1
|
Hui N, Yu L, Qu L, Yan H. Cytokines in aqueous humor of patients with congenital cataract during delayed sequential bilateral cataract surgery. BMC Ophthalmol 2023; 23:490. [PMID: 38031045 PMCID: PMC10688144 DOI: 10.1186/s12886-023-03239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND To explore the changes of cytokines expression in aqueous humor (AH) of eyes of patients with congenital cataract (CC) who underwent delayed sequential bilateral cataract surgery (DSBCS). METHODS 28 patients with CC underwent DSBCS. AH samples were collected from each eye before surgery. The contents of cytokines in AH were detected by Luminex xMAP Technology. RESULTS There was no significant difference in the expression of IL-8, IP-10, MCP-1 and PDGFAA in the AH of the first and second eyes (P = 0.35, 0.39, 0.17, respectively). The level of IL-8 in the first-eye AH was negatively correlated with age (ρ=- 0.519, P = 0.008). IP-10 and MCP-1 in the second-eye AH were negatively correlated with age (ρ=- 0.483, P = 0.009; ρ=- 0.445, P = 0.018,respectively). CONCLUSION The first-eye surgery in patients with CC may not cause the change of cytokines in the contralateral eye. The expression of IL-8, IP-10 and MCP-1 in the AH was negatively correlated with the age of patients. TRIAL REGISTRATION The study was registered at www.chictr.org.cn on March 22, 2022 and the clinical trial number is ChiCTR2200057927.
Collapse
Affiliation(s)
- Na Hui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 710004, Xi'an, China
| | - Lei Yu
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 710004, Xi'an, China
| | - Laiqiang Qu
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 710004, Xi'an, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 710004, Xi'an, China.
| |
Collapse
|
2
|
Wang F, Zhong W, Yang Q, Zhao W, Liu X, Rao B, Lin X, Zhang J. Distribution and synaptic organization of substance P-like immunoreactive neurons in the mouse retina. Brain Struct Funct 2023; 228:1703-1724. [PMID: 37481742 DOI: 10.1007/s00429-023-02688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Substance P (SP), a neuroprotective peptidergic neurotransmitter, is known to have immunoreactivity (IR) localized to amacrine and/or ganglion cells in a variety of species' retinas, but it has not yet been studied in the mouse retina. Thus, we investigated the distribution and synaptic organization of SP-IR by confocal and electron microscopy immunocytochemistry in the mouse retina. SP-IR was distributed in the inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Most of the SP-IR somas belonged to amacrine cells (2.5% of all) in the INL and their processes stratified into the S1, S3, and S5 layers of the IPL, with the most intense band in the S5 layer. Some SP-IR somas can also be observed in the GCL, which were identified as displaced amacrine cells (82%, 1269/1550) and ganglion cells (18%, 281/1550) by antibodies against AP2α and RBPMS, respectively. Such SP-IR ganglion cells (1.2% of all RGCs) can be further divided into 3 subgroups expressing SP/α-Synuclein (α-Syn), SP/GAD67, and/or SP/GAD67/α-Syn. Possible physiological and pathological roles of these ganglion cells are discussed. Further, electron microscopy evidence demonstrates that SP-IR amacrine cells receive major inputs from other SP-IR amacrine cell processes (146/242 inputs) and output mostly to SP-negative amacrine cell processes (291/673 outputs), suggesting series inhibition among amacrine cells. These results reveal for the first time an explicit distribution, novel ganglion cell features, and synaptic organization of SP-IR in the mouse retina, which is important for the future use of mouse models to study the roles of SP in healthy and diseased (including Parkinson's disease) retinal states.
Collapse
Affiliation(s)
- Fenglan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenhui Zhong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingwen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenna Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoqing Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bilin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xin Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jun Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Kokabi F, Ebrahimi S, Mirzavi F, Ghiasi Nooghabi N, Hashemi SF, Hashemy SI. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023. [PMID: 36651605 DOI: 10.1002/biof.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Diabetes is a significant public health issue known as the world's fastest-growing disease condition. It is characterized by persistent hyperglycemia and subsequent chronic complications leading to organ dysfunction and, ultimately, the failure of target organs. Substance P (SP) is an undecapeptide that belongs to the family of tachykinin (TK) peptides. The SP-mediated activation of the neurokinin 1 receptor (NK1R) regulates many pathophysiological processes in the body. There is also a relation between the SP/NK1R system and diabetic processes. Importantly, deregulated expression of SP has been reported in diabetes and diabetes-associated chronic complications. SP can induce both diabetogenic and antidiabetogenic effects and thus affect the pathology of diabetes destructively or protectively. Here, we review the current knowledge of the functional relevance of the SP/NK1R system in diabetes pathogenesis and its exploitation for diabetes therapy. A comprehensive understanding of the role of the SP/NK1R system in diabetes is expected to shed further light on developing new therapeutic possibilities for diabetes and its associated chronic conditions.
Collapse
Affiliation(s)
- Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Luna C, Quirce S, Aracil-Marco A, Belmonte C, Gallar J, Acosta MC. Unilateral Corneal Insult Also Alters Sensory Nerve Activity in the Contralateral Eye. Front Med (Lausanne) 2021; 8:767967. [PMID: 34869482 PMCID: PMC8634144 DOI: 10.3389/fmed.2021.767967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023] Open
Abstract
After the unilateral inflammation or nerve lesion of the ocular surface, the ipsilateral corneal sensory nerve activity is activated and sensitized, evoking ocular discomfort, irritation, and pain referred to the affected eye. Nonetheless, some patients with unilateral ocular inflammation, infection, or surgery also reported discomfort and pain in the contralateral eye. We explored the possibility that such altered sensations in the non-affected eye are due to the changes in their corneal sensory nerve activity in the contralateral, not directly affected eye. To test that hypothesis, we recorded the impulse activity of the corneal mechano- and polymodal nociceptor and cold thermoreceptor nerve terminals in both eyes of guinea pigs, subjected unilaterally to three different experimental conditions (UV-induced photokeratitis, microkeratome corneal surgery, and chronic tear deficiency caused by removal of the main lacrimal gland), and in eyes of naïve animals ex vivo. Overall, after unilateral eye damage, the corneal sensory nerve activity appeared to be also altered in the contralateral eye. Compared with the naïve guinea pigs, animals with unilateral UV-induced mild corneal inflammation, showed on both eyes an inhibition of the spontaneous and stimulus-evoked activity of cold thermoreceptors, and increased activity in nociceptors affecting both the ipsilateral and the contralateral eye. Unilateral microkeratome surgery affected the activity of nociceptors mostly, inducing sensitization in both eyes. The removal of the main lacrimal gland reduced tear volume and increased the cold thermoreceptor activity in both eyes. This is the first direct demonstration that unilateral corneal nerve lesion, especially ocular surface inflammation, functionally affects the activity of the different types of corneal sensory nerves in both the ipsilateral and contralateral eyes. The mechanisms underlying the contralateral affectation of sensory nerves remain to be determined, although available data support the involvement of neuroimmune interactions. The parallel alteration of nerve activity in contralateral eyes has two main implications: a) in the experimental design of both preclinical and clinical studies, where the contralateral eyes cannot be considered as a control; and, b) in the clinical practice, where clinicians must consider the convenience of treating both eyes of patients with unilateral ocular conditions to avoid pain and secondary undesirable effects in the fellow eye.
Collapse
Affiliation(s)
- Carolina Luna
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Susana Quirce
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Adolfo Aracil-Marco
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Carlos Belmonte
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, San Juan de Alicante, Spain
| | - M Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| |
Collapse
|
5
|
Liu Y, Zhu R, Jin X, Wang Y, Shi Y, Zhang N, Wang J, Dong Y, Zhang H. Activation of Conjunctiva-Associated Lymphoid Tissue in Patients With Infectious Keratitis Using In Vivo Confocal Microscopy. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34427624 PMCID: PMC8399476 DOI: 10.1167/iovs.62.10.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose We aimed to evaluate activation of conjunctiva-associated lymphoid tissue (CALT) in patients with keratitis using in vivo confocal microscopy (IVCM) and conjunctival impression cytology (CIC). Methods In addition to anterior segment photography and corneal fluorescein staining, IVCM revealed the palpebral conjunctiva in all subjects, and CIC and immunofluorescence staining were performed. Results Diffuse lymphoid tissue cell density in the eyes of patients with keratitis was significantly greater compared with healthy volunteers (P < 0.001). Similar trends were found in perifollicular lymphocyte density (P < 0.001), follicular density (P = 0.029), follicular center reflection intensity (P = 0.011), and follicular area (P < 0.001). Immunofluorescence staining showed that the proportions of CD4+ (61.7% ± 8.0% vs. 17.3% ± 10.2%, respectively, P < 0.001) and CD8+ (46.9% ± 10.0% vs. 19.6% ± 11.5%, respectively, P < 0.001) cells in patients with keratitis was greater compared with healthy volunteers. Interestingly, we also observed changes in the contralateral eye in subjects with keratitis. Conclusions Our research suggests that CALT, as an ocular immune structure, is activated and plays an important role in the pathogenesis of keratitis. This has been overlooked previously. CALT is also active in the contralateral eye of subjects with keratitis.
Collapse
Affiliation(s)
- Yuting Liu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, Harbin, China.,Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, Harbin, China
| | - Rui Zhu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, Harbin, China.,Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, Harbin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, Harbin, China.,Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, Harbin, China
| | - Yingbin Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, Harbin, China.,Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, Harbin, China
| | - Yan Shi
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, Harbin, China.,Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, Harbin, China
| | - Nan Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, Harbin, China
| | - Jingrao Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, Harbin, China.,Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, Harbin, China
| | - Yueyan Dong
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, Harbin, China.,Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin City, Nangang District, Heilongjiang Province, Harbin, China.,Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Heilongjiang Province, Harbin, China
| |
Collapse
|
6
|
Lasagni Vitar RM, Rama P, Ferrari G. The two-faced effects of nerves and neuropeptides in corneal diseases. Prog Retin Eye Res 2021; 86:100974. [PMID: 34098111 DOI: 10.1016/j.preteyeres.2021.100974] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Corneal nerves are instrumental to maintain cornea integrity through regulation of key physiological functions such as tear secretion, blink reflex, and neuropeptide turnover. Corneal nerve injury/stimulation can follow many insults including mechanical/chemical trauma, infections and surgeries. Nerve disruption initiates a process named neurogenic inflammation which leads to edema, pain, and recruitment and activation of leukocytes. Interestingly, leukocyte influx in the cornea can further damage nerves by releasing inflammatory mediators-including neuropeptides. The clinical outcome of neuroinflammation can be beneficial or detrimental to corneal integrity. On one side, it ensures prompt wound healing and prevents infections. On the other, prolonged and/or deranged neuroinflammation can permanently disrupt corneal integrity and impair vision. The cornea is an ideal site to study peripheral neuroinflammation and neurogenic inflammation since it receives the highest density of sensory nerves of the entire body. We will review the corneal nerve anatomy and neurochemistry, discuss the beneficial and detrimental effects of neurogenic inflammation in corneal wound healing, inflammatory processes, and pain. We will also examine the emerging remote impact of corneal nerve disruption on the trigeminal ganglion and the brain, highlighting the key role of neuropeptide Substance P. Finally, we will discuss the clinical relevance of such neuroinflammatory network in the context of severe and highly prevalent ocular diseases, including potential treatments.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Guerrero-Moreno A, Baudouin C, Melik Parsadaniantz S, Réaux-Le Goazigo A. Morphological and Functional Changes of Corneal Nerves and Their Contribution to Peripheral and Central Sensory Abnormalities. Front Cell Neurosci 2020; 14:610342. [PMID: 33362474 PMCID: PMC7758484 DOI: 10.3389/fncel.2020.610342] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
The cornea is the most densely innervated and sensitive tissue in the body. The cornea is exclusively innervated by C- and A-delta fibers, including mechano-nociceptors that are triggered by noxious mechanical stimulation, polymodal nociceptors that are excited by mechanical, chemical, and thermal stimuli, and cold thermoreceptors that are activated by cooling. Noxious stimulations activate corneal nociceptors whose cell bodies are located in the trigeminal ganglion (TG) and project central axons to the trigeminal brainstem sensory complex. Ocular pain, in particular, that driven by corneal nerves, is considered to be a core symptom of inflammatory and traumatic disorders of the ocular surface. Ocular surface injury affecting corneal nerves and leading to inflammatory responses can occur under multiple pathological conditions, such as chemical burn, persistent dry eye, and corneal neuropathic pain as well as after some ophthalmological surgical interventions such as photorefractive surgery. This review depicts the morphological and functional changes of corneal nerve terminals following corneal damage and dry eye disease (DED), both ocular surface conditions leading to sensory abnormalities. In addition, the recent fundamental and clinical findings of the importance of peripheral and central neuroimmune interactions in the development of corneal hypersensitivity are discussed. Next, the cellular and molecular changes of corneal neurons in the TG and central structures that are driven by corneal nerve abnormalities are presented. A better understanding of the corneal nerve abnormalities as well as neuroimmune interactions may contribute to the identification of a novel therapeutic targets for alleviating corneal pain.
Collapse
Affiliation(s)
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, IHU FOReSIGHT, Paris, France.,CHNO des Quinze-Vingts, IHU FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France.,Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | | | | |
Collapse
|