1
|
Meyer GM, Hollunder B, Li N, Butenko K, Dembek TA, Hart L, Nombela C, Mosley P, Akram H, Acevedo N, Borron BM, Chou T, Castaño Montoya JP, Strange B, Barcia JA, Tyagi H, Castle DJ, Smith AH, Choi KS, Kopell BH, Mayberg HS, Sheth SA, Goodman WK, Leentjens AFG, Richardson RM, Rossell SL, Bosanac P, Cosgrove GR, Kuhn J, Visser-Vandewalle V, Figee M, Dougherty DD, Siddiqi SH, Zrinzo L, Joyce E, Baldermann JC, Fox MD, Neudorfer C, Horn A. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Optimal Stimulation Sites. Biol Psychiatry 2024; 96:101-113. [PMID: 38141909 PMCID: PMC11190041 DOI: 10.1016/j.biopsych.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.
Collapse
Affiliation(s)
- Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Barbara Hollunder
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Lauren Hart
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina Nombela
- Biological and Health Psychology, School of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Philip Mosley
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia; Neurosciences Queensland, St. Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Queensland, Australia; Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Herston, Queensland, Australia
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Nicola Acevedo
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia; St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Benjamin M Borron
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tina Chou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juan Pablo Castaño Montoya
- Department of Neurosurgery, Hospital Clínico San Carlos, Instituto de Investigacion Sanitaria San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Bryan Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan A Barcia
- Department of Neurosurgery, Hospital Clínico San Carlos, Instituto de Investigacion Sanitaria San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Himanshu Tyagi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - David J Castle
- University of Tasmania and Centre for Mental Health Service Innovation, Tasmania, Australia; State-wide Mental Health Service, Tasmania, Australia
| | - Andrew H Smith
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sameer A Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, Texas
| | - Wayne K Goodman
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, Texas
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia; St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Peter Bosanac
- St. Vincent's Hospital, Melbourne, Victoria, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - G Rees Cosgrove
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Eileen Joyce
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Baldi S, Schuhmann T, Goossens L, Schruers KRJ. Individualized, connectome-based, non-invasive stimulation of OCD deep-brain targets: A proof-of-concept. Neuroimage 2024; 288:120527. [PMID: 38286272 DOI: 10.1016/j.neuroimage.2024.120527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
Treatment-resistant obsessive-compulsive disorder (OCD) generally improves with deep-brain stimulation (DBS), thought to modulate neural activity at both the implantation site and in connected brain regions. However, its invasive nature, side-effects, and lack of customization, make non-invasive treatments preferable. Harnessing the established remote effects of cortical transcranial magnetic stimulation (TMS), connectivity-based approaches have emerged for depression that aim at influencing distant regions connected to the stimulation site. We here investigated whether effective OCD DBS targets (here subthalamic nucleus [STN] and nucleus accumbens [NAc]) could be modulated non-invasively with TMS. In a proof-of-concept study with nine healthy individuals, we used 7T magnetic resonance imaging (MRI) and probabilistic tractography to reconstruct the fiber tracts traversing manually segmented STN/NAc. Two TMS targets were individually selected based on the strength of their structural connectivity to either the STN, or both the STN and NAc. In a sham-controlled, within-subject cross-over design, TMS was administered over the personalized targets, located around the precentral and middle frontal gyrus. Resting-state functional 3T MRI was acquired before, and at 5 and 25 min after stimulation to investigate TMS-induced changes in the functional connectivity of the STN and NAc with other regions of the brain. Static and dynamic seed-to-voxel correlation analyses were conducted. TMS over both targets was able to modulate the functional connectivity of the STN and NAc, engaging both overlapping and distinct regions, and unfolding following different temporal dynamics. Given the relevance of the engaged connected regions to OCD pathology, we argue that a personalized, connectivity-based procedure is worth investigating as potential treatment for refractory OCD.
Collapse
Affiliation(s)
- Samantha Baldi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre, Maastricht, the Netherlands
| | - Liesbet Goossens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Koen R J Schruers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Wagner BJ, Schüller CB, Schüller T, Baldermann JC, Kohl S, Visser-Vandewalle V, Huys D, Marx M, Kuhn J, Peters J. Chronic Deep Brain Stimulation of the Human Nucleus Accumbens Region Disrupts the Stability of Intertemporal Preferences. J Neurosci 2023; 43:7175-7185. [PMID: 37684029 PMCID: PMC10601365 DOI: 10.1523/jneurosci.0138-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 09/10/2023] Open
Abstract
When choosing between rewards that differ in temporal proximity (intertemporal choice), human preferences are typically stable, constituting a clinically relevant transdiagnostic trait. Here we show, in female and male human patients undergoing deep brain stimulation (DBS) of the anterior limb of the internal capsule/NAcc region for treatment-resistant obsessive-compulsive disorder, that long-term chronic (but not phasic) DBS disrupts intertemporal preferences. Hierarchical Bayesian modeling accounting for temporal discounting behavior across multiple time points allowed us to assess both short-term and long-term reliability of intertemporal choice. In controls, temporal discounting was highly reliable, both long-term (6 months) and short-term (1 week). In contrast, in patients undergoing DBS, short-term reliability was high, but long-term reliability (6 months) was severely disrupted. Control analyses confirmed that this effect was not because of range restriction, the presence of obsessive-compulsive disorder symptoms or group differences in choice stochasticity. Model-agnostic between- and within-subject analyses confirmed this effect. These findings provide initial evidence for long-term modulation of cognitive function via DBS and highlight a potential contribution of the human NAcc region to intertemporal preference stability over time.SIGNIFICANCE STATEMENT Choosing between rewards that differ in temporal proximity is in part a stable trait with relevance for many mental disorders, and depends on prefrontal regions and regions of the dopamine system. Here we show that chronic deep brain stimulation of the human anterior limb of the internal capsule/NAcc region for treatment-resistant obsessive-compulsive disorder disrupts the stability of intertemporal preferences. These findings show that chronic stimulation of one of the brain's central motivational hubs can disrupt preferences thought to depend on this circuit.
Collapse
Affiliation(s)
- Ben J Wagner
- Department of Psychology, Biological Psychology, University of Cologne, 50969 Cologne, Germany
- Faculty of Psychology, Chair of Cognitive Computational Neuroscience, TU Dresden, 01187 Dresden, Germany
| | - Canan B Schüller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Juan C Baldermann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
- Department of Neurology, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sina Kohl
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
- Department of Psychiatry and Psychotherapy III, LVR Klinik Bonn, 53111 Bonn, Germany
| | - Milena Marx
- Department of Psychology, Developmental Psychology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic, Johanniter Hospital Oberhausen, 46145 Oberhausen, Germany
| | - Jan Peters
- Department of Psychology, Biological Psychology, University of Cologne, 50969 Cologne, Germany
| |
Collapse
|
4
|
Abdelnaim MA, Lang-Hambauer V, Hebel T, Schoisswohl S, Schecklmann M, Deuter D, Schlaier J, Langguth B. Deep brain stimulation for treatment resistant obsessive compulsive disorder; an observational study with ten patients under real-life conditions. Front Psychiatry 2023; 14:1242566. [PMID: 37779611 PMCID: PMC10533930 DOI: 10.3389/fpsyt.2023.1242566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Obsessive-compulsive disorder (OCD) affects 2-3% of the global population, causing distress in many functioning levels. Standard treatments only lead to a partial recovery, and about 10% of the patients remain treatment-resistant. Deep brain stimulation offers a treatment option for severe, therapy-refractory OCD, with a reported response of about 60%. We report a comprehensive clinical, demographic, and treatment data for patients who were treated with DBS in our institution. Methods We offered DBS to patients with severe chronic treatment resistant OCD. Severity was defined as marked impairment in functioning and treatment resistance was defined as non-response to adequate trials of medications and psychotherapy. Between 2020 and 2022, 11 patients were implanted bilaterally in the bed nucleus of stria terminalis (BNST). Patients were evaluated with YBOCS, MADRS, GAF, CGI, and WHOQOL-BREF. We performed the ratings at baseline (before surgery), after implantation before the start of the stimulation, after reaching satisfactory stimulation parameters, and at follow-up visits 3, 6, 9, and 12 months after optimized stimulation. Results One patient has retracted his consent to publish the results of his treatment, thus we are reporting the results of 10 patients (5 males, 5 females, mean age: 37 years). Out of our 10 patients, 6 have shown a clear response indicated by a YBOCS-reduction between 42 and 100 percent at last follow-up. One further patient experienced a subjectively dramatic effect on OCD symptoms, but opted afterwards to stop the stimulation. The other 3 patients showed a slight, non-significant improvement of YBOCS between 8.8 and 21.9%. The overall mean YBOCS decreased from 28.3 at baseline to 13.3 (53% reduction) at the last follow-up. The improvement of the OCD symptoms was also accompanied by an improvement of depressive symptoms, global functioning, and quality of life. Conclusion Our results suggest that BNST-DBS can be effective for treatment-resistant OCD patients, as indicated by a reduction in symptoms and an overall improvement in functioning. Despite the need for additional research to define the patients' selection criteria, the most appropriate anatomical target, and the most effective stimulation parameters, improved patient access for this therapy should be established.
Collapse
Affiliation(s)
- Mohamed A. Abdelnaim
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
| | - Verena Lang-Hambauer
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
| | - Tobias Hebel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Department of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Daniel Deuter
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
- Department of Neurosurgery, University Regensburg, Regensburg, Germany
| | - Juergen Schlaier
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
- Department of Neurosurgery, University Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- Center for Deep Brain Stimulation, University Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Merner AR, Kostick-Quenet K, Campbell TA, Pham MT, Sanchez CE, Torgerson L, Robinson J, Pereira S, Outram S, Koenig BA, Starr PA, Gunduz A, Foote KD, Okun MS, Goodman W, McGuire AL, Zuk P, Lázaro-Muñoz G. Participant perceptions of changes in psychosocial domains following participation in an adaptive deep brain stimulation trial. Brain Stimul 2023; 16:990-998. [PMID: 37330169 PMCID: PMC10529988 DOI: 10.1016/j.brs.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND There has been substantial controversy in the neuroethics literature regarding the extent to which deep brain stimulation (DBS) impacts dimensions of personality, mood, and behavior. OBJECTIVE/HYPOTHESIS Despite extensive debate in the theoretical literature, there remains a paucity of empirical data available to support or refute claims related to the psychosocial changes following DBS. METHODS A mixed-methods approach was used to examine the perspectives of patients who underwent DBS regarding changes to their personality, authenticity, autonomy, risk-taking, and overall quality of life. RESULTS Patients (n = 21) who were enrolled in adaptive DBS trials for Parkinson's disease, essential tremor, obsessive-compulsive disorder, Tourette's syndrome, or dystonia participated. Qualitative data revealed that participants, in general, reported positive experiences with alterations in what was described as 'personality, mood, and behavior changes.' The majority of participants reported increases in quality of life. No participants reported 'regretting the decision to undergo DBS.' CONCLUSION(S) The findings from this patient sample do not support the narrative that DBS results in substantial adverse changes to dimensions of personality, mood, and behavior. Changes reported as "negative" or "undesired" were few in number, and transient in nature.
Collapse
Affiliation(s)
- Amanda R Merner
- Center for Bioethics, Harvard Medical School, 641 Huntington Avenue, Boston, MA, 02115, United States
| | - Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, One Baylor Plaza, Suite 326D, Houston, TX, 77030, United States
| | - Tiffany A Campbell
- Center for Bioethics, Harvard Medical School, 641 Huntington Avenue, Boston, MA, 02115, United States
| | - Michelle T Pham
- Center for Bioethics and Social Justice, Michigan State University, East Fee Hall, 965 Wilson Road Rm A-126, East Lansing, MI, 48824, United States
| | - Clarissa E Sanchez
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, One Baylor Plaza, Suite 326D, Houston, TX, 77030, United States
| | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, One Baylor Plaza, Suite 326D, Houston, TX, 77030, United States
| | - Jill Robinson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, One Baylor Plaza, Suite 326D, Houston, TX, 77030, United States
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, One Baylor Plaza, Suite 326D, Houston, TX, 77030, United States
| | - Simon Outram
- Program in Bioethics, University of California, San Francisco, 490 Illinois Street, San Francisco, CA, 94143, United States
| | - Barbara A Koenig
- Program in Bioethics, University of California, San Francisco, 490 Illinois Street, San Francisco, CA, 94143, United States
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA, 94143, United States
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, 3009 SW Williston Road, Gainesville, FL, 32608, United States; Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Science Building, JG283, Gainesville, FL, 32611, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, 3009 SW Williston Road, Gainesville, FL, 32608, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, 3009 SW Williston Road, Gainesville, FL, 32608, United States
| | - Wayne Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1977 Butler Blvd Suite E4.100, Houston, TX, 77030, United States
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, One Baylor Plaza, Suite 326D, Houston, TX, 77030, United States
| | - Peter Zuk
- Center for Bioethics, Harvard Medical School, 641 Huntington Avenue, Boston, MA, 02115, United States
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical School, 641 Huntington Avenue, Boston, MA, 02115, United States; Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States.
| |
Collapse
|
6
|
Kurtin DL, Giunchiglia V, Vohryzek J, Cabral J, Skeldon AC, Violante IR. Moving from phenomenological to predictive modelling: Progress and pitfalls of modelling brain stimulation in-silico. Neuroimage 2023; 272:120042. [PMID: 36965862 DOI: 10.1016/j.neuroimage.2023.120042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Brain stimulation is an increasingly popular neuromodulatory tool used in both clinical and research settings; however, the effects of brain stimulation, particularly those of non-invasive stimulation, are variable. This variability can be partially explained by an incomplete mechanistic understanding, coupled with a combinatorial explosion of possible stimulation parameters. Computational models constitute a useful tool to explore the vast sea of stimulation parameters and characterise their effects on brain activity. Yet the utility of modelling stimulation in-silico relies on its biophysical relevance, which needs to account for the dynamics of large and diverse neural populations and how underlying networks shape those collective dynamics. The large number of parameters to consider when constructing a model is no less than those needed to consider when planning empirical studies. This piece is centred on the application of phenomenological and biophysical models in non-invasive brain stimulation. We first introduce common forms of brain stimulation and computational models, and provide typical construction choices made when building phenomenological and biophysical models. Through the lens of four case studies, we provide an account of the questions these models can address, commonalities, and limitations across studies. We conclude by proposing future directions to fully realise the potential of computational models of brain stimulation for the design of personalized, efficient, and effective stimulation strategies.
Collapse
Affiliation(s)
- Danielle L Kurtin
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, GU2 7XH, United Kingdom; Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | | | - Jakub Vohryzek
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Anne C Skeldon
- Department of Mathematics, Centre for Mathematical and Computational Biology, University of Surrey, Guildford, United Kingdom
| | - Ines R Violante
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
7
|
Mahoney JJ, Koch-Gallup N, Scarisbrick DM, Berry JH, Rezai AR. Deep brain stimulation for psychiatric disorders and behavioral/cognitive-related indications: Review of the literature and implications for treatment. J Neurol Sci 2022; 437:120253. [DOI: 10.1016/j.jns.2022.120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/23/2022] [Accepted: 04/03/2022] [Indexed: 11/15/2022]
|
8
|
Müller S, van Oosterhout A, Bervoets C, Christen M, Martínez-Álvarez R, Bittlinger M. Concerns About Psychiatric Neurosurgery and How They Can Be Overcome: Recommendations for Responsible Research. NEUROETHICS-NETH 2022. [DOI: 10.1007/s12152-022-09485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Background
Psychiatric neurosurgery is experiencing a revival. Beside deep brain stimulation (DBS), several ablative neurosurgical procedures are currently in use. Each approach has a different profile of advantages and disadvantages. However, many psychiatrists, ethicists, and laypeople are sceptical about psychiatric neurosurgery.
Methods
We identify the main concerns against psychiatric neurosurgery, and discuss the extent to which they are justified and how they might be overcome. We review the evidence for the effectiveness, efficacy and safety of each approach, and discuss how this could be improved. We analyse whether and, if so, how randomised controlled trials (RCTs) can be used in the different approaches, and what alternatives are available if conducting RCTs is impossible for practical or ethical reasons. Specifically, we analyse the problem of failed RCTs after promising open-label studies.
Results
The main concerns are: (i) reservations based on historical psychosurgery, (ii) concerns about personality changes, (iii) concerns regarding localised interventions, and (iv) scepticism due to the lack of scientific evidence. Given the need for effective therapies for treatment-refractory psychiatric disorders and preliminary evidence for the effectiveness of psychiatric neurosurgery, further research is warranted and necessary. Since psychiatric neurosurgery has the potential to modify personality traits, it should be held to the highest ethical and scientific standards.
Conclusions
Psychiatric neurosurgery procedures with preliminary evidence for efficacy and an acceptable risk–benefit profile include DBS and micro- or radiosurgical anterior capsulotomy for intractable obsessive–compulsive disorder. These methods may be considered for individual treatment attempts, but multi-centre RCTs are necessary to provide reliable evidence.
Collapse
|
9
|
Common and differential connectivity profiles of deep brain stimulation and capsulotomy in refractory obsessive-compulsive disorder. Mol Psychiatry 2022; 27:1020-1030. [PMID: 34703025 DOI: 10.1038/s41380-021-01358-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
Neurosurgical interventions including deep brain stimulation (DBS) and capsulotomy have been demonstrated effective for refractory obsessive-compulsive disorder (OCD), although treatment-shared/-specific network mechanisms remain largely unclear. We retrospectively analyzed resting-state fMRI data from three cohorts: a cross-sectional dataset of 186 subjects (104 OCD and 82 healthy controls), and two longitudinal datasets of refractory patients receiving ventral capsule/ventral striatum DBS (14 OCD) and anterior capsulotomy (27 OCD). We developed a machine learning model predictive of OCD symptoms (indexed by the Yale-Brown Obsessive Compulsive Scale, Y-BOCS) based on functional connectivity profiles and used graphic measures of network communication to characterize treatment-induced profile changes. We applied a linear model on 2 levels treatments (DBS or capsulotomy) and outcome to identify whether pre-surgical network communication was associated with differential treatment outcomes. We identified 54 functional connectivities within fronto-subcortical networks significantly predictive of Y-BOCS score in patients across 3 independent cohorts, and observed a coexisting pattern of downregulated cortico-subcortical and upregulated cortico-cortical network communication commonly shared by DBS and capsulotomy. Furthermore, increased cortico-cortical communication at ventrolateral and centrolateral prefrontal cortices induced by DBS and capsulotomy contributed to improvement of mood and anxiety symptoms, respectively (p < 0.05). Importantly, pretreatment communication of ventrolateral and centrolateral prefrontal cortices were differentially predictive of mood and anxiety improvements by DBS and capsulotomy (effect sizes = 0.45 and 0.41, respectively). These findings unravel treatment-shared and treatment-specific network characteristics induced by DBS and capsulotomy, which may facilitate the search of potential evidence-based markers for optimally selecting among treatment options for a patient.
Collapse
|
10
|
Abstract
Mania, the diagnostic hallmark of bipolar disorder, is an episodic disturbance of mood, sleep, behavior, and perception. Improved understanding of the neurobiology of mania is expected to allow for novel avenues to address current challenges in its diagnosis and treatment. Previous research focusing on the impairment of functional neuronal circuits and brain networks has resulted in heterogenous findings, possibly due to a focus on bipolar disorder and its several phases, rather than on the unique context of mania. Here we present a comprehensive overview of the evidence regarding the functional neuroanatomy of mania. Our interpretation of the best available evidence is consistent with a convergent model of lateralized circuit dysfunction in mania, with hypoactivity of the ventral prefrontal cortex in the right hemisphere, and hyperactivity of the amygdala, basal ganglia, and anterior cingulate cortex in the left hemisphere of the brain. Clarification of dysfunctional neuroanatomic substrates of mania may contribute not only to improve understanding of the neurobiology of bipolar disorder overall, but also highlights potential avenues for new circuit-based therapeutic approaches in the treatment of mania.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal.
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
11
|
Ekmekçi Ertek İ, Uçar Ö, Emre Yaman M, Hakan Emmez Ö, Candansayar S. Treatment Outcomes of Gamma-Knife Radio Surgery in Refractory Obsessive-Compulsive Disorder. PSYCHIAT CLIN PSYCH 2021; 31:401-407. [PMID: 38765645 PMCID: PMC11079719 DOI: 10.5152/pcp.2021.21223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/05/2021] [Indexed: 05/22/2024] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is a common disease that has negative effects on functionality, and 10% of the patients do not respond to first-line treatments. Gamma-knife radiosurgery (GKRS) has been used in patients with treatment-resistant OCD, but the data on long-term outcomes are still unsatisfactory. Methods In this study, 12 patients who underwent GKRS between 2005 and 2020 were evaluated retrospectively. Anterior capsulotomy was performed using two 4-mm isocenters at the midputaminal point of the anterior limb of the internal capsule on each side with a maximum radiation dose of 140-180 Gy. Patients were followed up with the Yale-Brown Obsession and Compulsion Scale (Y-BOCS), Montgomery-Asberg Depression Rating Scale (MADRS), and Brief Psychiatric Rating Scale (BPRS) on the first, third, and sixth months. Results After the procedure, a 35% reduction was observed in the overall Y-BOCS scores, and full response rate was 50%. There was a 49.5% decrease in the MADRS scores and a 57.8% decrease in the BPRS. Conclusion GKRS is an effective and non-invasive procedure with favorable side effects in treatment-resistant OCD with selected patients.
Collapse
Affiliation(s)
- İrem Ekmekçi Ertek
- Department of Psychiatry, Gazi University School of Medicine, Ankara, Turkey
| | - Önder Uçar
- Department of Psychiatry, Gazi University School of Medicine, Ankara, Turkey
| | - Mesut Emre Yaman
- Department of Neurosurgery, Gazi University School of Medicine, Ankara, Turkey
| | - Ömer Hakan Emmez
- Department of Neurosurgery, Gazi University School of Medicine, Ankara, Turkey
| | - Selçuk Candansayar
- Department of Psychiatry, Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Baldermann JC, Schüller T, Kohl S, Voon V, Li N, Hollunder B, Figee M, Haber SN, Sheth SA, Mosley PE, Huys D, Johnson KA, Butson C, Ackermans L, Bouwens van der Vlis T, Leentjens AFG, Barbe M, Visser-Vandewalle V, Kuhn J, Horn A. Connectomic Deep Brain Stimulation for Obsessive-Compulsive Disorder. Biol Psychiatry 2021; 90:678-688. [PMID: 34482949 DOI: 10.1016/j.biopsych.2021.07.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/17/2023]
Abstract
Obsessive-compulsive disorder is among the most disabling psychiatric disorders. Although deep brain stimulation is considered an effective treatment, its use in clinical practice is not fully established. This is, at least in part, due to ambiguity about the best suited target and insufficient knowledge about underlying mechanisms. Recent advances suggest that changes in broader brain networks are responsible for improvement of obsessions and compulsions, rather than local impact at the stimulation site. These findings were fueled by innovative methodological approaches using brain connectivity analyses in combination with neuromodulatory interventions. Such a connectomic approach for neuromodulation constitutes an integrative account that aims to characterize optimal target networks. In this critical review, we integrate findings from connectomic studies and deep brain stimulation interventions to characterize a neural network presumably effective in reducing obsessions and compulsions. To this end, we scrutinize methodologies and seemingly conflicting findings with the aim to merge observations to identify common and diverse pathways for treating obsessive-compulsive disorder. Ultimately, we propose a unified network that-when modulated by means of cortical or subcortical interventions-alleviates obsessive-compulsive symptoms.
Collapse
Affiliation(s)
- Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sina Kohl
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valerie Voon
- Department of Psychiatry, Cambridge University, Cambridge, United Kingdom
| | - Ningfei Li
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Barbara Hollunder
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany; Einstein Center for Neurosciences, Charité - University Medicine Berlin, Berlin, Germany; Faculty of Philosophy, Humboldt University of Berlin, Berlin School of Mind and Brain, Berlin, Germany
| | - Martijn Figee
- Department of Psychiatry, Mount Sinai Hospital, New York, New York
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York; Basic Neuroscience Division, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Philip E Mosley
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kara A Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Christopher Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Linda Ackermans
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Albert F G Leentjens
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Michael Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
13
|
Davis RA, Winston H, Gault JM, Kern DS, Mikulich-Gilbertson SK, Abosch A. Deep Brain Stimulation for OCD in a Patient With Comorbidities: Epilepsy, Tics, Autism, and Major Depressive Disorder. J Neuropsychiatry Clin Neurosci 2021; 33:167-171. [PMID: 33535803 DOI: 10.1176/appi.neuropsych.20060153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rachel A Davis
- Department of Psychiatry (Davis, Winston, Mikulich-Gilbertson), Department of Neurosurgery (Gault, Kern, Abosch) and Department of Neurology (Kern, Abosch), University of Colorado Denver School of Medicine, Aurora, Colo
| | - Helena Winston
- Department of Psychiatry (Davis, Winston, Mikulich-Gilbertson), Department of Neurosurgery (Gault, Kern, Abosch) and Department of Neurology (Kern, Abosch), University of Colorado Denver School of Medicine, Aurora, Colo
| | - Judith M Gault
- Department of Psychiatry (Davis, Winston, Mikulich-Gilbertson), Department of Neurosurgery (Gault, Kern, Abosch) and Department of Neurology (Kern, Abosch), University of Colorado Denver School of Medicine, Aurora, Colo
| | - Drew S Kern
- Department of Psychiatry (Davis, Winston, Mikulich-Gilbertson), Department of Neurosurgery (Gault, Kern, Abosch) and Department of Neurology (Kern, Abosch), University of Colorado Denver School of Medicine, Aurora, Colo
| | - Susan K Mikulich-Gilbertson
- Department of Psychiatry (Davis, Winston, Mikulich-Gilbertson), Department of Neurosurgery (Gault, Kern, Abosch) and Department of Neurology (Kern, Abosch), University of Colorado Denver School of Medicine, Aurora, Colo
| | - Aviva Abosch
- Department of Psychiatry (Davis, Winston, Mikulich-Gilbertson), Department of Neurosurgery (Gault, Kern, Abosch) and Department of Neurology (Kern, Abosch), University of Colorado Denver School of Medicine, Aurora, Colo
| |
Collapse
|
14
|
Davis RA, Giordano J, Hufford DB, Sheth SA, Warnke P, Widge AS, Richardson RM, Rosenow JM, Rossi PJ, Storch EA, Winston H, Zboyan J, Dougherty DD, Foote KD, Goodman WK, McLaughlin NCR, Ojemann S, Rasmussen S, Abosch A, Okun MS. Restriction of Access to Deep Brain Stimulation for Refractory OCD: Failure to Apply the Federal Parity Act. Front Psychiatry 2021; 12:706181. [PMID: 34456762 PMCID: PMC8387630 DOI: 10.3389/fpsyt.2021.706181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rachel A. Davis
- Department of Psychiatry, University of Colorado Anschutz, Aurora, CO, United States
| | - James Giordano
- Neuroethics Studies Program, Department of Neurology, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | | | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Peter Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL, United States
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University, Chicago, IL, United States
| | - Peter Justin Rossi
- University of California San Francisco Department of Psychiatry, San Francisco, CA, United States
| | - Eric A. Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Helena Winston
- Department of Psychiatry, University of Colorado Anschutz, Aurora, CO, United States
- Denver Health Hospital Authority, Denver, CO, United States
| | - JoAnne Zboyan
- Springer and Steinberg, PC, Denver, CO, United States
| | - Darin D. Dougherty
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Kelly D. Foote
- Departments of Neurosurgery and Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nicole C. R. McLaughlin
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
- Butler Hospital, Providence, RI, United States
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz, Aurora, CO, United States
| | - Steven Rasmussen
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
- Butler Hospital, Providence, RI, United States
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
- Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, United States
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| |
Collapse
|
15
|
Sildatke E, Gruendler TOJ, Ullsperger M, Dembek TA, Baldermann JC, Kohl S, Visser-Vandewalle V, Huys D, Kuhn J, Schüller T. Deep Brain Stimulation Reduces Conflict-Related Theta and Error-Related Negativity in Patients With Obsessive-Compulsive Disorder. Neuromodulation 2021; 25:245-252. [PMID: 34288273 DOI: 10.1111/ner.13493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Obsessive-compulsive disorder (OCD) is a psychiatric disorder with alterations of cortico-striato-thalamo-cortical loops and impaired performance monitoring. Electrophysiological markers such as conflict-related medial frontal theta (MFT) and error-related negativity (ERN) may be altered by clinically effective deep brain stimulation (DBS) of the anterior limb of the internal capsule and nucleus accumbens (ALIC/NAc). We hypothesized that ALIC/NAc DBS modulates electrophysiological performance monitoring markers. MATERIALS AND METHODS Fifteen patients (six male) with otherwise treatment-refractory OCD receiving ALIC/NAc DBS performed a flanker task with EEG recordings at three sessions: presurgery, and at follow-up with DBS on and off. We examined MFT, ERN, and task performance. Furthermore, we investigated interrelations with clinical efficacy and the explored the influence of the location of individual stimulation volumes on EEG modulations. RESULTS MFT and ERN were significantly attenuated by DBS with differences most pronounced between presurgery and DBS-on states. Also, we observed reaction time slowing for erroneous responses during DBS-off. Larger presurgery ERN amplitudes were associated with decreased clinical efficacy. Exploratory anatomical analyses suggested that stimulation volumes encompassing the NAc were associated with MFT modulation, whereas ALIC stimulation was associated with modulation of the ERN and clinical efficacy. CONCLUSION ALIC/NAc DBS diminished MFT and ERN, demonstrating modulation of the medial frontal performance monitoring system in OCD. Furthermore, our findings encourage further studies to explore the ERN as a potential predictor for clinical efficacy.
Collapse
Affiliation(s)
- Elena Sildatke
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Theo O J Gruendler
- Military Hospital Berlin, Center for Military Mental Health, Berlin, Germany
| | - Markus Ullsperger
- Department of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Till A Dembek
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sina Kohl
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Psychiatry and Psychotherapy & Psychosomatic Medicine, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
16
|
Rezai AR, Ranjan M, Figee M, Kopell BH. Commentary: Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines for Deep Brain Stimulations for Obsessive-Compulsive Disorder: Update of the 2014 Guidelines. Neurosurgery 2021; 88:E554-E555. [PMID: 33733275 DOI: 10.1093/neuros/nyab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ali R Rezai
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Martijn Figee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Center for Neuromodulation/Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian Harris Kopell
- Center for Neuromodulation/Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Acevedo N, Bosanac P, Pikoos T, Rossell S, Castle D. Therapeutic Neurostimulation in Obsessive-Compulsive and Related Disorders: A Systematic Review. Brain Sci 2021; 11:brainsci11070948. [PMID: 34356182 PMCID: PMC8307974 DOI: 10.3390/brainsci11070948] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/16/2023] Open
Abstract
Invasive and noninvasive neurostimulation therapies for obsessive-compulsive and related disorders (OCRD) were systematically reviewed with the aim of assessing clinical characteristics, methodologies, neuroanatomical substrates, and varied stimulation parameters. Previous reviews have focused on a narrow scope, statistical rather than clinical significance, grouped together heterogenous protocols, and proposed inconclusive outcomes and directions. Herein, a comprehensive and transdiagnostic evaluation of all clinically relevant determinants is presented with translational clinical recommendations and novel response rates. Electroconvulsive therapy (ECT) studies were limited in number and quality but demonstrated greater efficacy than previously identified. Targeting the pre-SMA/SMA is recommended for transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). TMS yielded superior outcomes, although polarity findings were conflicting, and refinement of frontal/cognitive control protocols may optimize outcomes. For both techniques, standardization of polarity, more treatment sessions (>20), and targeting multiple structures are encouraged. A deep brain stimulation (DBS) 'sweet spot' of the striatum for OCD was proposed, and CBT is strongly encouraged. Tourette's patients showed less variance and reliance on treatment optimization. Several DBS targets achieved consistent, rapid, and sustained clinical response. Analysis of fiber connectivity, as opposed to precise neural regions, should be implemented for target selection. Standardization of protocols is necessary to achieve translational outcomes.
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- Correspondence:
| | - Peter Bosanac
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toni Pikoos
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
| | - David Castle
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Addiction and Mental Health, 252 College Street, Toronto, ON M5T 1R7, Canada
| |
Collapse
|
18
|
Arumugham SS, Srinivas D, Narayanaswamy JC, Jaisoorya TS, Kashyap H, Domenech P, Palfi S, Mallet L, Venkatasubramanian G, Reddy YJ. Identification of biomarkers that predict response to subthalamic nucleus deep brain stimulation in resistant obsessive-compulsive disorder: protocol for an open-label follow-up study. BMJ Open 2021; 11:e047492. [PMID: 34158304 PMCID: PMC8220486 DOI: 10.1136/bmjopen-2020-047492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/26/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) of bilateral anteromedial subthalamic nucleus (amSTN) has been found to be helpful in a subset of patients with severe, chronic and treatment-refractory obsessive-compulsive disorder (OCD). Biomarkers may aid in patient selection and optimisation of this invasive treatment. In this trial, we intend to evaluate neurocognitive function related to STN and related biosignatures as potential biomarkers for STN DBS in OCD. METHODS AND ANALYSIS Twenty-four subjects with treatment-refractory OCD will undergo open-label STN DBS. Structural/functional imaging, electrophysiological recording and neurocognitive assessment would be performed at baseline. The subjects would undergo a structured clinical assessment for 12 months postsurgery. A group of 24 healthy volunteers and 24 subjects with treatment-refractory OCD who receive treatment as usual would be recruited for comparison of biomarkers and treatment response, respectively. Baseline biomarkers would be evaluated as predictors of clinical response. Neuroadaptive changes would be studied through a reassessment of neurocognitive functioning, imaging and electrophysiological activity post DBS. ETHICS AND DISSEMINATION The protocol has been approved by the National Institute of Mental Health and Neurosciences Ethics Committee. The study findings will be disseminated through peer-reviewed scientific journals and scientific meetings.
Collapse
Affiliation(s)
- Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Dwarakanath Srinivas
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - T S Jaisoorya
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Himani Kashyap
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Philippe Domenech
- Univ Paris-Est Créteil, DMU CARE - Département Médical-Universitaire de Chirurgie et Anesthésie réanimation, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Univ of Paris 12 UPEC, Faculté de médecine, INSERM U955, Creteil, France
| | - Stéphane Palfi
- Univ Paris-Est Créteil, DMU CARE - Département Médical-Universitaire de Chirurgie et Anesthésie réanimation, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Univ of Paris 12 UPEC, Faculté de médecine, INSERM U955, Creteil, France
| | - Luc Mallet
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Department of Mental Health and Psychiatry, University of Geneva, Geneva, Switzerland
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Yc Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
19
|
Germann J, Elias GJB, Neudorfer C, Boutet A, Chow CT, Wong EHY, Parmar R, Gouveia FV, Loh A, Giacobbe P, Kim SJ, Jung HH, Bhat V, Kucharczyk W, Chang JW, Lozano AM. Potential optimization of focused ultrasound capsulotomy for obsessive compulsive disorder. Brain 2021; 144:3529-3540. [PMID: 34145884 DOI: 10.1093/brain/awab232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Obsessive-compulsive disorder is a debilitating and often refractory psychiatric disorder. Magnetic resonance-guided focused ultrasound is a novel, minimally invasive neuromodulatory technique that has shown promise in treating this condition. We investigated the relationship between lesion location and long-term outcome in obsessive-compulsive disorder patients treated with focused ultrasound to discern the optimal lesion location and elucidate the efficacious network underlying symptom alleviation. Postoperative images of eleven patients who underwent focused ultrasound capsulotomy were used to correlate lesion characteristics with symptom improvement at one year follow-up. Normative resting-state functional MRI and normative diffusion MRI-based tractography analyses were used to determine the networks associated with successful lesions. Obsessive-compulsive disorder patients treated with inferior thalamic peduncle deep brain stimulation (n = 5) and lesions from the literature implicated in obsessive-compulsive disorder (n = 18) were used for external validation. Successful long-term relief of obsessive-compulsive disorder was associated with lesions that included a specific area in the dorsal anterior limb of the internal capsule. Normative resting-state functional MRI analysis showed that lesion engagement of areas 24 and 46 was significantly associated with clinical outcomes (R = 0.79, p = 0.004). The key role of areas 24 and 46 was confirmed by (1) normative diffusion MRI-based tractography analysis showing that streamlines associated with better outcome projected to these areas, (2) association of these areas with inferior thalamic peduncle deep brain stimulation patients' outcome (R = 0.83, p = 0.003); (3) the connectedness of these areas to obsessive-compulsive disorder-causing lesions, as identified using literature-based lesion network mapping. These results provide considerations for target improvement, outlining the specific area of the internal capsule critical for successful magnetic resonance-guided focused ultrasound outcome and demonstrating that discrete frontal areas are involved in symptom relief. This could help refine focused ultrasound treatment for obsessive-compulsive disorder and provide a network-based rationale for potential alternative targets.
Collapse
Affiliation(s)
- Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Emily H Y Wong
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Roohie Parmar
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Flavia Venetucci Gouveia
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Se Joo Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Venkat Bhat
- Centre for Mental Health and Krembil Research Centre, University Health Network, Toronto, Canada
| | - Walter Kucharczyk
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Kahn L, Sutton B, Winston HR, Abosch A, Thompson JA, Davis RA. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Real World Experience Post-FDA-Humanitarian Use Device Approval. Front Psychiatry 2021; 12:568932. [PMID: 33868034 PMCID: PMC8044872 DOI: 10.3389/fpsyt.2021.568932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: While case series have established the efficacy of deep brain stimulation (DBS) in treating obsessive-compulsive disorder (OCD), it has been our experience that few OCD patients present without comorbidities that affect outcomes associated with DBS treatment. Here we present our experience with DBS therapy for OCD in patients who all have comorbid disease, together with the results of our programming strategies. Methods: For this case series, we assessed five patients who underwent ventral capsule/ventral striatum (VC/VS) DBS for OCD between 2015 and 2019 at the University of Colorado Hospital. Every patient in this cohort exhibited comorbidities, including substance use disorders, eating disorder, tic disorder, and autism spectrum disorder. We conducted an IRB-approved, retrospective study of programming modifications and treatment response over the course of DBS therapy. Results: In addition to patients' subjective reports of improvement, we observed significant improvement in the Yale-Brown Obsessive-Compulsive Scale (44%), the Montgomery-Asberg Depression Rating Scale (53%), the Quality of Life Enjoyment and Satisfaction Questionnaire (27%), and the Hamilton Anxiety Rating scales (34.9%) following DBS. With respect to co-morbid disease, there was a significant improvement in a patient with tic disorder's Total Tic Severity Score (TTSS) (p = 0.005). Conclusions: DBS remains an efficacious tool for the treatment of OCD, even in patients with significant comorbidities in whom DBS has not previously been investigated. Efficacious treatment results not only from the accurate placement of the electrodes by the surgeon but also from programming by the psychiatrist.
Collapse
Affiliation(s)
- Lora Kahn
- Department of Neurosurgery, Ochsner Health, Tulane University-Ochsner Health Neurosurgery Program, New Orleans, LA, United States
| | - Brianne Sutton
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Helena R. Winston
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - John A. Thompson
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel A. Davis
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
21
|
Bormann NL, Trapp NT, Narayanan NS, Boes AD. Developing Precision Invasive Neuromodulation for Psychiatry. J Neuropsychiatry Clin Neurosci 2021; 33:201-209. [PMID: 33985346 PMCID: PMC8576850 DOI: 10.1176/appi.neuropsych.20100268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Psychiatric conditions are common and often disabling. Although great strides have been made in alleviating symptoms with pharmacotherapy and psychotherapeutic approaches, many patients continue to have severe disease burden despite the best therapies available. One of the pervasive challenges to improving treatment is that present diagnostic and therapeutic strategies lag behind our modern conceptualization of the pathophysiology of these disorders. Psychiatric symptoms manifest through activity in specific neural circuits; thus, therapies capable of modulating these circuits are attractive. The investigators reviewed recent advances that facilitate treating medically refractory psychiatric disorders with intracranial neuromodulation in a way that intervenes more directly with the underlying pathophysiology. Specifically, they reviewed the prospects for using intracranial multielectrode arrays to record brain activity with high spatiotemporal resolution and identify circuit-level electrophysiological correlates of symptoms. A causal relationship of circuit electrophysiology to symptoms could then be established by modulating the circuits to disrupt the symptoms. Personalized therapeutic neuromodulation strategies can then proceed in a rational manner with stimulation protocols informed by the underlying circuit-based pathophysiology of the most bothersome symptoms. This strategy would enhance current methods in neurotherapeutics by identifying individualized anatomical targets with symptom-specific precision, circumventing many of the limitations inherent in modern psychiatric nosology and treatment.
Collapse
Affiliation(s)
- Nicholas L. Bormann
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City
| | - Nicholas T. Trapp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif
| | | | - Aaron D. Boes
- Departments of Neurology, Psychiatry, and Pediatrics, University of Iowa Carver College of Medicine
| |
Collapse
|
22
|
Azriel A, Farrand S, Di Biase M, Zalesky A, Lui E, Desmond P, Evans A, Awad M, Moscovici S, Velakoulis D, Bittar RG. Tractography-Guided Deep Brain Stimulation of the Anteromedial Globus Pallidus Internus for Refractory Obsessive-Compulsive Disorder: Case Report. Neurosurgery 2020; 86:E558-E563. [PMID: 31313803 DOI: 10.1093/neuros/nyz285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND IMPORTANCE Obsessive-compulsive disorder (OCD) is a disabling psychiatric disorder, mainly treated with psychotherapy and pharmacotherapy. Surgical intervention may be appropriate for patients with treatment-refractory OCD. Deep brain stimulation (DBS) is an alternative for previously common ablative surgical procedures. Tractography has been proposed as a method for individualizing DBS treatment and may have the potential to improve efficacy. CLINICAL PRESENTATION We present a patient with treatment-refractory OCD previously treated with bilateral leucotomies, who underwent DBS surgery with targeting informed by tractography. Preoperative tractography to identify suitable DBS targets was undertaken. Structural images were also utilized for standard stereotactic surgical planning. The anteromedial globus pallidus internus (amGPi) was chosen as the target bilaterally after consideration of white matter projections to frontal cortical regions and neurosurgical approach. Bilateral amGPi DBS surgery was undertaken without adverse events. At 16-mo follow-up, there was a 48.5% reduction in OCD symptom severity as measured by the Yale-Brown Obsessive Compulsive Scale. CONCLUSION The amGPi can be a successful DBS target for OCD. This is the first known case to report on DBS surgery postleucotomies for OCD and highlights the utility of tractography for surgical planning in OCD.
Collapse
Affiliation(s)
- Amit Azriel
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Sarah Farrand
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia
| | - Maria Di Biase
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia
| | - Elaine Lui
- Department of Radiology and Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia
| | - Patricia Desmond
- Department of Radiology and Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia
| | - Andrew Evans
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
| | - Mohammed Awad
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Samuel Moscovici
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia.,Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia
| | - Richard G Bittar
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Australia.,Deakin University, Victoria, Australia.,Precision Brain Spine and Pain Centre, Kew, Victoria, Australia
| |
Collapse
|
23
|
Cotovio G, Talmasov D, Barahona-Corrêa JB, Hsu J, Senova S, Ribeiro R, Soussand L, Velosa A, Silva VCE, Rost N, Wu O, Cohen AL, Oliveira-Maia AJ, Fox MD. Mapping mania symptoms based on focal brain damage. J Clin Invest 2020; 130:5209-5222. [PMID: 32831292 PMCID: PMC7524493 DOI: 10.1172/jci136096] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDAlthough mania is characteristic of bipolar disorder, it can also occur following focal brain damage. Such cases may provide unique insight into brain regions responsible for mania symptoms and identify therapeutic targets.METHODSLesion locations associated with mania were identified using a systematic literature search (n = 41) and mapped onto a common brain atlas. The network of brain regions functionally connected to each lesion location was computed using normative human connectome data (resting-state functional MRI, n = 1000) and contrasted with those obtained from lesion locations not associated with mania (n = 79). Reproducibility was assessed using independent cohorts of mania lesions derived from clinical chart review (n = 15) and of control lesions (n = 490). Results were compared with brain stimulation sites previously reported to induce or relieve mania symptoms.RESULTSLesion locations associated with mania were heterogeneous and no single brain region was lesioned in all, or even most, cases. However, these lesion locations showed a unique pattern of functional connectivity to the right orbitofrontal cortex, right inferior temporal gyrus, and right frontal pole. This connectivity profile was reproducible across independent lesion cohorts and aligned with the effects of therapeutic brain stimulation on mania symptoms.CONCLUSIONBrain lesions associated with mania are characterized by a specific pattern of brain connectivity that lends insight into localization of mania symptoms and potential therapeutic targets.FUNDINGFundação para a Ciência e Tecnologia (FCT), Harvard Medical School DuPont-Warren Fellowship, Portuguese national funds from FCT and Fundo Europeu de Desenvolvimento Regional, Child Neurology Foundation Shields Research, Sidney R. Baer, Jr. Foundation, Nancy Lurie Marks Foundation, Mather's Foundation, and the NIH.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Daniel Talmasov
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - J. Bernardo Barahona-Corrêa
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joey Hsu
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Suhan Senova
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Neurosurgery Department and
- PePsy Department, Groupe Henri-Mondor Albert-Chenevier, Assistance Publique-Hôpitaux de Paris (APHP), Créteil, France
- Equipe 14, U955 INSERM, Institut Mondor de Recherche Biomedicale and
- Faculté de Médecine, Université Paris Est, Créteil, France
| | - Ricardo Ribeiro
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Louis Soussand
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Velosa
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Vera Cruz e Silva
- Department of Neuroradiology, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Natalia Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology and
| | - Ona Wu
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
| | - Alexander L. Cohen
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston Children’s Hospital, and
| | - Albino J. Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Michael D. Fox
- Berenson-Allen Center for Non-Invasive Brain Stimulation and
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Department of Psychiatry, Department of Neurosurgery, and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Gerbella M, Pinardi C, Di Cesare G, Rizzolatti G, Caruana F. Two Neural Networks for Laughter: A Tractography Study. Cereb Cortex 2020; 31:899-916. [DOI: 10.1093/cercor/bhaa264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Laughter is a complex motor behavior occurring in both emotional and nonemotional contexts. Here, we investigated whether the different functions of laughter are mediated by distinct networks and, if this is the case, which are the white matter tracts sustaining them. We performed a multifiber tractography investigation placing seeds in regions involved in laughter production, as identified by previous intracerebral electrical stimulation studies in humans: the pregenual anterior cingulate (pACC), ventral temporal pole (TPv), frontal operculum (FO), presupplementary motor cortex, and ventral striatum/nucleus accumbens (VS/NAcc). The primary motor cortex (M1) and two subcortical territories were also studied to trace the descending projections. Results provided evidence for the existence of two relatively distinct networks. A first network, including pACC, TPv, and VS/NAcc, is interconnected through the anterior cingulate bundle, the accumbofrontal tract, and the uncinate fasciculus, reaching the brainstem throughout the mamillo-tegmental tract. This network is likely involved in the production of emotional laughter. A second network, anchored to FO and M1, projects to the brainstem motor nuclei through the internal capsule. It is most likely the neural basis of nonemotional and conversational laughter. The two networks interact throughout the pre-SMA that is connected to both pACC and FO.
Collapse
Affiliation(s)
- M Gerbella
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
| | - C Pinardi
- Neuroradiology Department, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - G Di Cesare
- Cognitive Architecture for Collaborative Technologies Unit, Italian Institute of Technology, Genova 16163, Italy
| | - G Rizzolatti
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| | - F Caruana
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| |
Collapse
|
25
|
Koulousakis P, Andrade P, Visser-Vandewalle V, Sesia T. The Nucleus Basalis of Meynert and Its Role in Deep Brain Stimulation for Cognitive Disorders: A Historical Perspective. J Alzheimers Dis 2020; 69:905-919. [PMID: 31104014 DOI: 10.3233/jad-180133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nucleus basalis of Meynert (nbM) was first described at the end of the 19th century and named after its discoverer, Theodor Meynert. The nbM contains a large population of cholinergic neurons that project their axons to the entire cortical mantle, the olfactory tubercle, and the amygdala. It has been functionally associated with the control of attention and maintenance of arousal, both key functions for appropriate learning and memory formation. This structure is well-conserved across vertebrates, although its degree of organization varies between species. Since early in the investigation of its functional and pathological significance, its degeneration has been linked to various major neuropsychiatric disorders. For instance, Lewy bodies, a hallmark in the diagnosis of Parkinson's disease, were originally described in the nbM. Since then, its involvement in other Lewy body and dementia-related disorders has been recognized. In the context of recent positive outcomes following nbM deep brain stimulation in subjects with dementia-associated disorders, we review the literature from an historical perspective focusing on how the nbM came into focus as a promising therapeutic option for patients with Alzheimer's disease. Moreover, we will discuss what is needed to further develop and widely implement this approach as well as examine novel medical indications for which nbM deep brain stimulation may prove beneficial.
Collapse
Affiliation(s)
- Philippos Koulousakis
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Pablo Andrade
- Department of Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Thibaut Sesia
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Germany.,European Graduate School of Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
26
|
Emotions Modulate Subthalamic Nucleus Activity: New Evidence in Obsessive-Compulsive Disorder and Parkinson's Disease Patients. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:556-567. [PMID: 33060034 DOI: 10.1016/j.bpsc.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Subthalamic nucleus (STN) deep brain stimulation alleviates obsessive-compulsive disorder (OCD) symptoms, suggesting that this basal ganglia structure may play a key role in integrating limbic and motor information. We explored the modulation of STN neural activity by visual emotional information under different motor demands. METHODS We compared STN local field potentials acquired in 7 patients with OCD and 15 patients with Parkinson's disease off and on levodopa while patients categorized pictures as unpleasant, pleasant, or neutral and pressed a button for 1 of these 3 categories depending on the instruction. RESULTS During image presentation, theta power increased for unpleasant compared with neutral images in both patients with OCD and patients with Parkinson's disease. Only in patients with OCD was theta power also increased in pleasant compared with neutral trials. During the button press in patients with OCD, no modification of STN activity was seen on average, but theta power increased when the image triggering the motor response was unpleasant. Conversely, in patients with Parkinson's disease, a beta decrease was observed during the button press unrelated to the valence of the stimulus. Finally, in patients with OCD, a significant positive relationship was observed between the amplitude of the emotionally related theta response and symptom severity (measured using the Yale-Brown Obsessive Compulsive Scale). CONCLUSIONS We highlighted modulations of STN theta band activity related to emotions that were specific to OCD and correlated with OCD symptom severity. STN theta-induced activity might therefore underlie dysfunction of the limbic STN and its related network leading to OCD pathophysiology.
Collapse
|
27
|
Winter L, Saryyeva A, Schwabe K, Heissler HE, Runge J, Alam M, Heitland I, Kahl KG, Krauss JK. Long-Term Deep Brain Stimulation in Treatment-Resistant Obsessive-Compulsive Disorder: Outcome and Quality of Life at Four to Eight Years Follow-Up. Neuromodulation 2020; 24:324-330. [PMID: 32667114 DOI: 10.1111/ner.13232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) is a severe disabling disease, and around 10% of patients are considered to be treatment-resistant (tr) in spite of guideline-based therapy. Deep brain stimulation (DBS) has been proposed as a promising treatment for patients with trOCD. However, the optimal site for stimulation is still a matter of debate, and clinical long-term follow-up observations including data on quality of life are sparse. We here present six trOCD patients who underwent DBS with electrodes placed in the bed nucleus of the stria terminalis/anterior limb of the internal capsule (BNST/ALIC), followed for four to eight years after lead implantation. MATERIALS AND METHODS In this prospective observational study, six patients (four men, two women) aged 32-51 years and suffering from severe to extreme trOCD underwent DBS of the BNST/ALIC. Symptom severity was assessed using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), and quality of life using the World Health Organization Quality of Life assessment scale (WHO-QoL BREF). Follow-up was obtained at least for four years in all patients. RESULTS With chronic DBS for four to eight years, four of the six patients had sustained improvement. Two patients remitted and two patients responded (defined as >35% symptom reduction), while the other two patients were considered nonresponders on long-term. Quality of life markedly improved in remitters and responders. We did not observe peri-interventional side effects or adverse effects of chronic stimulation. CONCLUSIONS Chronic DBS of ALIC provides long-term benefit up to four to eight years in trOCD, although not all patients take profit. Targeting the BNST was not particularly relevant since no patient appeared to benefit from direct stimulation of the BNST. Quality of life improved in DBS responders, documented by improved QoL scores and, even more important, by regaining of autonomy and improving psychosocial functioning.
Collapse
Affiliation(s)
- Lotta Winter
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Hans E Heissler
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Ivo Heitland
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
DePaoli D, Goetz L, Gagnon D, Maranon G, Prud'homme M, Cantin L, Parent M, Côté DC. Intraoperative fiber optic guidance during chronic electrode implantation in deep brain stimulation neurosurgery: proof of concept in primates. J Neurosurg 2020; 132:1810-1819. [PMID: 31151099 DOI: 10.3171/2019.1.jns182600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/29/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The clinical outcome of deep brain stimulation (DBS) surgery relies heavily on the implantation accuracy of a chronic stimulating electrode into a small target brain region. Most techniques that have been proposed to precisely target these deep brain regions were designed to map intracerebral electrode trajectory prior to chronic electrode placement, sometimes leading to positioning error of the final electrode. This study was designed to create a new intraoperative guidance tool for DBS neurosurgery that can improve target detection during the final implantation of the chronic electrode. METHODS Taking advantage of diffuse reflectance spectroscopy, the authors developed a new surgical tool that senses proximal brain tissue through the tip of the chronic electrode by means of a novel stylet, which provides rigidity to DBS leads and houses fiber optics. RESULTS As a proof of concept, the authors demonstrated the ability of their noninvasive optical guidance technique to precisely locate the border of the subthalamic nucleus during the implantation of commercially available DBS electrodes in anesthetized parkinsonian monkeys. Innovative optical recordings combined to standard microelectrode mapping and detailed postmortem brain examination allowed the authors to confirm the precision of optical target detection. They also show the optical technique's ability to detect, in real time, upcoming blood vessels, reducing the risk of hemorrhage during the chronic lead implantation. CONCLUSIONS The authors present a new optical guidance technique that can detect target brain regions during DBS surgery from within the implanted electrode using a proof of concept in nonhuman primates. The technique discriminates tissue in real time, contributes no additional invasiveness to the procedure by being housed within the electrode, and can provide complementary information to microelectrode mapping during the implantation of the chronic electrode. The technique may also be a powerful tool for providing direct anatomical information in the case of direct implantations wherein microelectrode mapping is not performed.
Collapse
Affiliation(s)
- Damon DePaoli
- 1CERVO Brain Research Center, Québec City, Québec, Canada
- 2Center for Optics, Photonics and Lasers (COPL), Physics, Engineering and Optics Department, Université Laval, Québec City, Québec, Canada; and
| | - Laurent Goetz
- 1CERVO Brain Research Center, Québec City, Québec, Canada
| | - Dave Gagnon
- 1CERVO Brain Research Center, Québec City, Québec, Canada
| | | | - Michel Prud'homme
- 3Neurosurgery, CHU de Québec-Université Laval, Hôpital de l'Enfant-Jésus, Québec City, Québec, Canada
| | - Léo Cantin
- 3Neurosurgery, CHU de Québec-Université Laval, Hôpital de l'Enfant-Jésus, Québec City, Québec, Canada
| | - Martin Parent
- 1CERVO Brain Research Center, Québec City, Québec, Canada
| | - Daniel C Côté
- 1CERVO Brain Research Center, Québec City, Québec, Canada
- 2Center for Optics, Photonics and Lasers (COPL), Physics, Engineering and Optics Department, Université Laval, Québec City, Québec, Canada; and
| |
Collapse
|
29
|
Kuhn J, Baldermann JC. Elucidating neural network changes induced by deep brain stimulation for OCD. Brain 2020; 143:1293-1296. [DOI: 10.1093/brain/awaa108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This scientific commentary refers to ‘Deep brain stimulation modulates directional limbic connectivity in obsessive-compulsive disorder’, by Fridgeirsson etal. (doi:10.1093/brain/awaa100).
Collapse
Affiliation(s)
- Jens Kuhn
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Graat I, van Rooijen G, Mocking R, Vulink N, de Koning P, Schuurman R, Denys D. Is deep brain stimulation effective and safe for patients with obsessive compulsive disorder and comorbid bipolar disorder? J Affect Disord 2020; 264:69-75. [PMID: 31846903 DOI: 10.1016/j.jad.2019.11.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/07/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective treatment for refractory obsessive-compulsive disorder (OCD). Bipolar disorder (BD) is generally considered a contra-indication for DBS due to frequently reported transient impulsivity or (hypo)mania. OBJECTIVE The present study is the first study to examine effectiveness and safety of DBS for patients with OCD and BD. METHODS Five consecutive patients suffering from treatment-refractory OCD with comorbid BD (I or II) underwent DBS of the ventral anterior limb of the internal capsule (vALIC). We examined effectiveness of DBS on symptoms of OCD and depression, using the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and Hamilton Depression Rating Scale (HAM-D). We monitored side-effects, in particular DBS-induced (hypo)manic symptoms, using the Young mania rating scale (YMRS). RESULTS Follow-up time ranged between 15 and 68 months. vALIC-DBS led to a significant improvement of OCD and depressive symptoms. Mean Y-BOCS score decreased from 36.8 (SD 2.4) to 22.4 (SD 9.4). Mean HAM-D score dropped from 24.2 (SD 8.6) to 16.5 (SD 11.3). Transient hypomanic symptoms were observed in 4 out of 5 patients and in 1 patient, hypomanic symptoms resolved by adjusting stimulation and medication. Changes in YMRS scores were not significant. Hypomanic symptoms did not result in admission or lasting adverse consequences. CONCLUSION DBS effectively alleviates symptoms of OCD and depression in patients with OCD and BD but there is a large risk of developing transient hypomanic symptoms. Altogether, comorbid BD should not be considered as an absolute contra-indication for DBS in OCD patients with comorbid BD, but patients should be monitored carefully during optimization and follow-up of DBS.
Collapse
Affiliation(s)
- Ilse Graat
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands.
| | - Geeske van Rooijen
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Roel Mocking
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Nienke Vulink
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Pelle de Koning
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Rick Schuurman
- Department of Neurosurgery, Academic Medical Centre (Amsterdam UMC), Amsterdam, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Erturk MA, Panken E, Conroy MJ, Edmonson J, Kramer J, Chatterton J, Banerjee SR. Predicting in vivo MRI Gradient-Field Induced Voltage Levels on Implanted Deep Brain Stimulation Systems Using Neural Networks. Front Hum Neurosci 2020; 14:34. [PMID: 32153375 PMCID: PMC7044348 DOI: 10.3389/fnhum.2020.00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/23/2020] [Indexed: 11/15/2022] Open
Abstract
Introduction MRI gradient-fields may induce extrinsic voltage between electrodes and conductive neurostimulator enclosure of implanted deep brain stimulation (DBS) systems, and may cause unintended stimulation and/or malfunction. Electromagnetic (EM) simulations using detailed anatomical human models, therapy implant trajectories, and gradient coil models can be used to calculate clinically relevant induced voltage levels. Incorporating additional anatomical human models into the EM simulation library can help to achieve more clinically relevant and accurate induced voltage levels, however, adding new anatomical human models and developing implant trajectories is time-consuming, expensive and not always feasible. Methods MRI gradient-field induced voltage levels are simulated in six adult human anatomical models, along clinically relevant DBS implant trajectories to generate the dataset. Predictive artificial neural network (ANN) regression models are trained on the simulated dataset. Leave-one-out cross validation is performed to assess the performance of ANN regressors and quantify model prediction errors. Results More than 180,000 unique gradient-induced voltage levels are simulated. ANN algorithm with two fully connected layers is selected due to its superior generalizability compared to support vector machine and tree-based algorithms in this particular application. The ANN regression model is capable of producing thousands of gradient-induced voltage predictions in less than a second with mean-squared-error less than 200 mV. Conclusion We have integrated machine learning (ML) with computational modeling and simulations and developed an accurate predictive model to determine MRI gradient-field induced voltage levels on implanted DBS systems.
Collapse
Affiliation(s)
- M Arcan Erturk
- Restorative Therapies Group, Implantables R&D, Medtronic PLC, Minneapolis, MN, United States
| | - Eric Panken
- Restorative Therapies Group, Implantables R&D, Medtronic PLC, Minneapolis, MN, United States
| | - Mark J Conroy
- Restorative Therapies Group, Implantables R&D, Medtronic PLC, Minneapolis, MN, United States
| | - Jonathan Edmonson
- Cardiac Rhythm Heart Failure, Device Product Engineering, Medtronic PLC, Minneapolis, MN, United States
| | - Jeff Kramer
- Restorative Therapies Group, Implantables R&D, Medtronic PLC, Minneapolis, MN, United States
| | - Jacob Chatterton
- Restorative Therapies Group, Implantables R&D, Medtronic PLC, Minneapolis, MN, United States
| | - S Riki Banerjee
- Restorative Therapies Group, Implantables R&D, Medtronic PLC, Minneapolis, MN, United States
| |
Collapse
|
32
|
Vicheva P, Butler M, Shotbolt P. Deep brain stimulation for obsessive-compulsive disorder: A systematic review of randomised controlled trials. Neurosci Biobehav Rev 2020; 109:129-138. [PMID: 31923474 DOI: 10.1016/j.neubiorev.2020.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/26/2022]
Abstract
Deep brain stimulation (DBS) is considered a promising intervention for treatment-resistant obsessive-compulsive disorder (trOCD). We conducted a systematic search to investigate the efficacy and safety of DBS for OCD. Primary outcomes included the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), adverse events (AE), and quality of life. We assessed affective state, global functioning, cognition, and tolerability as secondary outcomes. Eight studies comprising 80 patients with trOCD were analysed both individually and collectively. We found a pooled mean reduction in Y-BOCS of 38.68 %, indicating DBS could be considered an effective therapy for trOCD. Most AE were mild and transient, however there were five severe surgery-related AE: intracerebral haemorrhage in three patients and infection in two. Mood-related serious AE were one completed suicide, three suicide attempts in two patients, and suicidal thoughts and depression in four. Despite this, affective state improved following stimulation. Despite being limited by significant heterogeneity across studies, our review has shown DBS to be an effective treatment in otherwise trOCD. There is a need to standardise study methodology in future research.
Collapse
Affiliation(s)
- Petya Vicheva
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Matthew Butler
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Psychiatry, South London and Maudsley NHS Foundation Trust, London, UK
| | - Paul Shotbolt
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Psychiatry, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
33
|
Obsessive-Compulsive Disorder: Lesions. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Wolmarans DW, Stein DJ, Harvey BH. A Psycho-Behavioral Perspective on Modelling Obsessive-Compulsive Disorder (OCD) in Animals: The Role of Context. Curr Med Chem 2019; 25:5662-5689. [PMID: 28545371 DOI: 10.2174/0929867324666170523125256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/18/2017] [Accepted: 05/29/2017] [Indexed: 01/24/2023]
Abstract
Obsessive-compulsive disorder is a heterogeneous and debilitating condition, characterized by intrusive thoughts and compulsive repetition. Animal models of OCD are important tools that have the potential to contribute significantly to our understanding of the condition. Although there is consensus that pre-clinical models are valuable in elucidating the underlying neurobiology in psychiatric disorders, the current paper attempts to prompt ideas on how interpretation of animal behavior can be expanded upon to more effectively converge with the human disorder. Successful outcomes in psychopharmacology involve rational design and synthesis of novel compounds and their testing in well-designed animal models. As part of a special journal issue on OCD, this paper will 1) review the psychobehavioral aspects of OCD that are of importance on how the above ideas can be articulated, 2) briefly elaborate on general issues that are important for the development of animal models of OCD, with a particular focus on the role and importance of context, 3) propose why translational progress may often be less than ideal, 4) highlight some of the significant contributions afforded by animal models to advance understanding, and 5) conclude by identifying novel behavioral constructs for future investigations that may contribute to the face, predictive and construct validity of OCD animal models. We base these targets on an integrative approach to face and construct validity, and note that the issue of treatment-resistance in the clinical context should receive attention in current animal models of OCD.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Brian H Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa.,MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
35
|
Cagnan H, Denison T, McIntyre C, Brown P. Emerging technologies for improved deep brain stimulation. Nat Biotechnol 2019; 37:1024-1033. [PMID: 31477926 PMCID: PMC6877347 DOI: 10.1038/s41587-019-0244-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Deep brain stimulation (DBS) is an effective treatment for common movement disorders and has been used to modulate neural activity through delivery of electrical stimulation to key brain structures. The long-term efficacy of stimulation in treating disorders, such as Parkinson's disease and essential tremor, has encouraged its application to a wide range of neurological and psychiatric conditions. Nevertheless, adoption of DBS remains limited, even in Parkinson's disease. Recent failed clinical trials of DBS in major depression, and modest treatment outcomes in dementia and epilepsy, are spurring further development. These improvements focus on interaction with disease circuits through complementary, spatially and temporally specific approaches. Spatial specificity is promoted by the use of segmented electrodes and field steering, and temporal specificity involves the delivery of patterned stimulation, mostly controlled through disease-related feedback. Underpinning these developments are new insights into brain structure-function relationships and aberrant circuit dynamics, including new methods with which to assess and refine the clinical effects of stimulation.
Collapse
Affiliation(s)
- Hayriye Cagnan
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Engineering Sciences, University of Oxford, Oxford, UK
| | - Cameron McIntyre
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
The effects of deep-brain non-stimulation in severe obsessive-compulsive disorder: an individual patient data meta-analysis. Transl Psychiatry 2019; 9:183. [PMID: 31383848 PMCID: PMC6683131 DOI: 10.1038/s41398-019-0522-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023] Open
Abstract
Non-intervention-related effects have long been recognized in an array of medical interventions, to which surgical procedures like deep-brain stimulation are no exception. While the existence of placebo and micro-lesion effects has been convincingly demonstrated in DBS for major depression and Parkinson's disease, systematic investigations for obsessive-compulsive disorder (OCD) are currently lacking. We therefore undertook an individual patient data meta-analysis with the aim of quantifying the effect of DBS for severe, treatment-resistant OCD that is not due to the electrical stimulation of brain tissue. The MEDLINE/PubMed database was searched for double-blind, sham-controlled randomized clinical trials published in English between 1998 and 2018. Individual patient data was obtained from the original authors and combined in a meta-analysis. We assessed differences from baseline in obsessive-compulsive symptoms following sham treatment, as measured by the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Four studies met the inclusion criteria, randomizing 49 patients to two periods of active or sham stimulation. To preclude confounding by period effects, our estimate was based only on data from those patients who underwent sham stimulation first (n = 24). We found that sham stimulation induced a significant change in the Y-BOCS score (t = -3.15, P < 0.005), lowering it by 4.9 ± 1.6 points [95% CI = (-8.0, -1.8)]. We conclude that non-stimulation-related effects of DBS exist also in OCD. The identification of the factors determining the magnitude and occurrence of these effects will help to design strategies that will ultimately lead to a betterment of future randomized clinical trials.
Collapse
|
37
|
Huys D, Kohl S, Baldermann JC, Timmermann L, Sturm V, Visser-Vandewalle V, Kuhn J. Open-label trial of anterior limb of internal capsule-nucleus accumbens deep brain stimulation for obsessive-compulsive disorder: insights gained. J Neurol Neurosurg Psychiatry 2019; 90:805-812. [PMID: 30770458 DOI: 10.1136/jnnp-2018-318996] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND For more than 15 years, deep brain stimulation (DBS) has served as a last-resort treatment for severe treatment-resistant obsessive-compulsive disorder (OCD). METHODS From 2010 to 2016, 20 patients with OCD (10 men/10 women) were included in a single-centre trial with a naturalistic open-label design over 1 year to evaluate the effects of DBS in the anterior limb of the internal capsule and nucleus accumbens region (ALIC-NAcc) on OCD symptoms, executive functions, and personality traits. RESULTS ALIC-NAcc-DBS significantly decreased OCD symptoms (mean Yale-Brown Obsessive Compulsive Scale reduction 33%, 40% full responders) and improves global functioning without loss of efficacy over 1 year. No significant changes were found in depressive or anxiety symptoms. Our study did not show any effect of ALIC-NAcc-DBS on personality traits or executive functions, and no potential outcome predictors were identified in a post hoc analysis. Other than several individual minor adverse events, ALIC-NAcc-DBS has been shown to be safe, but 35% of patients reported a sudden increase in anxiety and anhedonia after acute cessation of stimulation. CONCLUSIONS We conclude that ALIC-NAcc-DBS is a well-tolerated and promising last-resort treatment option for OCD. The cause of variability in the outcome remains unclear, and the aspect of reversibility must be examined critically. The present data from one of the largest samples of patients with OCD treated with DBS thus far support the results of previous studies with smaller samples.
Collapse
Affiliation(s)
- Daniel Huys
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Cologne, Germany
| | - Sina Kohl
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Volker Sturm
- Department of Stereotaxy and Functional Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Cologne, Germany.,Department of Stereotaxy and Functional Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Cologne, Germany.,Johanniter Hospital Oberhausen, Department of Psychiatry, Psychotherapy and Psychosomatics, Oberhausen, Germany
| |
Collapse
|
38
|
Baldermann JC, Melzer C, Zapf A, Kohl S, Timmermann L, Tittgemeyer M, Huys D, Visser-Vandewalle V, Kühn AA, Horn A, Kuhn J. Connectivity Profile Predictive of Effective Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biol Psychiatry 2019; 85:735-743. [PMID: 30777287 DOI: 10.1016/j.biopsych.2018.12.019] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Deep brain stimulation for obsessive-compulsive disorder is a rapidly developing treatment strategy for treatment-refractory patients. Both the exact target and impact on distributed brain networks remain a matter of debate. Here, we investigated which regions connected to stimulation sites contribute to clinical improvement effects and whether connectivity is able to predict outcomes. METHODS We analyzed 22 patients (13 female) with treatment-refractory obsessive-compulsive disorder undergoing deep brain stimulation targeting the anterior limb of the internal capsule/nucleus accumbens. We calculated stimulation-dependent optimal connectivity separately for patient-specific connectivity data of 10 patients and for 12 additional patients using normative connectivity. Models of optimal connectivity were subsequently used to predict outcome in both an out-of-sample cross-validation and a leave-one-out cross-validation across the whole group. RESULTS The resulting models successfully cross-predicted clinical outcomes of the respective other sample, and a leave-one-out cross-validation across the whole group further demonstrated robustness of our findings (r = .630, p < .001). Specifically, the degree of connectivity between stimulation sites and medial and lateral prefrontal cortices significantly predicted clinical improvement. Finally, we delineated a frontothalamic pathway that is crucial to be modulated for beneficial outcome. CONCLUSIONS Specific connectivity profiles, encompassing frontothalamic streamlines, can predict clinical outcome of deep brain stimulation for obsessive-compulsive disorder. After further validation, our findings may be used to guide both deep brain stimulation targeting and programming and to inform noninvasive neuromodulation targets for obsessive-compulsive disorder.
Collapse
Affiliation(s)
| | - Corina Melzer
- Max Planck Institute for Metabolism Research Cologne, University Hospital Cologne, Cologne, Germany
| | - Alexandra Zapf
- Department of Medical Psychology ǀ Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention, University Hospital Cologne, Cologne, Germany
| | - Sina Kohl
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen & Marburg, Marburg, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research Cologne, University Hospital Cologne, Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité-University Medicine, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité-University Medicine, Berlin, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany; Department of Psychiatry and Psychotherapy, Johanniter Hospital Oberhausen, Oberhausen, Germany
| |
Collapse
|
39
|
Affective modulation of the associative-limbic subthalamic nucleus: deep brain stimulation in obsessive-compulsive disorder. Transl Psychiatry 2019; 9:73. [PMID: 30718450 PMCID: PMC6361948 DOI: 10.1038/s41398-019-0404-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 09/23/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
Affective states underlie daily decision-making and pathological behaviours relevant to obsessive-compulsive disorders (OCD), mood disorders and addictions. Deep brain stimulation targeting the motor and associative-limbic subthalamic nucleus (STN) has been shown to be effective for Parkinson's disease (PD) and OCD, respectively. Cognitive and electrophysiological studies in PD showed responses of the motor STN to emotional stimuli, impairments in recognition of negative affective states and modulation of the intensity of subjective emotion. Here we studied whether the stimulation of the associative-limbic STN in OCD influences the subjective emotion to low-intensity positive and negative images and how this relates to clinical symptoms. We assessed 10 OCD patients with on and off STN DBS in a double-blind randomized manner by recording ratings of valence and arousal to low- and high-intensity positive and negative emotional images. STN stimulation increased positive ratings and decreased negative ratings to low-intensity positive and negative stimuli, respectively, relative to off stimulation. We also show that the change in severity of obsessive-compulsive symptoms pre- versus post-operatively interacts with both DBS and valence ratings. We show that stimulation of the associative-limbic STN might influence the negative cognitive bias in OCD and decreasing the negative appraisal of emotional stimuli with a possible relationship with clinical outcomes. That the effect is specific to low intensity might suggest a role of uncertainty or conflict related to competing interpretations of image intensity. These findings may have implications for the therapeutic efficacy of DBS.
Collapse
|
40
|
Senova S, Clair AH, Palfi S, Yelnik J, Domenech P, Mallet L. Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder: Towards an Individualized Approach. Front Psychiatry 2019; 10:905. [PMID: 31920754 PMCID: PMC6923766 DOI: 10.3389/fpsyt.2019.00905] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder featuring repetitive intrusive thoughts and behaviors associated with a significant handicap. Of patients, 20% are refractory to medication and cognitive behavioral therapy. Refractory OCD is associated with suicidal behavior and significant degradation of social and professional functioning, with high health costs. Deep brain stimulation (DBS) has been proposed as a reversible and controllable method to treat refractory patients, with meta-analyses showing 60% response rate following DBS, whatever the target: anterior limb of the internal capsule (ALIC), ventral capsule/ventral striatum (VC/VS), nucleus accumbens (NAcc), anteromedial subthalamic nucleus (amSTN), or inferior thalamic peduncle (ITP). But how do we choose the "best" target? Functional neuroimaging studies have shown that ALIC-DBS requires the modulation of the fiber tract within the ventral ALIC via the ventral striatum, bordering the bed nucleus of the stria terminalis and connecting the medial prefrontal cortex with the thalamus to be successful. VC/VS effective sites of stimulation were found within the VC and primarily connected to the medial orbitofrontal cortex (OFC) dorsomedial thalamus, amygdala, and the habenula. NAcc-DBS has been found to reduce OCD symptoms by decreasing excessive fronto-striatal connectivity between NAcc and the lateral and medial prefrontal cortex. The amSTN effective stimulation sites are located at the inferior medial border of the STN, primarily connected to lateral OFC, dorsal anterior cingulate, and dorsolateral prefrontal cortex. Finally, ITP-DBS recruits a bidirectional fiber pathway between the OFC and the thalamus. Thus, these functional connectivity studies show that the various DBS targets lie within the same diseased neural network. They share similar efficacy profiles on OCD symptoms as estimated on the Y-BOCS, the amSTN being the target supported by the strongest evidence in the literature. VC/VS-DBS, amSTN-DBS, and ALIC-DBS were also found to improve mood, behavioral adaptability and potentially both, respectively. Because OCD is such a heterogeneous disease with many different symptom dimensions, the ultimate aim should be to find the most appropriate DBS target for a given refractory patient. This quest will benefit from further investigation and understanding of the individual functional connectivity of OCD patients.
Collapse
Affiliation(s)
- Suhan Senova
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Anne-Hélène Clair
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Stéphane Palfi
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Jérôme Yelnik
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Philippe Domenech
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Luc Mallet
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France.,Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
41
|
Barcia JA, Avecillas-Chasín JM, Nombela C, Arza R, García-Albea J, Pineda-Pardo JA, Reneses B, Strange BA. Personalized striatal targets for deep brain stimulation in obsessive-compulsive disorder. Brain Stimul 2018; 12:724-734. [PMID: 30670359 DOI: 10.1016/j.brs.2018.12.226] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/05/2018] [Accepted: 12/15/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Psychiatric conditions currently treated with deep brain stimulation (DBS), such as obsessive-compulsive disorder (OCD), are heterogeneous diseases with different symptomatic dimensions, indicating that fixed neuroanatomical DBS targets for all OCD cases may not be efficacious. OBJECTIVE/HYPOTHESIS We tested whether the optimal DBS target for OCD is fixed for all patients or whether it is individualized and related to each patient's symptomatic content. Further, we explored if the optimal target can be predicted by combining functional neuroimaging and structural connectivity. METHODS In a prospective, randomized, double-blinded study in 7 OCD patients, symptomatic content was characterized pre-operatively by clinical interview and OCD symptom-provocation during functional MRI. DBS electrode implantation followed a trajectory placing 4 contacts along a striatal axis (nucleus accumbens to caudate). Patients underwent three-month stimulation periods for each contact (and sham), followed by clinical evaluation. Probabilistic tractography, applied to diffusion-weighted images acquired pre-operatively, was used to study the overlap between projections from the prefrontal areas activated during symptom provocation and the volume of activated tissue of each electrode contact. RESULTS Six patients were classified responders, with median symptomatic reduction of 50% achieved from each patient's best contact. This was located at the caudate in 4 cases and at the accumbens in 2. Critically, the anatomical locus of the best contact (accumbens or caudate) was related to an index derived by combining functional MRI responses to prevailing symptom provocation and prefronto-cortico-striatal projections defined by probabilistic tractography. CONCLUSION Our results therefore represent a step towards personalized, content-specific DBS targets for OCD.
Collapse
Affiliation(s)
- Juan A Barcia
- Service of Neurosurgery, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain; Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain.
| | - Josué M Avecillas-Chasín
- Service of Neurosurgery, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Cristina Nombela
- Service of Neurosurgery, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Rocío Arza
- Service of Neurosurgery, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Julia García-Albea
- Service of Psychiatry, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - José A Pineda-Pardo
- CINAC, HM Puerta del Sur, Hospitales de Madrid, Mostoles, and CEU-San Pablo University, Madrid, Spain
| | - Blanca Reneses
- Service of Psychiatry, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politecnica de Madrid, Spain; Department of Neuroimaging, Reina Sofia Centre for Alzheimer's Disease, Madrid, Spain
| |
Collapse
|
42
|
Rao VR, Sellers KK, Wallace DL, Lee MB, Bijanzadeh M, Sani OG, Yang Y, Shanechi MM, Dawes HE, Chang EF. Direct Electrical Stimulation of Lateral Orbitofrontal Cortex Acutely Improves Mood in Individuals with Symptoms of Depression. Curr Biol 2018; 28:3893-3902.e4. [DOI: 10.1016/j.cub.2018.10.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/16/2018] [Accepted: 10/10/2018] [Indexed: 11/30/2022]
|
43
|
Bilge MT, Gosai AK, Widge AS. Deep Brain Stimulation in Psychiatry: Mechanisms, Models, and Next-Generation Therapies. Psychiatr Clin North Am 2018; 41:373-383. [PMID: 30098651 PMCID: PMC6092041 DOI: 10.1016/j.psc.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Deep brain stimulation has preliminary evidence of clinical efficacy, but has been difficult to develop into a robust therapy, in part because its mechanisms are incompletely understood. We review evidence from movement and psychiatric disorder studies, with an emphasis on how deep brain stimulation changes brain networks. From this, we argue for a network-oriented approach to future deep brain stimulation studies. That network approach requires methods for identifying patients with specific circuit/network deficits. We describe how dimensional approaches to diagnoses may aid that identification. We discuss the use of network/circuit biomarkers to develop self-adjusting "closed loop" systems.
Collapse
Affiliation(s)
- Mustafa Taha Bilge
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Boston, MA 02129, USA
| | - Aishwarya K Gosai
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Boston, MA 02129, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Boston, MA 02129, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
44
|
Schwabe K, Krauss JK. What rodent models of deep brain stimulation can teach us about the neural circuit regulation of prepulse inhibition in neuropsychiatric disorders. Schizophr Res 2018; 198:45-51. [PMID: 28663025 DOI: 10.1016/j.schres.2017.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 11/29/2022]
Abstract
Deep brain stimulation (DBS) is routinely used for treatment of movement disorders and it is also under investigation for neuropsychiatric disorders with deficient sensorimotor gating, such as schizophrenia, Tourette's syndrome and obsessive compulsive disorder. Electrical stimulation induces excitation and inhibition both at the stimulation site and at projection sites, thus modulating synchrony and oscillatory behavior of neuronal networks. We first provide background information on DBS in neuropsychiatric disorders accompanied by deficient sensorimotor gating. We then introduce prepulse inhibition (PPI) as a measure for sensorimotor gating in these disorders. Thereafter, we report on the use of DBS in rat models with deficient PPI induced by pharmacologic, genetic and neurodevelopmental manipulation. These models offer the opportunity to define the neuronal circuit regulation that is of relevance to PPI and its deficits in neuropsychiatric disorders with disturbed sensorimotor gating. Finally, we report on the use of the PPI paradigm in human patients operated for DBS on/off stimulation, which may further elucidate the neuronal network involved in regulation of PPI.
Collapse
Affiliation(s)
- Kerstin Schwabe
- Department of Neurosurgery, Medical University Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Joachim K Krauss
- Department of Neurosurgery, Medical University Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
45
|
Rappel P, Marmor O, Bick AS, Arkadir D, Linetsky E, Castrioto A, Tamir I, Freedman SA, Mevorach T, Gilad M, Bergman H, Israel Z, Eitan R. Subthalamic theta activity: a novel human subcortical biomarker for obsessive compulsive disorder. Transl Psychiatry 2018; 8:118. [PMID: 29915200 PMCID: PMC6006433 DOI: 10.1038/s41398-018-0165-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 11/24/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a common and serious psychiatric disorder. Although subthalamic nucleus deep brain stimulation (DBS) has been studied as a treatment for OCD patients the underlying mechanism of this treatment and the optimal method of stimulation are unknown. To study the neural basis of subthalamic nucleus DBS in OCD patients we used a novel, implantable DBS system with long-term local field potential sensing capability. We focus our analysis on two patients with OCD who experienced severe treatment-resistant symptoms and were implanted with subthalamic nucleus DBS systems. We studied them for a year at rest and during provocation of OCD symptoms (46 recording sessions) and compared them to four Parkinson's disease (PD) patients implanted with subthalamic nucleus DBS systems (69 recording sessions). We show that the dorsal (motor) area of the subthalamic nucleus in OCD patients displays a beta (25-35 Hz) oscillatory activity similar to PD patients whereas the ventral (limbic-cognitive) area of the subthalamic nucleus displays distinct theta (6.5-8 Hz) oscillatory activity only in OCD patients. The subthalamic nucleus theta oscillatory activity decreases with provocation of OCD symptoms and is inversely correlated with symptoms severity over time. We conclude that beta oscillations at the dorsal subthalamic nucleus in OCD patients challenge their pathophysiologic association with movement disorders. Furthermore, theta oscillations at the ventral subthalamic nucleus in OCD patients suggest a new physiological target for OCD therapy as well as a promising input signal for future emotional-cognitive closed-loop DBS.
Collapse
Affiliation(s)
- Pnina Rappel
- 0000 0004 1937 0538grid.9619.7Department of Medical Neurobiology (Physiology), Institute of Medical Research – Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel ,0000 0004 1937 0538grid.9619.7The Edmond and Lily Safra Center for Brain Research, the Hebrew University, Jerusalem, Israel
| | - Odeya Marmor
- 0000 0004 1937 0538grid.9619.7Department of Medical Neurobiology (Physiology), Institute of Medical Research – Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel ,0000 0004 1937 0538grid.9619.7The Edmond and Lily Safra Center for Brain Research, the Hebrew University, Jerusalem, Israel
| | - Atira S Bick
- 0000 0004 1937 0538grid.9619.7Department of Medical Neurobiology (Physiology), Institute of Medical Research – Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel ,0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - David Arkadir
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Eduard Linetsky
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Anna Castrioto
- 0000 0004 0429 3736grid.462307.4Grenoble Institute of Neuroscience, Grenoble, France
| | - Idit Tamir
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel ,0000 0001 2221 2926grid.17788.31The Center for Functional and Restorative Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel ,0000 0001 2297 6811grid.266102.1Department of Neurosurgery, University of California San Francisco, San Francisco, CA USA
| | - Sara A. Freedman
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel ,0000 0004 1937 0503grid.22098.31School of Social Work, Bar Ilan University, Ramat Gan, Israel
| | - Tomer Mevorach
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Moran Gilad
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Hagai Bergman
- 0000 0004 1937 0538grid.9619.7Department of Medical Neurobiology (Physiology), Institute of Medical Research – Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel ,0000 0004 1937 0538grid.9619.7The Edmond and Lily Safra Center for Brain Research, the Hebrew University, Jerusalem, Israel
| | - Zvi Israel
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel ,0000 0001 2221 2926grid.17788.31The Center for Functional and Restorative Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Renana Eitan
- Department of Medical Neurobiology (Physiology), Institute of Medical Research - Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel. .,The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. .,Department of Psychiatry, Functional Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Bosanac P, Hamilton BE, Lucak J, Castle D. Identity challenges and 'burden of normality' after DBS for severe OCD: a narrative case study. BMC Psychiatry 2018; 18:186. [PMID: 29895269 PMCID: PMC5998583 DOI: 10.1186/s12888-018-1771-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deep Brain Stimulation (DBS) is an emerging and potentially powerful biological treatment for severe Obsessive-Compulsive Disorder (OCD), but the wider impact of the intervention and the sometimes dramatic reduction in symptoms need greater attention in research and practice. The aim of this case study is to explore the subjective experience of preparing for and undergoing DBS as a treatment for severe and treatment-refractory OCD and the experience of the impact of the treatment. METHODS This study of subjective experience before and after DBS is based on narrative analysis of two in-depth interviews conducted in November 2014 (1 year after DBS surgery) with a 30-year-old man and his father, utilizing Consolidated Criteria for Reporting Qualitative Studies (COREQ) criteria. RESULTS The parallel stories show how OCD posed severe challenges to identity and social milestones, with profound positive and negative impact on the person and family. Yet symptom remission was accompanied by expanded horizons, but also by uncertainty and intense distress associated with the changed identity. DISCUSSION The concept of 'burden of normality' is discussed, in light of a treatment experience with DBS for OCD that gives rise to a new array of life challenges and opportunities, with implications for clinical care. CONCLUSIONS The concept of burden of normality has, thus far, not extended to evaluations of people who have had DBS for severe OCD and that of their lived experience and recovery trajectory thereafter. This concept highlights that there is work to be done on expectations of normal living and on the transitioning self-concept, in the post-surgical period.
Collapse
Affiliation(s)
- Peter Bosanac
- St. Vincent's Hospital, Melbourne and Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| | | | - James Lucak
- 0000 0000 8606 2560grid.413105.2St Vincent’s Hospital, Melbourne, Australia
| | - David Castle
- 0000 0001 2179 088Xgrid.1008.9St. Vincent’s Hospital, Melbourne and Department of Psychiatry, University of Melbourne, Melbourne, Australia
| |
Collapse
|
47
|
Zhao Z, Wu H. An Invasive Method for the Activation of the Mouse Dentate Gyrus by High-frequency Stimulation. J Vis Exp 2018:57857. [PMID: 29912203 PMCID: PMC6101475 DOI: 10.3791/57857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Electrical high-frequency stimulation (HFS), using implanted electrodes targeting various brain regions, has been proven as an effective treatment for various neurological and psychiatric disorders. HFS in the deep region of the brain, also named deep-brain stimulation (DBS), is becoming increasingly important in clinical trials. Recent progress in the field of high-frequency DBS (HF-DBS) surgery has begun to spread the possibility of utilizing this invasive technique to other situations, such as treatment for major depression disorder (MDD), obsessive-compulsive disorder (OCD), and so on. Despite these expanding indications, the underlying mechanisms of the beneficial effects of HF-DBS remain enigmatic. To address this question, one approach is to use implanted electrodes that sparsely activate distributed subpopulations of neurons by HFS. It has been reported that HFS in the anterior nucleus of the thalamus could be used for the treatment of refractory epilepsy in the clinic. The underlying mechanisms might be related to the increased neurogenesis and altered neuronal activity. Therefore, we are interested in exploring the physiological alterations by the detection of neuronal activity as well as neurogenesis in the mouse dentate gyrus (DG) before and after HFS treatment. In this manuscript, we describe methodologies for HFS to target the activation of the DG in mice, directly or indirectly and in an acute or chronic manner. In addition, we describe a detailed protocol for the preparation of brain slices for c-fos and Notch1 immunofluorescent staining to monitor the neuronal activity and signaling activation and for bromodeoxyuridine (BrdU) labeling to determine the neurogenesis after the HF-DBS induction. The activation of the neuronal activity and neurogenesis after the HF-DBS treatment provides direct neurobiological evidence and potential therapeutic benefits. Particularly, this methodology can be modified and applied to target other interested brain regions such as the basal ganglia and subthalamic regions for specific brain disorders in the clinic.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University;
| |
Collapse
|
48
|
ter Horst KW, Lammers NM, Trinko R, Opland DM, Figee M, Ackermans MT, Booij J, van den Munckhof P, Schuurman PR, Fliers E, Denys D, DiLeone RJ, la Fleur SE, Serlie MJ. Striatal dopamine regulates systemic glucose metabolism in humans and mice. Sci Transl Med 2018; 10:10/442/eaar3752. [DOI: 10.1126/scitranslmed.aar3752] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
|
49
|
Fluri F, Mützel T, Schuhmann MK, Krstić M, Endres H, Volkmann J. Development of a head-mounted wireless microstimulator for deep brain stimulation in rats. J Neurosci Methods 2017; 291:249-256. [PMID: 28842194 DOI: 10.1016/j.jneumeth.2017.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Commercial neurostimulators for clinical use are effective in patients; however they are too large and prohibitively expensive for preclinical studies. Thus, there is an urgent need of a small inexpensive and wireless microstimulator which is fully programmable in frequency, pulse width and amplitude for rodent experiments. NEW METHODS Rats were subjected to a photothrombotic stroke of the right sensorimotor cortex and a microelectrode was implanted in the right mesencephalic locomotor region. The microstimulator was connected with the head plug of the rat. Three different stimulation frequencies were applied and different stimulating amplitudes were chosen. Under these conditions, gait velocity and locomotor behavior of six rats were examined on a beam. RESULTS The head-mounted microstimulator allowed freedom in all motor activities performed spontaneously by the tested rats. Increasing either the frequency or the stimulating amplitude increased gait velocity and ameliorated locomotor behavior after stroke. COMPARISON WITH EXISTING METHODS Other devices for DBS in rodents must be implanted under the skin or worn in an animal jacket on the back by the tested rat. Some available systems require even a tethering of the tested animal via a cable to an external stimulation system, which limits the freedom of movement. CONCLUSION Here, we present a freely programmable microstimulator including DBS-typical stimulating parameters. The lightweight device is connected by a simple plug to the head allowing full freedom of movement and exchange of batteries for long-term experiments. The design of this stimulator is suitable for sophisticated behavior tests requiring balance and skilled walking.
Collapse
Affiliation(s)
- Felix Fluri
- Department of Neurology, University Hospital Würzburg, Germany.
| | - Thomas Mützel
- Faculty of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany
| | | | - Miloš Krstić
- Department of Neurology, University Hospital Würzburg, Germany
| | - Heinz Endres
- Faculty of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Germany
| |
Collapse
|
50
|
Blakemore RL, Vuilleumier P. An Emotional Call to Action: Integrating Affective Neuroscience in Models of Motor Control. EMOTION REVIEW 2017. [DOI: 10.1177/1754073916670020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intimate relationships between emotion and action have long been acknowledged, yet contemporary theories and experimental research within affective and movement neuroscience have not been linked into a coherent framework bridging these two fields. Accumulating psychological and neuroimaging evidence has, however, brought new insights regarding how emotions affect the preparation, execution, and control of voluntary movement. Here we review main approaches and findings on such emotion–action interactions. To assimilate key emotion concepts of action tendencies and motive states with fundamental constructs of the motor system, we underscore the need for integrating an information-processing approach of motor control into affective neuroscience. This should provide a rich foundation to bridge the two fields, allowing further refinement and empirical testing of emotion theories and better understanding of affective influences in movement disorders.
Collapse
Affiliation(s)
- Rebekah L. Blakemore
- Department of Neuroscience, University of Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Switzerland
| | - Patrik Vuilleumier
- Department of Neuroscience, University of Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Switzerland
- Department of Neurology, University Hospitals of Geneva, Switzerland
| |
Collapse
|