1
|
Lochner C, Naudé PJ, Stein DJ. Use of Post-mortem Brain Tissue in Investigations of Obsessive- Compulsive Disorder: A Systematic Review. Curr Neuropharmacol 2024; 22:963-975. [PMID: 37644747 PMCID: PMC10845092 DOI: 10.2174/1570159x21666230829145425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Post-mortem examination of the brain is a key strategy to increase our understanding of the neurobiology of mental disorders. While extensive post-mortem research has been undertaken on some mental disorders, others appear to have been relatively neglected. OBJECTIVE The objective of the study was to conduct a systematic review of post-mortem research on obsessive-compulsive disorder (OCD). METHODS A systematic review was performed in accordance with PRISMA guidelines to provide an overview of quantitative, qualitative, or mixed methods primary research studies on OCD. Search platforms included NCBI Pubmed, SCOPUS, and Web of Science. RESULTS A total of 52 publications were found, and after the removal of works not meeting the inclusion criteria, six (6) peer-reviewed publications remained. These post-mortem studies have provided data on DNA methylation, cellular and molecular alterations, and gene expression profiling in brain areas associated with OCD. DISCUSSION AND CONCLUSION Included studies highlight the potential value of post-mortem brains from well-characterized individuals with OCD and suggest the need for additional work in this area.
Collapse
Affiliation(s)
- Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Stellenbosch, Stellenbosch, South Africa
| | - Petrus J.W. Naudé
- Department of Psychiatry and Mental Health & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Marrie RA, Kosowan L, Cutter GR, Fox RJ, Salter A. Attitudes of people with multiple sclerosis toward brain donation. Front Neurol 2023; 14:1115303. [PMID: 36779059 PMCID: PMC9909011 DOI: 10.3389/fneur.2023.1115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Objective Research directly examining brain tissue has played an important role in understanding the pathology and pathogenesis of multiple sclerosis (MS) and other diseases of the central nervous system. Such research relies heavily on donations of post-mortem brain tissue yet little is known about the attitudes of people with multiple sclerosis (MS) about brain donation. We aimed to assess the attitudes of people with MS toward brain donation, their preferences related to discussions of brain donation, and factors associated with attitudes toward brain donation including sociodemographic and clinical characteristics, health literacy and religiosity. Methods In a cross-sectional study, we surveyed participants in the North American Research Committee on Multiple Sclerosis (NARCOMS) Registry regarding their attitudes toward brain donation, reasons for participating or not participating in brain donation, and related communication preferences. We used multivariable logistic regression analyses to test factors associated with attitudes regarding brain donation. Results Most of the 4,520 participants were women (80.8%), self-identified as white (88.1%), with a post-secondary education, functional health literacy and moderate-severe disability. Sixty-two percent of participants would consider brain donation. Factors associated with considering brain donation included female gender, having a post-secondary education, being physically active, having moderate-severe disability and more comorbidities, and alcohol intake. Seventy-five percent of participants indicated that they preferred to receive information regarding brain donations from physicians. Conclusion Two-thirds of people with MS would consider brain donation. People with MS desire to hear about brain donation from their health care providers rather than other sources.
Collapse
Affiliation(s)
- Ruth Ann Marrie
- Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada,Department of Community Health Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada,*Correspondence: Ruth Ann Marrie ✉
| | - Leanne Kosowan
- Department of Family Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Gary R. Cutter
- Department of Biostatistics, University of Alabama in Birmingham, Birmingham, AL, United States
| | - Robert J. Fox
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Amber Salter
- Department of Neurology, UT Southwestern, Dallas, TX, United States
| |
Collapse
|
3
|
Padoan CS, Garcia LF, Crespo KC, Longaray VK, Martini M, Contessa JC, Kapczinski F, de Oliveira FH, Goldim JR, Vs Magalhães P. A qualitative study exploring the process of postmortem brain tissue donation after suicide. Sci Rep 2022; 12:4710. [PMID: 35304551 PMCID: PMC8933424 DOI: 10.1038/s41598-022-08729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Access to postmortem brain tissue can be valuable in refining knowledge on the pathophysiology and genetics of neuropsychiatric disorders. Obtaining postmortem consent for the donation after death by suicide can be difficult, as families may be overwhelmed by a violent and unexpected death. Examining the process of brain donation can inform on how the request can best be conducted. This is a qualitative study with in-depth interviews with forty-one people that were asked to consider brain donation-32 who had consented to donation and 9 who refused it. Data collection and analyses were carried out according to grounded theory. Five key themes emerged from data analysis: the context of the families, the invitation to talk to the research team, the experience with the request protocol, the participants' assessment of the experience, and their participation in the study as an opportunity to heal. The participants indicated that a brain donation request that is respectful and tactful can be made without adding to the family distress brought on by suicide and pondering brain donation was seen as an opportunity to transform the meaning of the death and invest it with a modicum of solace for being able to contribute to research.
Collapse
Affiliation(s)
- Carolina Stopinski Padoan
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Lucas França Garcia
- Graduate Program in Health Promotion, Cesumar University, Maringá, Paraná, Brazil
| | - Kleber Cardoso Crespo
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Vanessa Kenne Longaray
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Murilo Martini
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Júlia Camargo Contessa
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Flávio Kapczinski
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
- St. Joseph's Healthcare Hamilton McMaster University, Hamilton, ON, Canada
| | - Francine Hehn de Oliveira
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Roberto Goldim
- Bioethics Department, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Vs Magalhães
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Lopes KDP, Snijders GJL, Humphrey J, Allan A, Sneeboer MAM, Navarro E, Schilder BM, Vialle RA, Parks M, Missall R, van Zuiden W, Gigase FAJ, Kübler R, van Berlekom AB, Hicks EM, Bӧttcher C, Priller J, Kahn RS, de Witte LD, Raj T. Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. Nat Genet 2022; 54:4-17. [PMID: 34992268 PMCID: PMC9245609 DOI: 10.1038/s41588-021-00976-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Microglia have emerged as important players in brain aging and pathology. To understand how genetic risk for neurological and psychiatric disorders is related to microglial function, large transcriptome studies are essential. Here we describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals. We performed systematic analyses to investigate various aspects of microglial heterogeneities, including brain region and aging. We mapped expression and splicing quantitative trait loci and showed that many neurological disease susceptibility loci are mediated through gene expression or splicing in microglia. Fine-mapping of these loci nominated candidate causal variants that are within microglia-specific enhancers, finding associations with microglial expression of USP6NL for Alzheimer's disease and P2RY12 for Parkinson's disease. We have built the most comprehensive catalog to date of genetic effects on the microglial transcriptome and propose candidate functional variants in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Katia de Paiva Lopes
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gijsje J L Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Allan
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marjolein A M Sneeboer
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Elisa Navarro
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian M Schilder
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo A Vialle
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Parks
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Welmoed van Zuiden
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, New York, NY, USA
| | - Raphael Kübler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amber Berdenis van Berlekom
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Emily M Hicks
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chotima Bӧttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, New York, NY, USA
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, New York, NY, USA.
| | - Towfique Raj
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Berdenis van Berlekom A, Notman N, Sneeboer MAM, Snijders GJLJ, Houtepen LC, Nispeling DM, He Y, Dracheva S, Hol EM, Kahn RS, de Witte LD, Boks MP. DNA methylation differences in cortical grey and white matter in schizophrenia. Epigenomics 2021; 13:1157-1169. [PMID: 34323598 PMCID: PMC8386513 DOI: 10.2217/epi-2021-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/09/2021] [Indexed: 01/27/2023] Open
Abstract
Aim: Identify grey- and white-matter-specific DNA-methylation differences between schizophrenia (SCZ) patients and controls in postmortem brain cortical tissue. Materials & methods: Grey and white matter were separated from postmortem brain tissue of the superior temporal and medial frontal gyrus from SCZ (n = 10) and control (n = 11) cases. Genome-wide DNA-methylation analysis was performed using the Infinium EPIC Methylation Array (Illumina, CA, USA). Results: Four differentially methylated regions associated with SCZ status and tissue type (grey vs white matter) were identified within or near KLF9, SFXN1, SPRED2 and ALS2CL genes. Gene-expression analysis showed differential expression of KLF9 and SFXN1 in SCZ. Conclusion: Our data show distinct differences in DNA methylation between grey and white matter that are unique to SCZ, providing new leads to unravel the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Amber Berdenis van Berlekom
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina Notman
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marjolein AM Sneeboer
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gijsje JLJ Snijders
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lotte C Houtepen
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danny M Nispeling
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yujie He
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Lot D de Witte
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Lorsch ZS, Ambesi-Impiombato A, Zenowich R, Morganstern I, Leahy E, Bansal M, Nestler EJ, Hanania T. Computational Analysis of Multidimensional Behavioral Alterations After Chronic Social Defeat Stress. Biol Psychiatry 2021; 89:920-928. [PMID: 33309017 PMCID: PMC8052271 DOI: 10.1016/j.biopsych.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND The study of depression in humans depends on animal models that attempt to mimic specific features of the human syndrome. Most studies focus on one or a few behavioral domains, with time and practical considerations prohibiting a comprehensive evaluation. Although machine learning has enabled unbiased analysis of behavior in animals, this has not yet been applied to animal models of psychiatric disease. METHODS We performed chronic social defeat stress (CSDS) in mice and evaluated behavior with PsychoGenics' SmartCube, a high-throughput unbiased automated phenotyping platform that collects >2000 behavioral features based on machine learning. We evaluated group differences at several times post-CSDS and after administration of the antidepressant medication imipramine. RESULTS SmartCube analysis after CSDS successfully separated control and defeated-susceptible mice, and defeated-resilient mice more resembled control mice. We observed a potentiation of CSDS effects over time. Treatment of susceptible mice with imipramine induced a 40.2% recovery of the defeated-susceptible phenotype as assessed by SmartCube. CONCLUSIONS High-throughput analysis can simultaneously evaluate multiple behavioral alterations in an animal model for the study of depression, which provides a more unbiased and holistic approach to evaluating group differences after CSDS and perhaps can be applied to other mouse models of psychiatric disease.
Collapse
Affiliation(s)
- Zachary S Lorsch
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | | | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | | |
Collapse
|
7
|
Gigase FAJ, Snijders GJLJ, Boks MP, de Witte LD. Neurons and glial cells in bipolar disorder: A systematic review of postmortem brain studies of cell number and size. Neurosci Biobehav Rev 2019; 103:150-162. [PMID: 31163205 DOI: 10.1016/j.neubiorev.2019.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a complex neurobiological disease. It is likely that both neurons and glial cells are affected in BD, yet how these cell types are changed at the structural and functional level is still largely unknown. In this review we provide an overview of postmortem studies analyzing structural cellular changes in BD, including the density, number and size of neurons and glia. We categorize the results per cell-type and validate outcome measures per brain region. Despite variations by brain region, outcome measure and methodology, several patterns could be identified. Total neuron, total glia, and cell subtypes astrocyte, microglia and oligodendrocyte presence appears unchanged in the BD brain. Interneuron density may be decreased across various cortical areas, yet findings of interneuron subpopulations show discrepancies. This structural review brings to light issues in validation and replication. Future research should therefore prioritize the validation of existing studies in order to increasingly refine the conceptual models of BD.
Collapse
Affiliation(s)
- Frederieke A J Gigase
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
8
|
Trujillo Diaz D, Hernandez NC, Cortes EP, Faust PL, Vonsattel JPG, Louis ED. Banking brains: a pre-mortem "how to" guide to successful donation. Cell Tissue Bank 2018; 19:473-488. [PMID: 30220002 DOI: 10.1007/s10561-018-9720-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022]
Abstract
A review of the brain banking literature reveals a primary focus either on the factors that influence the decision to become a future donor or on the brain tissue processing that takes place after the individual has died (i.e., the front-end or back-end processes). What has not been sufficiently detailed, however, is the complex and involved process that takes place after this decision to become a future donor is made yet before post-mortem processing occurs (i.e., the large middle-ground). This generally represents a period of many years during which the brain bank is actively engaged with donors to ensure that valuable clinical information is prospectively collected and that their donation is eventually completed. For the past 15 years, the Essential Tremor Centralized Brain Repository has been actively involved in brain banking, and our experience has provided us valuable insights that may be useful for researchers interested in establishing their own brain banking efforts. In this piece, we fill a gap in the literature by detailing the processes of enrolling participants, creating individualized brain donation plans, collecting clinical information and regularly following-up with donors to update that information, and efficiently coordinating the brain harvest when death finally arrives.
Collapse
Affiliation(s)
- Daniel Trujillo Diaz
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nora C Hernandez
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Etty P Cortes
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Jean Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA. .,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA. .,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Rademaker MC, de Lange GM, Palmen SJMC. The Netherlands Brain Bank for Psychiatry. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:3-16. [PMID: 29496148 DOI: 10.1016/b978-0-444-63639-3.00001-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Netherlands Brain Bank (NBB) performs rapid autopsies of donors who gave written informed consent during life for the use of their brain tissue and medical files for research. The NBB initiated the Netherlands Brain Bank for Psychiatry (NBB-Psy), a prospective donor program for psychiatric diseases. NBB-Psy wants to expand the tissue collections in order to provide a strong incentive to increase research in psychiatry. The ultimate goal of NBB-Psy is to reduce the burden of psychiatric disorders for patients, their families, and for society as a whole. NBB-Psy consists of an antemortem and postmortem donor program. This chapter focuses on the design of NBB-Psy and the antemortem donor program, where patients and relatives are actively informed on the possibility to become a brain donor. Since the initiation of NBB-Psy, the number of registered donors with a psychiatric diagnosis has increased from 149 in 2010 to 1018 in May 2016.
Collapse
Affiliation(s)
- Marleen C Rademaker
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | | | | |
Collapse
|