1
|
Cotugno N, Olivieri G, Pascucci GR, Amodio D, Morrocchi E, Pighi C, Manno EC, Rotulo GA, D'Anna C, Chinali M, Tarissi de Jacobis I, Buonsenso D, Villani A, Rossi P, Marchesi A, Palma P. Multi-modal immune dynamics of pre-COVID-19 Kawasaki Disease following intravenous immunoglobulin. Clin Immunol 2024; 267:110349. [PMID: 39186994 DOI: 10.1016/j.clim.2024.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Despite progress, the molecular mechanisms underlying Kawasaki Disease (KD) and intravenous immunoglobulin's (IVIG) ability to mitigate the inflammatory process remain poorly understood. To characterize this condition, plasma proteomic profiles, flow cytometry, and gene expression of T cell subsets were investigated in longitudinal samples from KD patients and compared with two control groups. Systems-level analysis of samples in the acute phase revealed distinctive inflammatory features of KD, involving mainly Th-1 and Th-17 mediators and unveiled a potential disease severity signature. APBB1IP demonstrated an association with coronary artery involvement (CAI) and was significantly higher in CAI+ compared to CAI- patients. Integrative analysis revealed a transient reduction in CD4+ EM T cells and a comprehensive immune activation and exhaustion. Following treatment, Tregs at both frequency and gene expression levels revealed immune dynamics of recovery. Overall, our data provide insights into KD, which may offer valuable information on prognostic indicators and possible targets for novel treatments.
Collapse
Affiliation(s)
- Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giulio Olivieri
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Rubens Pascucci
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Probiomics S.r.l., Via Montpellier 1, 00133 Rome, Italy
| | - Donato Amodio
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elena Morrocchi
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Pighi
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emma Concetta Manno
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Carolina D'Anna
- Cardiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marcello Chinali
- Cardiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Tarissi de Jacobis
- Emergency, Acceptance and General Pediatrics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Centro di Salute Globale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Villani
- Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Emergency, Acceptance and General Pediatrics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Rossi
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Marchesi
- Emergency, Acceptance and General Pediatrics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Palma
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
2
|
Hosaka S, Imagawa K, Yano Y, Lin L, Shiono J, Takahashi-Igari M, Hara H, Hayashi D, Imai H, Morita A, Fukushima H, Takada H. The CXCL10-CXCR3 axis plays an important role in Kawasaki disease. Clin Exp Immunol 2024; 216:104-111. [PMID: 37952216 PMCID: PMC10929692 DOI: 10.1093/cei/uxad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
The precise pathogenesis of Kawasaki disease remains unknown. In an attempt to elucidate the pathogenesis of KD through the analysis of acquired immunity, we comprehensively examined the immunophenotypic changes in immune cells such as lymphocytes and monocytes along with various cytokines, focusing on differences between pre- and post- treatment samples. We found high levels of CXCL9 and CXCL10 chemokines that decreased with treatment, which coincided with a post-treatment expansion of Th1 cells expressing CXCR3. Our results show that the CXCL10-CXCR3 axis plays an important role in the pathogenesis of KD.
Collapse
Affiliation(s)
- Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
| | - Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Yusuke Yano
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
- Department of Pediatric Cardiology, Ibaraki Children’s Hospital, Mito City, Japan
| | - Lisheng Lin
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
- Department of Pediatric Cardiology, Ibaraki Children’s Hospital, Mito City, Japan
| | - Junko Shiono
- Department of Pediatric Cardiology, Ibaraki Children’s Hospital, Mito City, Japan
| | | | - Hideki Hara
- Department of Pediatrics, Tsukuba Medical Center Hospital, Tsukuba City, Japan
| | - Daisuke Hayashi
- Department of Pediatrics, Tsukuba Medical Center Hospital, Tsukuba City, Japan
| | - Hironori Imai
- Department of Pediatrics, Tsukuba Medical Center Hospital, Tsukuba City, Japan
| | - Atsushi Morita
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba City, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| |
Collapse
|
3
|
Aleman A, van Kesteren M, Zajdman AK, Srivastava K, Cognigni C, Mischka J, Chen LY, Upadhyaya B, Serebryakova K, Nardulli JR, Lyttle N, Kappes K, Jackson H, Gleason CR, Oostenink A, Cai GY, Van Oekelen O, van Bakel H, Sordillo EM, Cordon-Cardo C, Merad M, Jagannath S, Wajnberg A, Simon V, Parekh S. Cellular mechanisms associated with sub-optimal immune responses to SARS-CoV-2 bivalent booster vaccination in patients with Multiple Myeloma. EBioMedicine 2023; 98:104886. [PMID: 37995467 PMCID: PMC10708991 DOI: 10.1016/j.ebiom.2023.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The real-world impact of bivalent vaccines for wild type (WA.1) and Omicron variant (BA.5) is largely unknown in immunocompromised patients with Multiple Myeloma (MM). We characterize the humoral and cellular immune responses in patients with MM before and after receiving the bivalent booster, including neutralizing assays to identify patterns associated with continuing vulnerability to current variants (XBB1.16, EG5) in the current post-pandemic era. METHODS We studied the humoral and cellular immune responses before and after bivalent booster immunization in 48 MM patients. Spike binding IgG antibody levels were measured by SARS-CoV-2 spike binding ELISA and neutralization capacity was assessed by a SARS-CoV-2 multi-cycle microneutralization assays to assess inhibition of live virus. We measured spike specific T-cell function using the QuantiFERON SARS-CoV-2 (Qiagen) assay as well as flow-cytometry based T-cell. In a subset of 38 patients, high-dimensional flow cytometry was performed to identify immune cell subsets associated with lack of humoral antibodies. FINDINGS We find that bivalent vaccination provides significant boost in protection to the omicron variant in our MM patients, in a treatment specific manner. MM patients remain vulnerable to newer variants with mutations in the spike portion. Anti-CD38 and anti-BCMA therapies affect the immune machinery needed to produce antibodies. INTERPRETATION Our study highlights varying immune responses observed in MM patients after receiving bivalent COVID-19 vaccination. Specifically, a subgroup of MM patients undergoing anti-CD38 and anti-BCMA therapy experience impairment in immune cells such DCs, B cells, NK cells and TFH cells, leading to an inability to generate adequate humoral and cellular responses to vaccination. FUNDING National Cancer Institute (National Institutes of Health), National Institute of Allergy and Infectious Diseases (National Institutes of Health), NCI Serological Sciences Network for COVID-19 (SeroNet) and The Icahn School of Medicine at Mount Sinai.
Collapse
Affiliation(s)
- Adolfo Aleman
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan van Kesteren
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariel Kogan Zajdman
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Cognigni
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacob Mischka
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucia Y Chen
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bhaskar Upadhyaya
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kseniya Serebryakova
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica R Nardulli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neko Lyttle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katerina Kappes
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hayley Jackson
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles R Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annika Oostenink
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gianna Y Cai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oliver Van Oekelen
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sundar Jagannath
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ania Wajnberg
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Samir Parekh
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Li SY, Ding Y. [Expression of interleukin-17A in serum of children with intravenous immunoglobulin-resistant Kawasaki disease and its clinical significance]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:244-249. [PMID: 36946157 PMCID: PMC10032069 DOI: 10.7499/j.issn.1008-8830.2210151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVES To study the expression of interleukin-17A (IL-17A) in the serum of children with intravenous immunoglobulin (IVIG)-resistant Kawasaki disease (KD) and its clinical significance. METHODS A total of 143 children with KD who were hospitalized in Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, from June 2021 to June 2022 were enrolled in this prospective study, among whom 115 had IVIG-sensitive KD and 28 had IVIG-resistant KD. After matching for sex and age, 110 children with acute respiratory infectious diseases (fever time ≥5 days but without KD) were enrolled as the control group. The enzyme-linked immunosorbent assay was used to measure the serum level of IL-17A. The levels of white blood cell count (WBC), neutrophil count (NE), platelet count, erythrocyte sedimentation rate, and C-reactive protein (CRP) were measured. The receiver operating characteristic curve was plotted to analyze the value of WBC, NE, CRP, and IL-17A in the prediction of IVIG-resistant KD. The multivariate logistic regression analysis was used to evaluate the predictive factors for resistance to IVIG in children with KD. RESULTS Before IVIG treatment, the KD group had a significantly higher serum level of IL-17A than the control group (P<0.05), and the children with IVIG-resistant KD had a significantly higher serum level of IL-17A than those with IVIG-sensitive KD (P<0.05). The receiver operating characteristic curve analysis showed that WBC, NE, CRP, and IL-17A had an area under the curve of 0.718, 0.741, 0.627, and 0.840, respectively, in the prediction of IVIG-resistant KD. With serum IL-17A ≥44.06 pg/mL as the cut-off value, IL-17A had a sensitivity of 84% and a specificity of 81% in the prediction of IVIG-resistant KD. The multivariate logistic regression analysis showed that a high serum level of IL-17A was a predictive factor for resistance to IVIG in children with KD (OR=1.161, P=0.001). CONCLUSIONS Serum IL-17A levels are elevated in children with IVIG-resistant KD, and serum IL-17A level (≥44.06 pg/mL) may have a predictive value for resistance to IVIG in children with KD.
Collapse
Affiliation(s)
- Shi-Yu Li
- Department of Pediatric Immunology, Wuhan Children's Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Yan Ding
- Department of Pediatric Immunology, Wuhan Children's Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| |
Collapse
|
5
|
Xie Z, Huang Y, Li X, Lun Y, Li X, He Y, Wu S, Wang S, Sun J, Zhang J. Atlas of circulating immune cells in Kawasaki disease. Int Immunopharmacol 2021; 102:108396. [PMID: 34890998 DOI: 10.1016/j.intimp.2021.108396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Increasing evidence shows that the pathogenesis of Kawasaki disease (KD) is caused by abnormal and unbalanced innate and adaptive immune responses. However, the changes in and functions of adaptive immune cells in the peripheral blood of subjects with KD remain controversial. In this study, three different methods, CIBERSORT, Immune Cell Abundance Identifier (ImmuCellAI), and immune cell markers, were used to evaluate the proportions and abundances of immune cells in eight KD datasets (GSE9863, GSE9864, GSE18606, GSE63881, GSE68004, GSE73461, GSE73463, and GSE64486; a total of 1,251 samples). Compared with those in normal controls and convalescent KD samples, the proportions and abundances of innate immune cells such as neutrophils, monocytes, and macrophages in acute KD peripheral blood samples were significantly increased, while those of adaptive immune cells such as B and T cells were significantly decreased. The change tendencies of these immune cells were similar to those observed in other febrile illnesses but were more significant. However, in the coronary artery tissues of patients with convalescent KD, adaptive immune cells, especially B cells and CD8+ T cell subsets, were significantly increased. This result suggests that adaptive immune cells can be selectively recruited from peripheral blood into the coronary arteries. In addition, we found that elevated neutrophils in peripheral blood could be used as a biomarker to assist in the differential diagnosis of KD, but we did not find immune cells that could accurately predict intravenousimmunoglobulin (IVIG) responses in multiple datasets.
Collapse
Affiliation(s)
- Zhenyu Xie
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yinde Huang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xinyang Li
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yu Lun
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xin Li
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yuzhen He
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Song Wu
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Shiyue Wang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jianjian Sun
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Singampalli KL, Jui E, Shani K, Ning Y, Connell JP, Birla RK, Bollyky PL, Caldarone CA, Keswani SG, Grande-Allen KJ. Congenital Heart Disease: An Immunological Perspective. Front Cardiovasc Med 2021; 8:701375. [PMID: 34434978 PMCID: PMC8380780 DOI: 10.3389/fcvm.2021.701375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
Congenital heart disease (CHD) poses a significant global health and economic burden-despite advances in treating CHD reducing the mortality risk, globally CHD accounts for approximately 300,000 deaths yearly. Children with CHD experience both acute and chronic cardiac complications, and though treatment options have improved, some remain extremely invasive. A challenge in addressing these morbidity and mortality risks is that little is known regarding the cause of many CHDs and current evidence suggests a multifactorial etiology. Some studies implicate an immune contribution to CHD development; however, the role of the immune system is not well-understood. Defining the role of the immune and inflammatory responses in CHD therefore holds promise in elucidating mechanisms underlying these disorders and improving upon current diagnostic and treatment options. In this review, we address the current knowledge coinciding CHDs with immune and inflammatory associations, emphasizing conditions where this understanding would provide clinical benefit, and challenges in studying these mechanisms.
Collapse
Affiliation(s)
- Kavya L. Singampalli
- Department of Bioengineering, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Elysa Jui
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Kevin Shani
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Yao Ning
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | | | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
- Division of Congenital Heart Surgery, Departments of Surgery and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Christopher A. Caldarone
- Division of Congenital Heart Surgery, Departments of Surgery and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | | |
Collapse
|
7
|
Ghamar Talepoor A, Khosropanah S, Doroudchi M. Functional subsets of circulating follicular helper T cells in patients with atherosclerosis. Physiol Rep 2020; 8:e14637. [PMID: 33230950 PMCID: PMC7683878 DOI: 10.14814/phy2.14637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Frequencies of circulating T follicular helper (cTfh) functional subsets vary in autoimmune diseases. We evaluated the frequencies and clinical relevance of functional subsets of cTfhs in patients with different degrees of stenosis. Blood samples were collected from high (≥50%) (n = 12) and low (<50%) stenosis (n = 12) groups and healthy controls (n = 6). Three subsets of cTfh cells including cTfh1 (CXCR3+ CCR6- ), cTfh2 (CXCR3- CCX6- ), and cTfh17 (CXCR3- CCR6+ ) were detected by flow cytometry. The frequency of cTfh1 cells was higher in control (p = .0006) and low-stenosis groups (p = .005) compared to high-stenosis group. The percentages of cTfh2 and cTfh17 cells were increased in high-stenosis compared to low-stenosis (p = .002 and p = .007) and control groups (p = .0004 and p = .0005), respectively. The frequency of cTfh1 cells negatively correlated with cholesterol (p = .040; r = -.44), C-reactive protein (CRP) (p = .015; r = -.68), erythrocyte sedimentation rate (ESR) (p = .002; r = -.79), neutrophil/lymphocyte ratio (NLR) (p = .028; r = -.67), and cTfh17 (p = .017; r = -.7244) in the high-stenosis group. The percentages of cTfh2 and cTfh17 cells positively correlated with cholesterol (p = .025; r = .77 and p = .033; r = .71), CRP (p = .030; r = .61 and p = .020; r = .73), ESR (p = .027; r = .69 and p = .029; r = .70), NLR (p = .004; r = .76 and p = .005; r = .74), and with each other (p = .022; r = .7382), respectively, in the high-stenosis group. The increased frequencies of cTfh2 and cTfh17 subsets and their correlation with laboratory parameters in patients with atherosclerosis may suggest their role in promoting the inflammatory response and atherosclerosis progression.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Shahdad Khosropanah
- Department of CardiologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Mehrnoosh Doroudchi
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
8
|
The role of follicular T helper cells in the onset and treatment of type 1 diabetes. Int Immunopharmacol 2020; 84:106499. [DOI: 10.1016/j.intimp.2020.106499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
|
9
|
Zhang D, Liu L, Huang X, Tian J. Insights Into Coronary Artery Lesions in Kawasaki Disease. Front Pediatr 2020; 8:493. [PMID: 32984207 PMCID: PMC7477115 DOI: 10.3389/fped.2020.00493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
This review summarizes recent advances in understanding the development of coronary arteritis in Kawasaki disease. Kawasaki disease is the most common cause of acquired heart disease among children characterized with coronary artery abnormalities, which can cause myocardial ischemia, infarction, and even death. The pathogenic factors of Kawasaki disease and the pathological process of coronary artery disease are not clear at present, which brings challenges to the prevention and treatment of the disease. The treatment of Kawasaki disease focuses mainly on timely administration of intravenous high doses of immunoglobulin and aspirin. However, there are still some patients who do not respond well to this standard treatment, and its management remains a challenge. As a result, coronary artery lesions still occur in patients and affect their quality of life. In this review, we discuss updated research data of Kawasaki disease coronary artery lesions.
Collapse
Affiliation(s)
- Danfeng Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Cardiology, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lingjuan Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Cardiology, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xupei Huang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Jie Tian
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Cardiology, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
10
|
Xu M, Jiang Y, Wang J, Liu J, Liu C, Liu D, Yang S. Distinct variations of antibody secreting cells and memory B cells during the course of Kawasaki disease. BMC Immunol 2019; 20:16. [PMID: 31159728 PMCID: PMC6547606 DOI: 10.1186/s12865-019-0299-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background Both antibody secreting cells (ASCs) and memory B cells are essential for the maintenance of humoral immunity. To date, limit studies have focused on the two populations in Kawasaki disease (KD). To address the status of humoral immunity during KD, our current concentration is on the variations of ASCs and memory B cells, as well as their subsets in both acute and remission stages of KD. Methods ASCs were defined as the population with high expressions of CD27 and CD38 among CD3-CD20- lymphocytes. Based on the expression of surface marker CD138 and intracellular marker IgG, ASCs were further divided into two subsets. Memory B cells were characterized by the expressions of IgD, CD27 and IgM, upon which memory B cells were further categorized into CD27 + IgD- (switched memory, Sm), CD27-IgD- (Double negative, DN) and CD27 + IgD + IgM+ (marginal zone, MZ) B cells. Collectively, six populations were analyzed using flow cytometry. The blood samples were collected from KD patients in different stages and healthy controls. Results In the acute stage, the percentages of ASCs, CD138+ ASCs, and IgG+ ASCs were significantly increased. In contrast, the percentages of memory B cells including Sm and MZ B cells were significantly decreased. Correlation analysis found ASCs positively correlated with the level of serum IgM, whereas MZ B cells not only positively correlated with the level of serum IgG, IgA, and IgM, but also positively correlated with the level of serum complement C3 and C4 and negatively correlated with the value of C-reactive protein (CRP). In the remission stage, the percentages of IgG+ ASCs and MZ B cells were significantly reduced, whereas other subsets presented heterogeneous variations. Conclusions Our study provided direct evidence that ASCs contributed to the pathogenesis of KD, and it was the first time to describe the variation of memory B cells in this disease. Among the subsets, only IgG+ ASCs presented a significant increase in the acute stage and decreased after IVIG administration, indicating the involvement of IgG+ ASCs in the inflammation of KD and also suggesting that IVIG played an inhibitory role in the expression of cytoplasmic IgG. Electronic supplementary material The online version of this article (10.1186/s12865-019-0299-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Xu
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jinghua Wang
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jinxiang Liu
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Congcong Liu
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Deying Liu
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China.,Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Sirui Yang
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
11
|
Nakamura A, Ikeda K, Hamaoka K. Aetiological Significance of Infectious Stimuli in Kawasaki Disease. Front Pediatr 2019; 7:244. [PMID: 31316950 PMCID: PMC6611380 DOI: 10.3389/fped.2019.00244] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/29/2019] [Indexed: 01/23/2023] Open
Abstract
Kawasaki disease (KD) is a pediatric vasculitis syndrome that is often involves coronary artery lesions (e. g., coronary artery aneurysms). Although its causal factors and entire pathogenesis remain elusive, the available evidence indicates that the pathogenesis of KD is closely associated with dysregulation of immune responses to various viruses or microbes. In this short review, we address several essential aspects of the etiology of KD with respect to the immune response to infectious stimuli: 1) the role of viral infections, 2) the role of bacterial infections and the superantigen hypothesis, 3) involvement of innate immune response including pathogens/microbe-associated molecular patterns and complement pathways, and 4) the influence of genetic background on the response to infectious stimuli. Based on the clinical and experimental evidence, we discuss the possibility that a wide range of microbes and viruses could cause KD through common and distinct immune processes.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Central Research Laboratory, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuyuki Ikeda
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Hamaoka
- Pediatric Cardiology and Kawasaki Disease Center, Uji-Tokushukai Medical Center, Kyoto, Japan.,Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|