta1,4-galactosyltransferases (B4GALTs) play a crucial role in several diseases, including cancer. B4GALT1 is highly expressed in the liver, and patients with mutations in B4GALT1 exhibit hepatopathy. However, the role of B4GALT1 in liver cancer remains unclear. Here, we found that B4GALT1 was significantly downregulated in hepatocellular carcinoma (HCC) tissue compared with the adjacent liver tissue, and low B4GALT1 expression was associated with vascular invasion and poor overall survival in patients with HCC. Additionally, silencing or loss of B4GALT1 enhanced HCC cell migration and invasion in vitro and promoted lung metastasis of HCC in NOD/SCID mice. Moreover, B4GALT1 knockdown or knockout increased cell adhesion to laminin, whereas B4GALT1 overexpression decreased the adhesion. Through a mass spectrometry-based approach and Griffonia simplicifolia lectin II (GSL-II) pull-down assays, we identified integrins α6 and β1 as the main protein substrates of B4GALT1 and their N-glycans were modified by B4GALT1. Further, the increased cell migration and invasion induced by B4GALT1 knockdown or knockout were significantly reversed using a blocking antibody against integrin α6 or integrin β1. These results suggest that B4GALT1 downregulation alters N-glycosylation and enhances the laminin-binding activity of integrin α6 and integrin β1 to promote invasiveness of HCC cells. Our findings provide novel insights into the role of B4GALT1 in HCC metastasis and highlight targeting the laminin-integrin axis as a potential therapeutic strategy for HCC with low B4GALT1 expression.
Collapse
Affiliation(s)
- Po-Da Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ying-Yu Liao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chia Cheng
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation center, National Taiwan University, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Zhang D, Yin G, Zheng S, Chen Q, Li Y. Construction of a prediction model for prognosis of bladder cancer based on the expression of ion channel-related genes. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:499-509. [PMID: 37643983 PMCID: PMC10495249 DOI: 10.3724/zdxbyxb-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVES To construct a prediction model for the prognosis of bladder cancer patients based on the expression of ion channel-related genes (ICRGs). METHODS ICRGs were obtained from the existing researches. The clinical information and the expression of ICRGs mRNA in breast cancer patients were obtained from the Cancer Genome Atlas database. Cox regression analysis, minimum absolute shrinkage and selection operator regression analysis were used to screen breast cancer prognosis related genes, which were verified by immunohistochemistry and qRT-PCR. The risk scoring equation for predicting the prognosis of patients with bladder cancer was constructed, and the patients were divided into high-risk group and low-risk group according to the median risk score. Immune cell infiltration was compared between the two groups. Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used to evaluate the accuracy and clinical application value of the risk scoring equation. The factors related to the prognosis of bladder cancer patients were analyzed by univariate and multivariate Cox regression, and a nomogram for predicting the prognosis of bladder cancer patients was constructed. RESULTS By comparing the expression levels of ICRGs in bladder cancer tissues and normal bladder tissues, 73 differentially expressed ICRGs were dentified, of which 11 were related to the prognosis of bladder cancer patients. Kaplan-Meier survival curve suggested that the risk score based on these 11 genes was negatively correlated with the prognosis of patients. The area under the ROC curve of the risk score for predicting the prognosis of patients at 1, 3 and 5 year was 0.634, 0.665 and 0.712, respectively. Stratified analysis showed that the ICRGs-based risk score performed well in predicting the prognosis of patients with American Joint Committee on Cancer (AJCC) stage Ⅲ-Ⅳ bladder cancer (P<0.05), while it had a poor value in predicting the prognosis of patients with AJCC stage Ⅰ-Ⅱ (P>0.05). There were significant differences in the infiltration of plasma cells, activated natural killer cells, resting mast cells and M2 macrophages between the high-risk group and the low-risk group. Cox regression analysis showed that risk score, smoking, age and AJCC stage were independently associated with the prognosis of patients with bladder cancer (P<0.05). The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1, 3 and 5 year overall survival rate of bladder cancer patients. CONCLUSIONS The study shows the potential value of ICRGs in the prognostic risk assessment of bladder cancer patients. The constructed prognostic nomogram based on ICRGs risk score has high accuracy in predicting the prognosis of bladder cancer patients.
Collapse
Affiliation(s)
- Dianfeng Zhang
- Department of Urology, Xuchang Central Hospital of Henan Province, Xuchang 461000, Henan Province, China.
| | - Guicao Yin
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Shengqi Zheng
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Qiu Chen
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Yifan Li
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China.
| |
Collapse
|
4
|
Cui Y, Li J, Zhang P, Yin D, Wang Z, Dai J, Wang W, Zhang E, Guo R. B4GALT1 promotes immune escape by regulating the expression of PD-L1 at multiple levels in lung adenocarcinoma. J Exp Clin Cancer Res 2023; 42:146. [PMID: 37303063 DOI: 10.1186/s13046-023-02711-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Invasive adenocarcinoma (IAC), which is typically preceded by minimally invasive adenocarcinoma (MIA), is the dominant pathological subtype of early-stage lung adenocarcinoma (LUAD). Identifying the molecular events underlying the progression from MIA to IAC may provide a crucial perspective and boost the exploration of novel strategies for early-stage LUAD diagnosis and treatment. METHODS Transcriptome sequencing of four pairs of MIA and IAC tumours obtained from four multiple primary lung cancer patients was performed to screen out beta-1,4-galactosyltransferase1 (B4GALT1). Function and mechanism experiments in vitro and in vivo were performed to explore the regulatory mechanism of B4GALT1-mediated immune evasion by regulating programmed cell death ligand 1 (PD-L1). RESULTS B4GALT1, a key gene involved in N-glycan biosynthesis, was highly expressed in IAC samples. Further experiments revealed that B4GALT1 regulated LUAD cell proliferation and invasion both in vitro and in vivo and was related to the impaired antitumour capacity of CD8 + T cells. Mechanistically, B4GALT1 directly mediates the N-linked glycosylation of PD-L1 protein, thus preventing PD-L1 degradation at the posttranscriptional level. In addition, B4GALT1 stabilized the TAZ protein via glycosylation, which activated CD274 at the transcriptional level. These factors lead to lung cancer immune escape. Importantly, inhibition of B4GALT1 increased CD8 + T-cell abundance and activity and enhanced the antitumour immunity of anti-PD-1 therapy in vivo. CONCLUSION B4GALT1 is a critical molecule in the development of early-stage LUAD and may be a novel target for LUAD intervention and immunotherapy.
Collapse
Affiliation(s)
- Yanan Cui
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jun Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, P. R. China
| | - Ziyu Wang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiali Dai
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Wei Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China.
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Renhua Guo
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China.
| |
Collapse
|
5
|
Li H, Yang F, Chang K, Yu X, Guan F, Li X. The synergistic function of long and short forms of β4GalT1 in p53-mediated drug resistance in bladder cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119409. [PMID: 36513218 DOI: 10.1016/j.bbamcr.2022.119409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
β1,4-galactosyltransferase-1 (β4GalT1) is a type II membrane protein that catalyzes the transfer of galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc) and forms a LacNAc structure. β4GalT1 has a long form (termed β4GalT1-L) and a short form (termed β4GalT1-S) in mammalian cells. Although β4GalT1 has been proven to play an important role in many biological and pathological processes, such as differentiation, immune responses and cancer development, the different functions of the two β4GalT1 forms remain ambiguous. In this study, we demonstrated that total β4GalT1 was upregulated in bladder cancer. Overexpression of β4GalT1-S, but not β4GalT1-L, increased drug resistance in bladder epithelial cells by upregulating p53 expression. Glycoproteomic analysis revealed that the substrate specificities of the two β4GalT1 forms were different. Among the LacNAcylated proteins, the E3 ligase MDM2 could be preferentially modified by β4GalT1-L compared to β4GalT1-S, and this modification could increase the binding of MDM2 and p53 and further facilitate the degradation of p53. Our data proved that the two forms of β4GalT1 could synergistically regulate p53-mediated cell survival under chemotherapy treatment. These results provide insights into the role of β4GalT1-L and β4GalT1-S and suggest their differentially important implications in the development of bladder cancer.
Collapse
Affiliation(s)
- Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Fenfang Yang
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Kaijing Chang
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinwen Yu
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
6
|
Xiao L, Guan X, Xiang M, Wang Q, Long Q, Yue C, Chen L, Liu J, Liao C. B7 family protein glycosylation: Promising novel targets in tumor treatment. Front Immunol 2022; 13:1088560. [PMID: 36561746 PMCID: PMC9763287 DOI: 10.3389/fimmu.2022.1088560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy, including the inhibition of immune checkpoints, improves the tumor immune microenvironment and is an effective tool for cancer therapy. More effective and alternative inhibitory targets are critical for successful immune checkpoint blockade therapy. The interaction of the immunomodulatory ligand B7 family with corresponding receptors induces or inhibits T cell responses by sending co-stimulatory and co-inhibitory signals respectively. Blocking the glycosylation of the B7 family members PD-L1, PD-L2, B7-H3, and B7-H4 inhibited the self-stability and receptor binding of these immune checkpoint proteins, leading to immunosuppression and rapid tumor progression. Therefore, regulation of glycosylation may be the "golden key" to relieve tumor immunosuppression. The exploration of a more precise glycosylation regulation mechanism and glycan structure of B7 family proteins is conducive to the discovery and clinical application of antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Chaoyi Yue
- School of Medicine and Technology, Zunyi Medical University, Zunyi, China
| | - Lulu Chen
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China,*Correspondence: Chengcheng Liao, ; Jianguo Liu,
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China,*Correspondence: Chengcheng Liao, ; Jianguo Liu,
| |
Collapse
|
7
|
De Vitis C, D’Ascanio M, Sacconi A, Pizzirusso D, Salvati V, Mancini M, Scafetta G, Cirombella R, Ascenzi F, Bruschini S, Esposito A, Castelli S, Salvucci C, Teodonio L, Sposato B, Catizone A, Di Napoli A, Vecchione A, Ciliberto G, Sciacchitano S, Ricci A, Mancini R. B4GALT1 as a New Biomarker of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:15040. [PMID: 36499368 PMCID: PMC9738382 DOI: 10.3390/ijms232315040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by progressive scarring of the lung that involves the pulmonary interstitium. The disease may rapidly progress, leading to respiratory failure, and the long-term survival is poor. There are no accurate biomarkers available so far. Our aim was to evaluate the expression of the B4GALT1 in patients with IPF. Analysis of B4GALT1 gene expression was performed in silico on two gene sets, retrieved from the Gene Expression Omnibus database. Expression of B4GALT1 was then evaluated, both at the mRNA and protein levels, on lung specimens obtained from lung biopsies of 4 IPF patients, on one IPF-derived human primary cell and on 11 cases of IPF associated with cancer. In silico re-analysis demonstrated that the B4GALT1 gene was overexpressed in patients and human cell cultures with IPF (p = 0.03). Network analysis demonstrated that B4GALT1 upregulation was correlated with genes belonging to the EMT pathway (p = 0.01). The overexpression of B4GALT1 was observed, both at mRNA and protein levels, in lung biopsies of our four IPF patients and in the IPF-derived human primary cell, in other fibrotic non-lung tissues, and in IPF associated with cancer. In conclusion, our results indicate that B4GALT1 is overexpressed in IPF and could represent a novel marker of this disease.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | | | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Dario Pizzirusso
- UOC Respiratory Disease, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Valentina Salvati
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Massimiliano Mancini
- Morphologic and Molecular Pathology Unit, S. Andrea University Hospital, 00189 Rome, Italy
| | - Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Roberto Cirombella
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Sara Bruschini
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Silvia Castelli
- UOC Respiratory Disease, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Claudia Salvucci
- UOC Respiratory Disease, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Leonardo Teodonio
- Division of Thoracic Surgery, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Bruno Sposato
- Pneumology Department, Azienda USL Toscana Sud-Est, “Misericordia” Hospital, 58100 Grosseto, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| |
Collapse
|
8
|
Li J, Cao J, Li P, Yao Z, Deng R, Ying L, Tian J. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis. BMC Cancer 2021; 21:858. [PMID: 34315402 PMCID: PMC8314557 DOI: 10.1186/s12885-021-08611-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Background Bladder cancer (BC) is a common malignancy neoplasm diagnosed in advanced stages in most cases. It is crucial to screen ideal biomarkers and construct a more accurate prognostic model than conventional clinical parameters. The aim of this research was to develop and validate an mRNA-based signature for predicting the prognosis of patients with bladder cancer. Methods The RNA-seq data was downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were screened in three datasets, and prognostic genes were identified from the training set of TCGA dataset. The common genes between DEGs and prognostic genes were narrowed down to six genes via Least Absolute Shrinkage and Selection Operator (LASSO) regression, and stepwise multivariate Cox regression. Then the gene-based risk score was calculated via Cox coefficient. Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier (KM) survival analysis were used to assess the prognostic power of risk score. Multivariate Cox regression analysis was applied to construct a nomogram. Decision curve analysis (DCA), calibration curves, and time-dependent ROC were performed to assess the nomogram. Finally, functional enrichment of candidate genes was conducted to explore the potential biological pathways of candidate genes. Results SORBS2, GPC2, SETBP1, FGF11, APOL1, and H1–2 were screened to be correlated with the prognosis of BC patients. A nomogram was constructed based on the risk score, pathological stage, and age. Then, the calibration plots for the 1-, 3-, 5-year OS were predicted well in entire TCGA-BLCA patients. Decision curve analysis (DCA) indicated that the clinical value of the nomogram was higher than the stage model and TNM model in predicting overall survival analysis. The time-dependent ROC curves indicated that the nomogram had higher predictive accuracy than the stage model and risk score model. The AUC of nomogram time-dependent ROC was 0.763, 0.805, and 0.806 for 1-year, 3-year, and 5-year, respectively. Functional enrichment analysis of candidate genes suggested several pathways and mechanisms related to cancer. Conclusions In this research, we developed an mRNA-based signature that incorporated clinical prognostic parameters to predict BC patient prognosis well, which may provide a novel prognosis assessment tool for clinical practice and explore several potential novel biomarkers related to the prognosis of patients with BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08611-z.
Collapse
Affiliation(s)
- Jianpeng Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China
| | - Jinlong Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China
| | - Pan Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China
| | - Zhiqiang Yao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China
| | - Ran Deng
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China
| | - Lijun Ying
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China.,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China
| | - Junqiang Tian
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China. .,Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, China. .,Clinical Center of Gansu Province for Nephron-urology, Lanzhou, China.
| |
Collapse
|
9
|
Wu B, Wang Z, Lin N, Yan X, Lv Z, Ying Z, Ye Z. A panel of eight mRNA signatures improves prognosis prediction of osteosarcoma patients. Medicine (Baltimore) 2021; 100:e24118. [PMID: 33832059 PMCID: PMC8036027 DOI: 10.1097/md.0000000000024118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
Genetic alterations are vital to the progression of osteosarcoma carcinoma. The present study investigated a panel of gene signatures that could evaluate prognosis in osteosarcoma based on data from the Therapeutically Applicable Research To Generate Effective Treatments initiative. Osteosarcoma messenger RNA (mRNA) profiles and clinical data were downloaded from the therapeutically applicable research to generate effective treatments database. Patients with osteosarcoma were divided into two groups based on findings at diagnosis: with and without metastasis. Differentially expressed mRNAs were compared and analyzed between groups. Univariate and multivariate Cox regression analyses identified a set of eight mRNAs with the ability to classify patients into high-risk and low-risk groups with significantly different overall survival times. Further analysis indicated that the eight-mRNA signature was an independent prognostic factor after adjusting for other clinical factors. Receiver operating characteristic curve analysis demonstrated a good performance of the eight-mRNA signature. Further, the biological processes and signaling pathways of the eight-mRNA signature were reviewed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes resources. Finally, the results of the TCGA analysis were verified by other cohorts from Gene Expression Omnibus database. The identification of an eight-mRNA signature not only provides a prognostic biomarker of osteosarcoma but also offers the potential of novel therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Bo Wu
- Department of Orthopaedics, YongKangShi Hospital of Traditional Chinese Medicine, Yongkang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Zhan Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Nong Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiaobo Yan
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Zhangchun Lv
- Department of Orthopaedics, YongKangShi Hospital of Traditional Chinese Medicine, Yongkang
| | - Zhimin Ying
- Department of Orthopaedics, YongKangShi Hospital of Traditional Chinese Medicine, Yongkang
| | - Zhaoming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
10
|
Chen Y, Su L, Huang C, Wu S, Qiu X, Zhao X, Meng Q, Meng YM, Kong X, Wang M, Liu C, Wong PP. Galactosyltransferase B4GALT1 confers chemoresistance in pancreatic ductal adenocarcinomas by upregulating N-linked glycosylation of CDK11 p110. Cancer Lett 2021; 500:228-243. [PMID: 33309857 DOI: 10.1016/j.canlet.2020.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/14/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Aberrant glycosylation in pancreatic cancer has been linked to cancer development, progression and chemoresistance. However, the role of glycogene, such as galactosyltransferase, in pancreatic cancer remains unknown. Herein, we establish beta-1.4-galactosyltransferase 1 (B4GALT1) as a clinical marker and regulator of chemoresistance. Clinically, high B4GALT1 expression correlates with poor survival, enhanced tumor size, increased lymph node metastasis, elevated cancer progression and enhanced incidence of relapse in PDAC patients. Expression of B4GALT1 is up-regulated in gemcitabine resistant patient derived organoids as well as chemoresistant cancer cell lines, while genetic perturbation of its expression in PDAC cell lines regulates cancer progression and chemoresistance. Mechanistically, we show that elevated p65 activity transcriptionally up-regulates B4GALT1 expression, which then interacts with and stabilizes cyclin dependent kinase 11 isomer CDK11p110 protein via N-linked glycosylation, in order to promote cancer progression and chemoresistance. Finally, depletion of B4GALT1 rescues the response of chemoresistant cells to gemcitabine in an orthotopic PDAC model. Overall, our data uncovers a mechanism by which p65-B4GALT1-CDK11p110 signalling axis determines cancer progression and chemoresistance, providing a new therapeutic target for an improved pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yitian Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Sangqing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoyi Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xinbao Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiong Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Minghui Wang
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Chao Liu
- Department of Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
11
|
Wang P, Li X, Xie Y. B4GalT1 Regulates Apoptosis and Autophagy of Glioblastoma In Vitro and In Vivo. Technol Cancer Res Treat 2020; 19:1533033820980104. [PMID: 33287670 PMCID: PMC7727053 DOI: 10.1177/1533033820980104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our study was designed to investigate the role of B4GalT1 in glioblastoma, in vitro and in vivo, to detect whether B4GalT1 knockdown could regulate the development of glioblastoma, and further observe the relationship between B4GalT1 knockdown and the apoptosis and autophagy of glioblastoma. To begin, we looked at TCGA and GEPIA systems to predict the potential function of B4GalT1. Western blot and RT-PCR were used to analyze the expression, or mRNA level, of B4GalT1 at different tissue or cell lines. Next, the occurrence and development of glioblastoma, in vitro and in vivo, was observed by using B4GalT1 knocked down by lentivirus. Finally, the apoptosis and autophagy of glioblastoma was observed in vitro and in vivo. Results show that B4GalT1 was a highly variable gene, and GEPIA and TCGA systems show B4GalT1 expression in GBM tumor tissue was higher than in normal tissue. Pair-wise gene correlation analysis revealed a probable relationship between B4GalT1 and autophagy related proteins. The B4GalT1 expression and mRNA level were increased in tumor cells, or U87 cells. B4GalT1 knocked down by lentivirus could inhibit glioblastoma development, in vitro and in vivo, by reducing tumor weight and volume, increasing survival, and weakening tumor cells proliferation, migration, invasion. B4GalT1 knockdown could increase apoptosis and autophagy of glioblastoma in vitro and in vivo. Our study demonstrates that B4GalT1 may be able to regulate apoptosis and autophagy of glioblastoma. Bax, Bcl-2, cleaved caspase-3, Beclin-1, and LC3 s may be the downstream target factors of B4GalT1 in apoptosis and autophagy, which may provide a new strategy to reduce glioblastoma development by regulating apoptosis and autophagy.
Collapse
Affiliation(s)
- Pu Wang
- Department of Neurology, Xiangyang First People's Hospital of Hubei University, Xiangyang, Hubei, China
| | - Xiaolong Li
- Department of Neurology, Xiangyang First People's Hospital of Hubei University, Xiangyang, Hubei, China
| | - Yuan Xie
- Department of Neurology, Xiangyang First People's Hospital of Hubei University, Xiangyang, Hubei, China
| |
Collapse
|
12
|
Kremer J, Brendel C, Mack EKM, Mack HID. Expression of β-1,4-galactosyltransferases during Aging in Caenorhabditis elegans. Gerontology 2020; 66:571-581. [PMID: 33171474 DOI: 10.1159/000510722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Altered plasma activity of β-1,4-galac-tosyl-transferases (B4GALTs) is a novel candidate biomarker of human aging. B4GALT1 is assumed to be largely responsible for this activity increase, but how it modulates the aging process is unclear at present. OBJECTIVES To determine how expression of B4GALT1 and other B4GALT enzymes changes during aging of an experimentally tractable model organism, Caenorhabditis elegans. METHODS Targeted analysis of mRNA levels of all 3 C. elegans B4GALT family members was performed by qPCR in wild-type and in long-lived daf-2 (insulin/IGF1-like receptor)-deficient or germline-deficient animals. RESULTS bre-4 (B4GALT1/2/3/4) is the only B4GALT whose expression increases during aging in wild-type worms. In addition, bre-4 levels also rise during aging in long-lived daf-2-deficient worms, but not in animals that are long-lived due to the lack of germline stem cells. On the other hand, expression of sqv-3 (B4GALT7) and of W02B12.11 (B4GALT5/6) appears decreased or constant, respectively, in all backgrounds during aging. CONCLUSIONS The age-dependent bre-4 mRNA increase in C. elegans parallels the age-dependent B4GALT activity increase in humans and is consistent with C. elegans being a suitable experimental organism to define potentially conserved roles of B4GALT1 during aging.
Collapse
Affiliation(s)
- Jennifer Kremer
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, and University Hospital Gießen and Marburg, Marburg, Germany
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, and University Hospital Gießen and Marburg, Marburg, Germany
| | - Elisabeth Karin Maria Mack
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, and University Hospital Gießen and Marburg, Marburg, Germany,
| | | |
Collapse
|
13
|
POFUT1 mRNA expression as an independent prognostic parameter in muscle-invasive bladder cancer. Transl Oncol 2020; 14:100900. [PMID: 33099185 PMCID: PMC7581975 DOI: 10.1016/j.tranon.2020.100900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is characterized by high recurrence and rapid progression. Progression is linked to changes in glycan structures and altered levels of glycosyltransferases. The relationship of mRNA expression by glycosyltransferase genes B4GALT1, EXT1, MGAT5B, and POFUT1 to the probability of surviving MIBC after radical cystectomy has not yet been investigated. mRNA expression was analyzed using qRT-PCR in formalin-fixed and paraffin-embedded tumor samples (n = 105; 74% male patients and 26% female patients; median age = 72 years), correlated with histopathological variables, and evaluated by means of multivariable Cox regression analysis regarding to overall survival (OS), cancer-specific survival (CSS), and disease-free survival (DFS). Multivariable Cox regression analysis identified POFUT1 mRNA expression as superior prognostic marker, compared with currently used histological tumor stage methods, for CSS by MIBC patients following radical cystectomy. Thus, the patients with low POFUT1 mRNA were at a 4.9-fold greater risk for cancer-specific death according to the multivariable analysis (p = 0.0001). Low mRNA levels predicted poor survival according to the Kaplan-Meier analysis ((POFUT1:OS p = 0.0014; CSS p = 0.0007; DFS p = 0.0088); (EXT1:OS p = 0.0150; CSS p = 0.0130; DFS p = 0.0286); (B4GALT1:CSS p = 0.0134; DFS p = 0.0493)). A subgroup analysis of patients without lymph node metastasis (pN−; n = 73) indicated that low expression of POFUT1 predicted reduced OS (p = 0.0073), CSS (p = 0.0058,) and DSS (p = 0.0079). Low levels of POFUT1 mRNA are an independent prognostic indicator for OS and CSS in MIBC patients following radical cystectomy. This finding demonstrates the importance of altered glycosylation for the progress of MIBC. Low POFUT1 mRNA expression is associated with a higher risk for overall and cancer-specific death in MIBC treated with RC. MIBC patients with pN0 histology and, decreased POFUT1 mRNA levels showed poor outcome for OS, CSS and, DFS. POFUT1 mRNA is an independent prognostic indicator for OS and CSS in multivariable analysis of MIBC patients following RC.
Collapse
|
14
|
Wang B, Wu S, Fang Y, Sun G, He D, Hsieh JT, Wang X, Zeng H, Wu K. The AKR1C3/AR-V7 complex maintains CRPC tumour growth by repressing B4GALT1 expression. J Cell Mol Med 2020; 24:12032-12043. [PMID: 32902124 PMCID: PMC7579719 DOI: 10.1111/jcmm.15831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023] Open
Abstract
Multiple mechanisms contribute to the survival and growth of metastatic castration-resistant prostate cancer (mCRPC) cells without androgen, including androgen receptor splice variants (AR-V) and de novo intratumoral androgen synthesis. AKR1C3 is a critical androgenic enzyme that plays different roles in mCRPC, such as an EMT driver or AR coactivator. However, the relationship and regulatory mechanisms between AKR1C3 and AR-V remain largely unknown. In this study, we observed a positive correlation between AKR1C3 and AR-V7 staining in tissues from prostate rebiopsy at mCRPC. Mechanistically, AKR1C3 interacts with AR-V7 protein in CRPC cells, which can reciprocally inhibit AR-V7 and AKR1C3 protein degradation. Biologically, this complex is essential for in vitro and in vivo tumour growth of CRPC cells after androgen deprivation as it represses B4GALT1, a unique tumour suppressor gene in PCa. Together, this study reveals AKR1C3/AR-V7 complex as a potential therapeutic target in mCRPC.
Collapse
Affiliation(s)
- Bin Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shiqi Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Fang
- Department of Urology, The East Division of First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangxi Sun
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xinyang Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Zeng
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Kaijie Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
De Vitis C, Corleone G, Salvati V, Ascenzi F, Pallocca M, De Nicola F, Fanciulli M, di Martino S, Bruschini S, Napoli C, Ricci A, Bassi M, Venuta F, Rendina EA, Ciliberto G, Mancini R. B4GALT1 Is a New Candidate to Maintain the Stemness of Lung Cancer Stem Cells. J Clin Med 2019; 8:E1928. [PMID: 31717588 PMCID: PMC6912435 DOI: 10.3390/jcm8111928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND According to the cancer stem cells (CSCs) hypothesis, a population of cancer cells with stem cell properties is responsible for tumor propagation, drug resistance, and disease recurrence. Study of the mechanisms responsible for lung CSCs propagation is expected to provide better understanding of cancer biology and new opportunities for therapy. METHODS The Lung Adenocarcinoma (LUAD) NCI-H460 cell line was grown either as 2D or as 3D cultures. Transcriptomic and genome-wide chromatin accessibility studies of 2D vs. 3D cultures were carried out using RNA-sequencing and Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq), respectively. Reverse transcription polymerase chain reaction (RT-PCR) was also carried out on RNA extracted from primary cultures derived from malignant pleural effusions to validate RNA-seq results. RESULTS RNA-seq and ATAC-seq data disentangled transcriptional and genome accessibility variability of 3D vs. 2D cultures in NCI-H460 cells. The examination of genomic landscape of genes upregulated in 3D vs. 2D cultures led to the identification of 2D cultures led to the identification of Beta-1,4-galactosyltranferase 1 (B4GALT1) as the top candidate. B4GALT1 as the top candidate. B4GALT1 was validated as a stemness factor, since its silencing caused strong inhibition of 3D spheroid formation. CONCLUSION Combined transcriptomic and chromatin accessibility study of 3D vs. 2D LUAD cultures led to the identification of B4GALT1 as a new factor involved in the propagation and maintenance of LUAD CSCs.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (C.D.V.); (R.M.)
| | - Giacomo Corleone
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesca Ascenzi
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Matteo Pallocca
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Simona di Martino
- Pathology Unit, IRCSS “Regina Elena” National Cancer Institute, 00144 Rome, Italy;
| | - Sara Bruschini
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00189 Rome, Italy;
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Division of Pneumology, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy;
| | - Massimiliano Bassi
- Department of Thoracic Surgery, University of Rome Sapienza, 00161 Rome, Italy; (M.B.); (F.V.)
| | - Federico Venuta
- Department of Thoracic Surgery, University of Rome Sapienza, 00161 Rome, Italy; (M.B.); (F.V.)
| | - Erino Angelo Rendina
- Department of Thoracic Surgery, Sant’Andrea Hospital, “Sapienza” University of Rome, 00189 Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (C.D.V.); (R.M.)
| |
Collapse
|