1
|
Wang B, Tian Z, Lang S, Kong Q, Liu X, Chen Y, Hua M, Zhou Q, Yu X, Feng H, Wang F, Zhou H. The genus Oxytropis DC: application, phytochemistry, pharmacology, and toxicity. J Pharm Pharmacol 2024; 76:1079-1114. [PMID: 38687135 DOI: 10.1093/jpp/rgae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVES Oxytropis DC is a perennial plant of Fabaceae family, which is widely distributed in the northern temperate zone. It is known as "locoweed" because of its toxic component swainsonine. However, it is widely used in Tibetan medicine and Mongolian medicine, mainly for the treatment of heat-clearing and detoxifying, pain-relieving, anti-inflammatory, hemostasis, and other diseases. To provide a basis for the further development and utilization of Oxytropis DC, the pieces of literature about the application, phytochemistry, pharmacological action, and toxicity of Oxytropis DC were reviewed and analyzed. KEY FINDINGS A total of 373 chemical constituents were found from Oxytropis DC, including flavonoids, alkaloids, steroids, terpenoids, and others. Pharmacological actions mainly include antitumor, antioxidation, anti-inflammatory, analgesic, antibacterial, antifibrosis, and other pharmacological actions, among them, the antitumor effect is particularly prominent. SUMMARY At present, studies on its pharmacological effects are mainly concentrated on the extracts, some flavonoids, and alkaloids. In the follow-up studies, research on the pharmacological activities of the other chemical constituents in Oxytropis should be strengthened. It has the potential to pave the way for research and development of novel Oxytropis medicines.
Collapse
Affiliation(s)
- Bingkang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhenhua Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Shiyue Lang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Qinghe Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Min Hua
- Great Health Products Research Institute, Shandong Academy of Chinese Medicine, Jinan 250014, PR China
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, PR China
| | - Qian Zhou
- Great Health Products Research Institute, Shandong Academy of Chinese Medicine, Jinan 250014, PR China
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, PR China
| | - Xiaofei Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Hao Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| |
Collapse
|
2
|
Říhová K, Lapčík P, Veselá B, Knopfová L, Potěšil D, Pokludová J, Šmarda J, Matalová E, Bouchal P, Beneš P. Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics. J Proteome Res 2024; 23:2999-3011. [PMID: 38498986 PMCID: PMC11301665 DOI: 10.1021/acs.jproteome.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Kamila Říhová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Petr Lapčík
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Barbora Veselá
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lucia Knopfová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - David Potěšil
- Proteomics
Core Facility, Central European Institute for Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Jana Pokludová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Jan Šmarda
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Eva Matalová
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department
of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno 612 42, Czech Republic
| | - Pavel Bouchal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Petr Beneš
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| |
Collapse
|
3
|
Hassanin SO, Hegab AMM, Mekky RH, Said MA, Khalil MG, Hamza AA, Amin A. Combining In Vitro, In Vivo, and Network Pharmacology Assays to Identify Targets and Molecular Mechanisms of Spirulina-Derived Biomolecules against Breast Cancer. Mar Drugs 2024; 22:328. [PMID: 39057437 PMCID: PMC11278317 DOI: 10.3390/md22070328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
The current research employed an animal model of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland carcinogenesis. The estrogen receptor-positive human breast adenocarcinoma cell line (MCF-7) was used for in vitro analysis. This was combined with a network pharmacology-based approach to assess the anticancer properties of Spirulina (SP) extract and understand its molecular mechanisms. The results showed that the administration of 1 g/kg of SP increased the antioxidant activity by raising levels of catalase (CAT) and superoxide dismutase (SOD), while decreasing the levels of malonaldehyde (MDA) and protein carbonyl. A histological examination revealed reduced tumor occurrence, decreased estrogen receptor expression, suppressed cell proliferation, and promoted apoptosis in SP protected animals. In addition, SP disrupted the G2/M phase of the MCF-7 cell cycle, inducing apoptosis and reactive oxygen species (ROS) accumulation. It also enhanced intrinsic apoptosis in MCF-7 cells by upregulating cytochrome c, Bax, caspase-8, caspase-9, and caspase-7 proteins, while downregulating Bcl-2 production. The main compounds identified in the LC-MS/MS study of SP were 7-hydroxycoumarin derivatives of cinnamic acid, hinokinin, valeric acid, and α-linolenic acid. These substances specifically targeted three important proteins: ERK1/2 MAPK, PI3K-protein kinase B (AKT), and the epidermal growth factor receptor (EGFR). Network analysis and molecular docking indicated a significant binding affinity between SP and these proteins. This was verified by Western blot analysis that revealed decreased protein levels of p-EGFR, p-ERK1/2, and p-AKT following SP administration. SP was finally reported to suppress MCF-7 cell growth and induce apoptosis by modulating the PI3K/AKT/EGFR and MAPK signaling pathways suggesting EGFR as a potential target of SP in breast cancer (BC) treatment.
Collapse
Affiliation(s)
- Soha Osama Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11585, Egypt;
| | - Amany Mohammed Mohmmed Hegab
- Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research, Developmental Pharmacology and Acute Toxicity Department, Giza 12611, Egypt;
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt;
| | - Mohamed Adel Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Mona G. Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11829, Egypt
| | - Alaaeldin Ahmed Hamza
- Biology Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza 12611, Egypt
- Medical Research Council, Academy of Scientific Research and Technology, Cairo 11334, Egypt
| | - Amr Amin
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Krause J. Indolizidines from Actinomycetes: An Overview of Producers, Biosynthesis and Bioactivities. Microorganisms 2024; 12:1445. [PMID: 39065213 PMCID: PMC11278551 DOI: 10.3390/microorganisms12071445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Indolizidines have long been recognized for their valuable bioactivities, their common feature being a bicyclic structure connected via a nitrogen atom. Traditionally, plants have been identified as the primary producers. However, recent discoveries have revealed that certain bacterial strains belonging to the genus of actinomycetes also possess the ability to synthesize various indolizidine-based compounds. Among these strains, Streptomyces sp. HNA39, Saccharopolyspora sp. RL78, and Streptomyces NCIB 11649 have been identified as producers of cyclizidines, characterized by their distinctive cyclopropyl moiety. Additionally, Streptomyces griseus OS-3601 synthesizes a unique class of indolizidine derivatives known as iminimycins, distinguished by their rare imine-cation structure. Protoplast fusion of a Streptomyces griseus strain with Streptomyces tenjimariensis resulted in a new indolizidine named indolizomycin. This review aims to provide an overview of known bacterial indolizidine producers, summarize current knowledge regarding the biosynthesis of cyclizidines and iminimycins, and assess their respective bioactivities.
Collapse
Affiliation(s)
- Janina Krause
- Department of Biomedical Research, Institute of Health Research and Education, School of Human Sciences, University of Osnabrueck, 49076 Osnabrueck, Germany
| |
Collapse
|
5
|
Zhang Q, Jiang Q, Sa K, Liang J, Sun D, Li H, Chen L. Research progress of plant-derived natural alkaloids in central nervous system diseases. Phytother Res 2023; 37:4885-4907. [PMID: 37455555 DOI: 10.1002/ptr.7955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/14/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Central nervous system (CNS) disease is one of the most important causes of human death. Because of their complex pathogenesis, more and more attention has been paid to them. At present, drug treatment of the CNS is the main means; however, most drugs only relieve symptoms, and some have certain toxicity and side effects. Natural compounds derived from plants can provide safer and more effective alternatives. Alkaloids are common nitrogenous basic organic compounds found in nature, which exist widely in many kinds of plants and have unique application value in modern medicine. For example, Galantamine and Huperzine A from medicinal plants are widely used drugs on the market to treat Alzheimer's disease. Therefore, the main purpose of this review is to provide the available information on natural alkaloids with the activity of treating central nervous system diseases in order to explore the trends and perspectives for the further study of central nervous system drugs. In this paper, 120 alkaloids with the potential effect of treating central nervous system diseases are summarized from the aspects of sources, structure types, mechanism of action and structure-activity relationship.
Collapse
Affiliation(s)
- Qingqing Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kuiru Sa
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Junming Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
Cholich L, Pistán M, Torres A, Hernández D, Moro R, Gómez T, Gardner D, Bustillo S. Ipomoea carnea alkaloid extract vs swainsonine: A comparative study on cytotoxic activity against glial cells. Toxicon 2023; 235:107325. [PMID: 37838004 DOI: 10.1016/j.toxicon.2023.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The consumption of Ipomoea carnea produces a neurological syndrome in animals. The toxic principles of I. carnea are the alkaloids swainsonine (SW) and calystegines B1, B2, B3 and C1. In this study, we investigated the cytotoxicity of an alkaloid extract of Ipomoea carnea (AEE) and natural swainsonine (SW) isolated from Astragalus lentiginosus (25-1000 μM of SW) for 48 h in a glioma cell line. Although the natural SW did not induce any changes in cell viability, the AEE exhibited a dose dependent cytotoxic effect and release of lactate dehydrogenase (LDH) indicative of cytolysis. In order to evaluate the morphological changes involved, cells were examined using phase contrast and fluorescence microscopy with acridine orange-ethidium bromide staining. The AEE caused a cell death compatible with necrosis, whereas exposure to 1000 μM of SW resulted in cytoplasmic vacuolation. Immunocytochemical studies revealed that astrocytes treated with 150 μM of AEE from I. carnea or 1000 μM of SW exhibited morphological characteristics of cell activation. These findings suggest that swainsonine would not be the only component present in the AEE of I. carnea responsible for in vitro cytotoxicity. Calystegines might also play a role in acting synergistically and triggering cell death through necrosis.
Collapse
Affiliation(s)
- Luciana Cholich
- Faculty of Veterinary Science, National University of the Northeast, Corrientes, Argentina; The National Scientific and Technical Research Council (CONICET), Corrientes, Argentina.
| | - María Pistán
- Faculty of Veterinary Science, National University of the Northeast, Corrientes, Argentina; The National Scientific and Technical Research Council (CONICET), Corrientes, Argentina
| | - Ana Torres
- Natural Products Laboratory, IQUIBA-NEA CONICET, National University of the Northeast, Corrientes, Argentina
| | - David Hernández
- Faculty of Veterinary Science, National University of the Northeast, Corrientes, Argentina
| | - Ramiro Moro
- Biological and Molecular Investigations Group (GIBYM), IQUIBA-NEA CONICET, National University of the Northeast, Corrientes, Argentina
| | - Tamara Gómez
- Faculty of Veterinary Science, National University of the Northeast, Corrientes, Argentina
| | - Dale Gardner
- USDA-ARS Poisonous Plant Research Laboratory, Logan, UT, USA
| | - Soledad Bustillo
- Biological and Molecular Investigations Group (GIBYM), IQUIBA-NEA CONICET, National University of the Northeast, Corrientes, Argentina
| |
Collapse
|
7
|
Wang S, Tan P, Wang H, Wang J, Zhang C, Lu H, Zhao B. Swainsonine inhibits autophagic degradation and causes cytotoxicity by reducing CTSD O-GlcNAcylation. Chem Biol Interact 2023; 382:110629. [PMID: 37442287 DOI: 10.1016/j.cbi.2023.110629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Swainsonine (SW) is the primary toxin in locoweed, a poisonous plant. SW can cause animal poisoning, affect the quality and safety of meat products and threaten human health, but the mechanism of its toxicity is little defined. Here, we identified 159 differentially expressed proteins, many of which are involved in autophagy and glycosylation modification processes, using proteomics sequencing analysis. O-linked-N-acetylglucosamylation (O-GlcNAcylation) is a glycosylation modification widely involved in various biological processes. Our results show that SW toxicity is related to O-GlcNAcylation. In addition, increased O-GlcNAcylation with the O-GlcNAcase (OGA) inhibitor TMG promoted autophagy, while decreased O-GlcNAcylation with the O-GlcNAc transferase (OGT) inhibitor OSMI inhibited autophagy. Further analysis by Immunoprecipitation (IP) showed that SW could change the O-GlcNAcylation of Cathepsin D (CTSD), reducing the expression of mature CTSD (m-CTSD). In summary, these findings suggest that SW inhibits the O-GlcNAcylation of CTSD, affecting its maturation and leading to the impairment of lysosome function. Consequently, it inhibits autophagy degradation, and causes cytotoxicity, providing a new theoretical basis for SW toxicological mechanism.
Collapse
Affiliation(s)
- Shuai Wang
- Henan University of Science and Technology, College of Animal Science and Technology, 263 Kaiyuan Ave, Luoyang, 471023, China
| | - Panpan Tan
- Northwest Agriculture and Forestry University, College of Veterinary Medicine, Yangling, Shaanxi, 712100, China
| | - Hongwei Wang
- Henan University of Science and Technology, College of Animal Science and Technology, 263 Kaiyuan Ave, Luoyang, 471023, China
| | - Jicang Wang
- Henan University of Science and Technology, College of Animal Science and Technology, 263 Kaiyuan Ave, Luoyang, 471023, China
| | - Cai Zhang
- Henan University of Science and Technology, College of Animal Science and Technology, 263 Kaiyuan Ave, Luoyang, 471023, China
| | - Hao Lu
- Northwest Agriculture and Forestry University, College of Veterinary Medicine, Yangling, Shaanxi, 712100, China.
| | - Baoyu Zhao
- Northwest Agriculture and Forestry University, College of Veterinary Medicine, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Grijaldo SB, Alvarez MR, Heralde FM, Nacario RC, Lebrilla CB, Rabajante JF, Completo GC. Integrating Computational Methods in Network Pharmacology and In Silico Screening to Uncover Multi-targeting Phytochemicals against Aberrant Protein Glycosylation in Lung Cancer. ACS OMEGA 2023; 8:20303-20312. [PMID: 37332828 PMCID: PMC10268607 DOI: 10.1021/acsomega.2c07542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/05/2023] [Indexed: 06/20/2023]
Abstract
Glycoproteins are an underexploited drug target for cancer therapeutics. In this work, we integrated computational methods in network pharmacology and in silico docking approaches to identify phytochemical compounds that could potentially interact with several cancer-associated glycoproteins. We first created a database of phytochemicals from selected plant species, Manilkara zapota (sapodilla/chico), Mangifera indica (mango), Annona muricata (soursop/guyabano), Artocarpus heterophyllus (jackfruit/langka), Lansium domesticum (langsat/lanzones), and Antidesma bunius (bignay), and performed pharmacokinetic analysis to determine their drug-likeness properties. We then constructed a phytochemical-glycoprotein interaction network and characterized the degree of interactions between the phytochemical compounds and with cancer-associated glycoproteins and other glycosylation-related proteins. We found a high degree of interactions from α-pinene (Mangifera indica), cyanomaclurin (Artocarpus heterophyllus), genistein (Annona muricata), kaempferol (Annona muricata and Antidesma bunius), norartocarpetin (Artocarpus heterophyllus), quercetin (Annona muricata, Antidesma bunius, Manilkara zapota, Mangifera indica), rutin (Annona muricata, Antidesma bunius, Lansium domesticum), and ellagic acid (Antidesma bunius and Mangifera indica). Subsequent docking analysis confirmed that these compounds could potentially bind to EGFR, AKT1, KDR, MMP2, MMP9, ERBB2, IGF1R, MTOR, and HRAS proteins, which are known cancer biomarkers. In vitro cytotoxicity assays of the plant extracts showed that the n-hexane, ethyl acetate, and methanol leaf extracts from A. muricata, L. domesticum and M. indica gave the highest growth inhibitory activity against A549 lung cancer cells. These may help further explain the reported cytotoxic activities of select compounds from these plant species.
Collapse
Affiliation(s)
- Sheryl
Joyce B. Grijaldo
- Institute
of Chemistry, University of the Philippines, Los Baños, Philippines 4031
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | | | - Francisco M. Heralde
- Lung
Center of the Philippines, Quezon
City, Philippines 1100
- Department
of Biochemistry and Molecular Biology, College
of Medicine, University of the Philippines Manila, Philippines 1000
| | - Ruel C. Nacario
- Institute
of Chemistry, University of the Philippines, Los Baños, Philippines 4031
| | - Carlito B. Lebrilla
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Jomar F. Rabajante
- Institute
of Mathematical Sciences and Physics, University
of the Philippines, Los Baños, Philippines 4031
| | - Gladys C. Completo
- Institute
of Chemistry, University of the Philippines, Los Baños, Philippines 4031
| |
Collapse
|
9
|
de-Souza-Ferreira M, Ferreira ÉE, de-Freitas-Junior JCM. Aberrant N-glycosylation in cancer: MGAT5 and β1,6-GlcNAc branched N-glycans as critical regulators of tumor development and progression. Cell Oncol 2023; 46:481-501. [PMID: 36689079 DOI: 10.1007/s13402-023-00770-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Changes in protein glycosylation are widely observed in tumor cells. N-glycan branching through adding β1,6-linked N-acetylglucosamine (β1,6-GlcNAc) to an α1,6-linked mannose, which is catalyzed by the N-acetylglucosaminyltransferase V (MGAT5 or GnT-V), is one of the most frequently observed tumor-associated glycan structure formed. Increased levels of this branching structure play a pro-tumoral role in various ways, for example, through the stabilization of growth factor receptors, the destabilization of intercellular adhesion, or the acquisition of a migratory phenotype. CONCLUSION In this review, we provide an updated and comprehensive summary of the physiological and pathophysiological roles of MGAT5 and β1,6-GlcNAc branched N-glycans, including their regulatory mechanisms. Specific emphasis is given to the role of MGAT5 and β1,6-GlcNAc branched N-glycans in cellular mechanisms that contribute to the development and progression of solid tumors. We also provide insight into possible future clinical implications, such as the use of MGAT5 as a prognostic biomarker.
Collapse
Affiliation(s)
- Michelle de-Souza-Ferreira
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Érika Elias Ferreira
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Julio Cesar Madureira de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Cancer Glycobiology Group, Brazilian National Cancer Institute (INCA), 37 André Cavalcanti Street, Rio de Janeiro, RJ, 20231-050, Brazil.
| |
Collapse
|
10
|
Wani AK, Akhtar N, Sharma A, El-Zahaby SA. Fighting Carcinogenesis with Plant Metabolites by Weakening Proliferative Signaling and Disabling Replicative Immortality Networks of Rapidly Dividing and Invading Cancerous Cells. Curr Drug Deliv 2023; 20:371-386. [PMID: 35422214 DOI: 10.2174/1567201819666220414085606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer, an uncontrolled multistage disease causing swift division of cells, is a leading disease with the highest mortality rate. Cellular heterogeneity, evading growth suppressors, resisting cell death, and replicative immortality drive the tumor progression by resisting the therapeutic action of existing anticancer drugs through a series of intrinsic and extrinsic cellular interactions. The innate cellular mechanisms also regulate the replication process as a fence against proliferative signaling, enabling replicative immortality through telomere dysfunction. AREA COVERED The conventional genotoxic drugs have several off-target and collateral side effects associated with them. Thus, the need for the therapies targeting cyclin-dependent kinases or P13K signaling pathway to expose cancer cells to immune destruction, deactivation of invasion and metastasis, and maintaining cellular energetics is imperative. Compounds with anticancer attributes isolated from plants and rich in alkaloids, terpenes, and polyphenols have proven to be less toxic and highly targetspecific, making them biologically significant. This has opened a gateway for the exploration of more novel plant molecules by signifying their role as anticancer agents in synergy and alone, making them more effective than the existing cytotoxic regimens. EXPERT OPINION In this context, the current review presented recent data on cancer cases around the globe, along with discussing the fundamentals of proliferative signaling and replicative immortality of cancer cells. Recent findings were also highlighted, including antiproliferative and antireplicative action of plant-derived compounds, besides explaining the need for improving drug delivery systems.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab (144411), India
| | - Nahid Akhtar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab (144411), India
| | - Arun Sharma
- Department of Pharmacy, School of Pharmaceutical Sciences, Lovely Professional University, Punjab (144411), India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
11
|
Fraňová P, Marchalín Š. Recent developments in the synthesis of polyhydroxylated indolizidines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paula Fraňová
- Slovak University of Technology in Bratislava: Slovenska technicka univerzita v Bratislave Organic Chemistry Radlinského 2101/9 81237 Bratislava SLOVAKIA
| | - Štefan Marchalín
- Slovak University of Technology Faculty of Chemical and Food Technology: Slovenska Technicka Univerzita v Bratislave Fakulta chemickej a potravinarskej technologie Organic Chemistry Radlinského 2101/9 81237 Bratislava SLOVAKIA
| |
Collapse
|
12
|
Das A, Madeshiya AK, Biswas N, Ghosh N, Gorain M, Rawat A, Mahajan SP, Khanna S, Sen CK, Roy S. Oncostatin M Improves Cutaneous Wound Re-Epithelialization and Is Deficient under Diabetic Conditions. J Invest Dermatol 2022; 142:679-691.e3. [PMID: 34534575 PMCID: PMC8860865 DOI: 10.1016/j.jid.2021.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Impaired re-epithelialization characterized by hyperkeratotic nonmigratory wound epithelium is a hallmark of nonhealing diabetic wounds. In chronic wounds, the copious release of oncostatin M (OSM) from wound macrophages is evident. OSM is a potent keratinocyte (KC) activator. This work sought to understand the signal transduction pathway responsible for wound re-epithelialization, the primary mechanism underlying wound closure. Daily topical treatment of full-thickness excisional wounds of C57BL/6 mice with recombinant murine OSM improved wound re-epithelialization and accelerated wound closure by bolstering KC proliferation and migration. OSM activated the Jak-signal transducer and activator of transcription pathway as manifested by signal transducer and activator of transcription 3 phosphorylation. Such signal transduction in the human KC induced TP63, the master regulator of KC function. Elevated TP63 induced ITGB1, a known effector of KC migration. In diabetic wounds, OSM was more abundant than the level in nondiabetic wounds. However, in diabetic wounds, OSM activity was compromised by glycation. Aminoguanidine, a deglycation agent, rescued the compromised KC migration caused by glycated OSM. Finally, topical application of recombinant OSM improved KC migration and accelerated wound closure in db/db mice. This work recognizes that despite its abundance at the wound site, OSM is inactivated by glycation, and topical delivery of exogenous OSM is likely to be productive in accelerating diabetic wound closure.
Collapse
Affiliation(s)
- Amitava Das
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amit K. Madeshiya
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nirupam Biswas
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nandini Ghosh
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Mahadeo Gorain
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Atul Rawat
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sanskruti P. Mahajan
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Savita Khanna
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Chandan K. Sen
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sashwati Roy
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
13
|
Li L, Zhang J, Peng H, Jiang X, Liu Z, Tian H, Hou S, Xie X, Peng Q, Zhou T. Knockdown of miR-92a suppresses the stemness of colorectal cancer cells via mediating SOCS3. Bioengineered 2022; 13:5613-5624. [PMID: 35184640 PMCID: PMC8974062 DOI: 10.1080/21655979.2021.2022267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
MiRNAs (microRNAs) participate in colorectal cancer (CRC) progression and act as potential biomarkers for CRC prognosis. In this study, we investigated the mechanisms of microRNA-92a (miR-92a) in CRC. Expressions of miR-92a and SOCS3 (Suppressor Of Cytokine Signaling 3) were investigated by qRT-PCR in CRC cell lines and 30 cases of CRC. The self-renewal capacity and proliferation of CRC stem cells were estimated by the sphere formation assay, EdU staining, and Flow cytometry analysis. Moreover, the interplay between miR-92a and SOCS3 in CRC cells was validated by luciferase reporter experiments. MiR-92a was found to be remarkably increased while SOCS3 was significantly downregulated in CRC tissues. Inhibition of miR-92a or SOCS3 attenuated the sphere formation capacity, decreased expressions of stemness-related proteins, and inhibited the proliferation of cancer stem-like cells. Knockdown of SOCS3 reversed the repressive impacts of miR-92a inhibitors on self-renewal and growth of CRC cancer stem cells. This study suggested that miR-92a functions as an oncogene of CRC through mediating the stemness of colorectal cancer cells by directly binding and repressing SOCS3.
Collapse
Affiliation(s)
- Lifa Li
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jingxiao Zhang
- Department of Medica, The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hong Peng
- Department of Anorectal Surgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xianhong Jiang
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zuoliang Liu
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hongpeng Tian
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Songlin Hou
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xingjiang Xie
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiang Peng
- Department of Gastrointestinal Surgery II, Hepatobiliary and Pancreatic Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tong Zhou
- Department of Gastrointestinal Surgery II, The Second Affiliated Hospital of North Sichuan Medical College, Sichuan, China
- Department of Gastrointestinal Surgery II, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| |
Collapse
|
14
|
Tabnak P, Masrouri S, Mafakheri A. Natural products in suppressing glioma progression: A focus on the role of microRNAs. Phytother Res 2022; 36:1576-1599. [PMID: 35174549 DOI: 10.1002/ptr.7414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/07/2021] [Accepted: 01/29/2022] [Indexed: 11/06/2022]
Abstract
Glioma is one of the most common malignancies of the central nervous system. Due to inadequate response to the current treatments available, glioma has been at the center of recent cancer studies searching for novel treatment strategies. This has prompted an intensive search using linkage studies and preliminary evidence to gain efficient insight into the mechanisms involved in the alleviation of the pathogenesis of glioma mediated by miRNAs, a group of noncoding RNAs that affect gene expression posttranscriptionally. Dysregulated expression of miRNAs can exacerbate the malignant features of tumor cells in glioma and other cancers. Natural products can exert anticancer effects on glioma cells by stimulating the expression levels of tumor suppressor miRNAs and repressing the expression levels of oncogenic miRNAs. In this review, we aimed to collect and analyze the literature addressing the roles of natural products in the treatment of glioma, with an emphasis on their involvement in the regulation of miRNAs.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Masrouri
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asrin Mafakheri
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
15
|
Chen G, Zeng H, Li X, Liu J, Li Z, Xu R, Ma Y, Liu C, Xue B. Activation of G protein coupled estrogen receptor prevents chemotherapy-induced intestinal mucositis by inhibiting the DNA damage in crypt cell in an extracellular signal-regulated kinase 1- and 2- dependent manner. Cell Death Dis 2021; 12:1034. [PMID: 34718327 PMCID: PMC8557214 DOI: 10.1038/s41419-021-04325-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a common adverse reaction to antineoplastic treatment with few appropriate, specific interventions. We aimed to identify the role of the G protein coupled estrogen receptor (GPER) in CIM and its mechanism. Adult male C57BL/6 mice were intraperitoneally injected with 5-fluorouracil to establish the CIM model. The selective GPER agonist G-1 significantly inhibited weight loss and histological damage in CIM mice and restored mucosal barrier dysfunction, including improving the expression of ZO-1, increasing the number of goblet cells, and decreasing mucosal permeability. Moreover, G-1 treatment did not alter the antitumor effect of 5-fluorouracil. In the CIM model, G-1 therapy reduced the expression of proapoptotic protein and cyclin D1 and cyclin B1, reversed the changes in the number of TUNEL+ cells, Ki67+ and bromodeoxyuridine+ cells in crypts. The selective GPER antagonist G15 eliminated all of the above effects caused by G-1 on CIM, and application of G15 alone increased the severity of CIM. GPER was predominantly expressed in ileal crypts, and G-1 inhibited the DNA damage induced by 5-fluorouracil in vivo and vitro, as confirmed by the decrease in the number of γH2AX+ cells in the crypts and the comet assay results. Referring to the data from GEO dataset we verified GPER activation restored ERK1/2 activity in CIM and 5-fluorouracil-treated IEC-6 cells. Once the effects of G-1 on ERK1/2 activity were abolished with the ERK1/2 inhibitor PD0325901, the effects of G-1 on DNA damage both in vivo and in vitro were eliminated. Correspondingly, all of the manifestations of G-1 protection against CIM were inhibited by PD0325901, such as body weight and histological changes, the mucosal barrier, the apoptosis and proliferation of crypt cells. In conclusion, GPER activation prevents CIM by inhibiting crypt cell DNA damage in an ERK1/2-dependent manner, suggesting GPER might be a target preventing CIM.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Honghui Zeng
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyun Li
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jianbo Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao Li
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Runze Xu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuntao Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Xue
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
16
|
Yuan H, Su J, Hu S, Wei P. Expression of miR-92a, miR-224 and miR-25 in non-small cell lung cancer and their correlation with clinical characteristics. Am J Transl Res 2021; 13:5561-5567. [PMID: 34150158 PMCID: PMC8205675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To analyze the correlation of the expression of microRNA-92a (miR-92a), microRNA-224 (miR-224), and microRNA-25 (miR-25) in non-small cell lung cancer with its clinical characteristics. METHODS This prospective study was performed in 125 non-small cell lung cancer patients admitted to our hospital between January 2019 and January 2020. All patients' cancer and adjacent tissue were collected and the expression of miR-92a, miR-224, and miR-25 were detected using real-time fluorescence quantitative RT-PCR. Data were analyzed using SPSS statistical software (version 20.0). Correlation analysis was conducted using Pearson correlation coefficient. RESULTS Compared with adjacent tissue, the relative expression of miR-92a, miR-224, and miR-25 in cancer tissue were increased (all P<0.001). There was no correlation between the expression of miR-92a, miR-224, and miR-25 and baseline data like gender, age, smoking history, and tumor size (all P>0.05). The relative expression of miR-92a, miR-224 and miR-25 in differentiated cancer patients were higher than those in highly and moderately differentiated cancer patients (all P<0.05). The relative expression of miR-92a, miR-224 and miR-25 in patients with lymph node metastasis (LNM) were increased when compared with those had no LNM (all P<0.001). Compared with stage I and II patients, the relative expression of miR-92a, miR-224 and miR-25 in stage III and IV patients were increased (all P<0.001). The relative expression of miR-92a, miR-224, and miR-25 were positively correlated to each other (all P<0.01). CONCLUSION miR-92a, miR-224, and miR-25 are overexpressed in non-small cell lung cancer and the expressions are related to the degree of differentiation, presence or absence of LNM, and TNM staging. In addition, the expression of miR-92a, miR-224 and miR-25 are positively correlated to each other. This suggests that miR-92a, miR-224, and miR-25 cooperatively participated in the occurrence and development of non-small cell lung cancer.
Collapse
Affiliation(s)
- Hao Yuan
- Department of Oncology, Guigang City People’s HospitalGuigang, Guangxi Zhuang Autonomous Region, China
| | - Jiajia Su
- Department of Echocardiography, Guigang City Hospital of Traditional Chinese MedicineGuigang, Guangxi Zhuang Autonomous Region, China
| | - Siqin Hu
- Department of Oncology, People’s Hospital of LonghuaShenzhen, Guangdong Province, China
| | - Peng Wei
- Department of Pulmonary and Critical Care Medicine, Guigang City People’s HospitalGuigang, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
17
|
Zhang J, Morris-Natschke SL, Ma D, Shang XF, Yang CJ, Liu YQ, Lee KH. Biologically active indolizidine alkaloids. Med Res Rev 2020; 41:928-960. [PMID: 33128409 DOI: 10.1002/med.21747] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
Indolizidine alkaloids are chemical constituents isolated from various marine and terrestrial plants and animals, including but not limited to trees, fungi, ants, and frogs, with a myriad of important biological activities. In this review, we discuss the biological activity and pharmacological effects of indolizidine alkaloids and offer new avenues toward the discovery of new and better drugs based on these naturally occurring compounds.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
19
|
Li Z, Paulin D, Lacolley P, Coletti D, Agbulut O. Vimentin as a target for the treatment of COVID-19. BMJ Open Respir Res 2020; 7:7/1/e000623. [PMID: 32913008 PMCID: PMC7482103 DOI: 10.1136/bmjresp-2020-000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Denise Paulin
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Patrick Lacolley
- Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, Lorraine, France
| | - Dario Coletti
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France.,Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Roma, Lazio, Italy
| | - Onnik Agbulut
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| |
Collapse
|
20
|
Chen L, Li X, Lu C, Zhao Y, Zhu J, Yang L. The long non‑coding RNA CASC7 inhibits growth and invasion of non‑small cell lung cancer cells through phosphatase and tensin homolog upregulation via sequestration of miR‑92a. Int J Oncol 2020; 57:466-477. [PMID: 32626930 PMCID: PMC7307594 DOI: 10.3892/ijo.2020.5076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has demonstrated the crucial roles of long non-coding RNAs (lncRNAs) in various human cancers, including non-small cell lung cancer (NSCLC). However, to the best of our knowledge, the role of the lncRNA cancer susceptibility candidate 7 (CASC7) in NSCLC has not been clearly determined. The aim of the present study was to investigate the involvement of CASC7 in NSCLC. Marked downregulation of CASC7 was observed in NSCLC tissues and cell lines, and this downregulation of CASC7 was closely associated with distant metastasis, lymph node involvement and poor overall survival in NSCLC patients. Furthermore, overexpression of CASC7 significantly suppressed the proliferation, invasion and migration of the NSCLC cells A549 and H358, and promoted cell apoptosis in vitro. In addition, CASC7 was shown to act as a competing endogenous RNA by sponging miR-92a, which was proven to be an oncogenic miRNA in our previous study. The expression of miR-92a was upregulated in NSCLC tissues and cell lines, and was found to be inversely associated with CASC7 expression in NSCLC tissues. It was also demonstrated that CASC7 upregulated the expression of the tumor suppressor gene phosphatase and tensin homolog (a well-known target of miR-92a) by sequestration of miR-92a. Moreover, the tumor-suppressive effects of CASC7 were partly reversed by miR-92a overexpression in NSCLC cells. Collectively, the results of the present study indicated that CASC7 may act as a tumor-suppressive lncRNA that inhibits NSCLC progression by sponging miR-92a. These findings may improve our understanding of the potential mechanisms through which gain of CASC7 expression represses NSCLC progression.
Collapse
Affiliation(s)
- Ling Chen
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Xin Li
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Chaojing Lu
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Ji Zhu
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Lixin Yang
- Department of Thoracic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
21
|
Xu F, Zhou F. Inhibition of microRNA-92a ameliorates lipopolysaccharide-induced endothelial barrier dysfunction by targeting ITGA5 through the PI3K/Akt signaling pathway in human pulmonary microvascular endothelial cells. Int Immunopharmacol 2019; 78:106060. [PMID: 31841757 DOI: 10.1016/j.intimp.2019.106060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
Overwhelming inflammation and extensive alveolar-endothelial injury are characteristic pathological features of acute respiratory distress syndrome (ARDS)). MicroRNAs are involved in the regulation of a variety of cellular processes including endothelial damage and inflammatory responses. However, little is known about their function and the molecules regulating lung microvascular endothelial injury. Here, we determined the levels of microRNA-92a (miR-92a) in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMECs). We found that miR-92a expression was greater in HPMECs treated with LPS than in control cells. Inhibition of miR-92a through transfection with a miR-92a inhibitor significantly increased HPMECs migration, enhanced tube formation, and improved endothelial cell barrier dysfunction. Inhibition of miR-92a ameliorated the inflammatory response by decreasing the release of the proinflammatory factors IL-6 and TNF-α. In addition, integrin α5 (ITGA5) was found to be a target gene of miR-92a in LPS-induced endothelial barrier dysfunction. Western blot analysis showed that inhibition of miR-92a may ameliorate endothelial barrier dysfunction by activating the PI3K/Akt signaling pathway. Together, these results reveal an important role of miR-92a in LPS-induced endothelial barrier dysfunction, and suggest that miR-92a may have potential as a prognostic indicator and a future target for the treatment of acute lung injury (ALI)/ARDS.
Collapse
Affiliation(s)
- Fan Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Fachun Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
22
|
Sun LR, Zhou W, Zhang HM, Guo QS, Yang W, Li BJ, Sun ZH, Gao SH, Cui RJ. Modulation of Multiple Signaling Pathways of the Plant-Derived Natural Products in Cancer. Front Oncol 2019; 9:1153. [PMID: 31781485 PMCID: PMC6856297 DOI: 10.3389/fonc.2019.01153] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
Natural compounds are highly effective anticancer chemotherapeutic agents, and the targets of plant-derived anticancer agents have been widely reported. In this review, we focus on the main signaling pathways of apoptosis, proliferation, invasion, and metastasis that are regulated by polyphenols, alkaloids, saponins, and polysaccharides. Alkaloids primarily affect apoptosis-related pathways, while polysaccharides primarily target pathways related to proliferation, invasion, and metastasis. Other compounds, such as flavonoids and saponins, affect all of these aspects. The association between compound structures and signaling pathways may play a critical role in drug discovery.
Collapse
Affiliation(s)
- Li-Rui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhou
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Hong-Mei Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Qiu-Shi Guo
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing-Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Zhi-Hui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Shuo-Hui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ran-Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|