1
|
Yegen CH, Lambert M, Beurnier A, Montani D, Humbert M, Planès C, Boncoeur E, Voituron N, Antigny F. KCNK3 channel is important for the ventilatory response to hypoxia in rats. Respir Physiol Neurobiol 2023; 318:104164. [PMID: 37739151 DOI: 10.1016/j.resp.2023.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
To clarify the contribution of KCNK3/TASK-1 channel chemoreflex in response to hypoxia and hypercapnia, we used a unique Kcnk3-deficient rat. We assessed ventilatory variables using plethysmography in Kcnk3-deficient and wild-type rats at rest in response to hypoxia (10% O2) and hypercapnia (4% CO2). Immunostaining for C-Fos, a marker of neuronal activity, was performed to identify the regions of the respiratory neuronal network involved in the observed response.Under basal conditions, we observed increased minute ventilation in Kcnk3-deficient rats, which was associated with increased c-Fos positive cells in the ventrolateral region of the medulla oblongata. Kcnk3-deficient rats show an increase in ventilatory response to hypoxia without changes in response to hypercapnia. In Kcnk3-deficient rats, linked to an increased hypoxia response, we observed a greater increase in c-Fos-positive cells in the first central relay of peripheral chemoreceptors and Raphe Obscurus. This study reports that KCNK3/TASK-1 deficiency in rats induces an inadequate peripheral chemoreflex, alternating respiratory rhythmogenesis, and hypoxic chemoreflex.
Collapse
Affiliation(s)
- Céline-Hivda Yegen
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Mélanie Lambert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Antoine Beurnier
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Service de Physiologie et d'explorations fonctionnelles, Hôpital Avicenne, APHP, Hôpitaux de Paris, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Carole Planès
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France; AP-HP, Department of Physiology - Functional Explorations, DMU Thorinno, bi-site Hôpital Bicêtre (Le Kremlin Bicêtre) and Ambroise Paré (Boulogne-Billancourt), France
| | - Emilie Boncoeur
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Nicolas Voituron
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France; Département STAPS, Université Sorbonne Paris Nord, Bobigny, France.
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.
| |
Collapse
|
2
|
Welch CL, Aldred MA, Balachandar S, Dooijes D, Eichstaedt CA, Gräf S, Houweling AC, Machado RD, Pandya D, Prapa M, Shaukat M, Southgate L, Tenorio-Castano J, Chung WK. Defining the clinical validity of genes reported to cause pulmonary arterial hypertension. Genet Med 2023; 25:100925. [PMID: 37422716 PMCID: PMC10766870 DOI: 10.1016/j.gim.2023.100925] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Department of Haemotology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rajiv D Machado
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Divya Pandya
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matina Prapa
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Jair Tenorio-Castano
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IDiPAZ, Universidad Autonoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; ITHACA, European Reference Network, Brussels, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
3
|
Saint-Martin Willer A, Santos-Gomes J, Adão R, Brás-Silva C, Eyries M, Pérez-Vizcaino F, Capuano V, Montani D, Antigny F. Physiological and pathophysiological roles of the KCNK3 potassium channel in the pulmonary circulation and the heart. J Physiol 2023; 601:3717-3737. [PMID: 37477289 DOI: 10.1113/jp284936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.
Collapse
Affiliation(s)
- Anaïs Saint-Martin Willer
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Joana Santos-Gomes
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Mélanie Eyries
- Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
4
|
Fan X, Lu Y, Du G, Liu J. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238296. [PMID: 36500386 PMCID: PMC9736439 DOI: 10.3390/molecules27238296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels, including TASK-1, TASK-3, and TASK-5, are important members of the two-pore domain potassium (K2P) channel family. TASK-5 is not functionally expressed in the recombinant system. TASK channels are very sensitive to changes in extracellular pH and are active during all membrane potential periods. They are similar to other K2P channels in that they can create and use background-leaked potassium currents to stabilize resting membrane conductance and repolarize the action potential of excitable cells. TASK channels are expressed in both the nervous system and peripheral tissues, including excitable and non-excitable cells, and are widely engaged in pathophysiological phenomena, such as respiratory stimulation, pulmonary hypertension, arrhythmia, aldosterone secretion, cancers, anesthesia, neurological disorders, glucose homeostasis, and visual sensitivity. Therefore, they are important targets for innovative drug development. In this review, we emphasized the recent advances in our understanding of the biophysical properties, gating profiles, and biological roles of TASK channels. Given the different localization ranges and biologically relevant functions of TASK-1 and TASK-3 channels, the development of compounds that selectively target TASK-1 and TASK-3 channels is also summarized based on data reported in the literature.
Collapse
Affiliation(s)
- Xueming Fan
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
5
|
Redel-Traub G, Sampson KJ, Kass RS, Bohnen MS. Potassium Channels as Therapeutic Targets in Pulmonary Arterial Hypertension. Biomolecules 2022; 12:1341. [PMID: 36291551 PMCID: PMC9599705 DOI: 10.3390/biom12101341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease with high morbidity and mortality. Deleterious remodeling in the pulmonary arterial system leads to irreversible arterial constriction and elevated pulmonary arterial pressures, right heart failure, and eventually death. The difficulty in treating PAH stems in part from the complex nature of disease pathogenesis, with several signaling compounds known to be involved (e.g., endothelin-1, prostacyclins) which are indeed targets of PAH therapy. Over the last decade, potassium channelopathies were established as novel causes of PAH. More specifically, loss-of-function mutations in the KCNK3 gene that encodes the two-pore-domain potassium channel KCNK3 (or TASK-1) and loss-of-function mutations in the ABCC8 gene that encodes a key subunit, SUR1, of the ATP-sensitive potassium channel (KATP) were established as the first two potassium channelopathies in human cohorts with pulmonary arterial hypertension. Moreover, voltage-gated potassium channels (Kv) represent a third family of potassium channels with genetic changes observed in association with PAH. While other ion channel genes have since been reported in association with PAH, this review focuses on KCNK3, KATP, and Kv potassium channels as promising therapeutic targets in PAH, with recent experimental pharmacologic discoveries significantly advancing the field.
Collapse
Affiliation(s)
- Gabriel Redel-Traub
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kevin J. Sampson
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert S. Kass
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael S. Bohnen
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Thomeas-McEwing V, Psotka MA, Gamazon ER, Friedman P, Konkashbaev A, Kubo M, Nakamura Y, Ratain MJ, Benza RL, Cox NJ, Gomberg-Maitland MI, Maitland ML. Two polymorphic gene loci associated with treprostinil dose in pulmonary arterial hypertension. Pharmacogenet Genomics 2022; 32:144-151. [PMID: 35383711 DOI: 10.1097/fpc.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Prostacyclin infusion for pulmonary arterial hypertension (PAH) is an effective therapy with varied dosing requirements and clinical response. The major aim of this study was to determine new biologically-based predictors of prostacyclin treatment response heterogeneity. METHODS Ninety-eight patients with hemodynamically defined PAH at two academic medical centers volunteered for registry studies. A stable dose of treprostinil was the quantitative phenotype for the genome-wide association study (GWAS). Candidate genes with the largest effect sizes and strongest statistical associations were further characterized with in silico and in-vitro assays to confirm mechanistic hypotheses. The clinical significance of these candidate predictors was assessed for mechanistically consistent physiologic effects in an independent cohort of patients. RESULTS GWAS identified three loci for association with P < 10-6. All three loci had clinically significant effect sizes. Specific single-nucleotide polymorphisms (SNPs) at two of the loci: rs11078738 in phosphoribosylformylglycinamidine synthase and rs10023113 in CAMK2D encoded sequence changes with clear predicted consequences. Production of the primary mediator of prostacyclin-induced vasodilation, cyclic AMP, was reduced in human cell lines by the missense variant rs11078738 (p.L621P). Located in the promoter of CAMK2D, the allele of rs10023113 associated with a higher treprostinil dose has higher ventricular transcription of CAMK2δ. At initial diagnostic catheterization in a separate cohort of patients, the same allele of rs10023113 was associated with elevated right mean atrial and ventricular diastolic pressures. CONCLUSIONS The quantitative phenotype of stable treprostinil dose identified two gene loci associated with pharmacodynamic response and right ventricular function in PAH worth further investigation.
Collapse
Affiliation(s)
- Vasiliki Thomeas-McEwing
- Department of Medicine, University of Chicago, Chicago, Illinois
- Inova Schar Cancer Institute and Center for Personalized Health
| | | | - Eric R Gamazon
- Department of Medicine, University of Chicago, Chicago, Illinois
- Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Clare Hall, University of Cambridge, Cambridge, UK
| | - Paula Friedman
- Department of Medicine, University of Chicago, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Anuar Konkashbaev
- Department of Medicine, University of Chicago, Chicago, Illinois
- Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, Illinois
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
- Cancer Precision Medicine Research Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mark J Ratain
- Department of Medicine, University of Chicago, Chicago, Illinois
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Raymond L Benza
- Cardiovascular Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania
- Current address: Division of Cardiovascular Medicine, Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Nancy J Cox
- Department of Medicine, University of Chicago, Chicago, Illinois
- Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Mardi I Gomberg-Maitland
- Department of Medicine, University of Chicago, Chicago, Illinois
- Inova Heart and Vascular Institute, Falls Church, Virginia
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
- Department of Medicine, George Washington University, Washington DC and
| | - Michael L Maitland
- Department of Medicine, University of Chicago, Chicago, Illinois
- Inova Schar Cancer Institute and Center for Personalized Health
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Welch CL, Chung WK. Channelopathy Genes in Pulmonary Arterial Hypertension. Biomolecules 2022; 12:265. [PMID: 35204766 PMCID: PMC8961593 DOI: 10.3390/biom12020265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. The underlying pathogenetic mechanisms are heterogeneous and current therapies aim to decrease pulmonary vascular resistance but no curative treatments are available. Causal genetic variants can be identified in ~13% of adults and 43% of children with PAH. Knowledge of genetic diagnoses can inform clinical management of PAH, including multimodal medical treatment, surgical intervention and transplantation decisions, and screening for associated conditions, as well as risk stratification for family members. Roles for rare variants in three channelopathy genes-ABCC8, ATP13A3, and KCNK3-have been validated in multiple PAH cohorts, and in aggregate explain ~2.7% of PAH cases. Complete or partial loss of function has been demonstrated for PAH-associated variants in ABCC8 and KCNK3. Channels can be excellent targets for drugs, and knowledge of mechanisms for channel mutations may provide an opportunity for the development of PAH biomarkers and novel therapeutics for patients with hereditary PAH but also potentially more broadly for all patients with PAH.
Collapse
Affiliation(s)
- Carrie L. Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Wendy K. Chung
- Department of Pediatrics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
West JD, Austin ED, Rizzi EM, Yan L, Tanjore H, Crabtree AL, Moore CS, Muthian G, Carrier EJ, Jacobson DA, Hamid R, Kendall PL, Majka S, Rathinasabapathy A. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci 2021; 22:ijms22095014. [PMID: 34065088 PMCID: PMC8126011 DOI: 10.3390/ijms22095014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Loss of function KCNK3 mutation is one of the gene variants driving hereditary pulmonary arterial hypertension (PAH). KCNK3 is expressed in several cell and tissue types on both membrane and endoplasmic reticulum and potentially plays a role in multiple pathological process associated with PAH. However, the role of various stressors driving the susceptibility of KCNK3 mutation to PAH is unknown. Hence, we exposed kcnk3fl/fl animals to hypoxia, metabolic diet and low dose lipopolysaccharide (LPS) and performed molecular characterization of their tissue. We also used tissue samples from KCNK3 patients (skin fibroblast derived inducible pluripotent stem cells, blood, lungs, peripheral blood mononuclear cells) and performed microarray, immunohistochemistry (IHC) and mass cytometry time of flight (CyTOF) experiments. Although a hypoxic insult did not alter vascular tone in kcnk3fl/fl mice, RNASeq study of these lungs implied that inflammatory and metabolic factors were altered, and the follow-up diet study demonstrated a dysregulation of bone marrow cells in kcnk3fl/fl mice. Finally, a low dose LPS study clearly showed that inflammation could be a possible second hit driving PAH in kcnk3fl/fl mice. Multiplex, IHC and CyTOF immunophenotyping studies on human samples confirmed the mouse data and strongly indicated that cell mediated, and innate immune responses may drive PAH susceptibility in these patients. In conclusion, loss of function KCNK3 mutation alters various physiological processes from vascular tone to metabolic diet through inflammation. Our data suggests that altered circulating immune cells may drive PAH susceptibility in patients with KCNK3 mutation.
Collapse
Affiliation(s)
- James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Elise M. Rizzi
- Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (E.M.R.); (P.L.K.)
| | - Ling Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Amber L. Crabtree
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Christy S. Moore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Gladson Muthian
- Department of Cancer Biology, Biochemistry and Neuropharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Erica J. Carrier
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Peggy L. Kendall
- Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (E.M.R.); (P.L.K.)
| | - Susan Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA;
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
- Correspondence:
| |
Collapse
|
9
|
Le Ribeuz H, Capuano V, Girerd B, Humbert M, Montani D, Antigny F. Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension. Biomolecules 2020; 10:biom10091261. [PMID: 32882918 PMCID: PMC7564204 DOI: 10.3390/biom10091261] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and severe cardiopulmonary disease without curative treatments. PAH is a multifactorial disease that involves genetic predisposition, epigenetic factors, and environmental factors (drugs, toxins, viruses, hypoxia, and inflammation), which contribute to the initiation or development of irreversible remodeling of the pulmonary vessels. The recent identification of loss-of-function mutations in KCNK3 (KCNK3 or TASK-1) and ABCC8 (SUR1), or gain-of-function mutations in ABCC9 (SUR2), as well as polymorphisms in KCNA5 (Kv1.5), which encode two potassium (K+) channels and two K+ channel regulatory subunits, has revived the interest of ion channels in PAH. This review focuses on KCNK3, SUR1, SUR2, and Kv1.5 channels in pulmonary vasculature and discusses their pathophysiological contribution to and therapeutic potential in PAH.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-40-94-22-99
| |
Collapse
|
10
|
Le Ribeuz H, Courboulin A, Ghigna MR, Lambert M, Hautefort A, Humbert M, Montani D, Cohen-Kaminsky S, Perros F, Antigny F. In vivo miR-138-5p inhibition alleviates monocrotaline-induced pulmonary hypertension and normalizes pulmonary KCNK3 and SLC45A3 expression. Respir Res 2020; 21:186. [PMID: 32678044 PMCID: PMC7364627 DOI: 10.1186/s12931-020-01444-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/06/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The pathogenesis of pulmonary arterial hypertension (PAH) involves many signalling pathways. MicroRNAs are potential candidates involved in simultaneously coordinating multiple genes under such multifactorial conditions. METHODS AND RESULTS MiR-138-5p is overexpressed in pulmonary arterial smooth muscle cells (PASMCs) from PAH patients and in lungs from rats with monocrotaline-induced pulmonary hypertension (MCT-PH). MiR-138-5p is predicted to regulate the expression of the potassium channel KCNK3, whose loss is associated with the development and progression of PAH. We hypothesized that, in vivo, miR-138-5p inhibition would restore KCNK3 lung expression and subsequently alleviate PAH. Nebulization-based delivery of anti-miR-138-5p to rats with established MCT-PH significantly reduced the right ventricular systolic pressure and significantly improved the pulmonary arterial acceleration time (PAAT). These haemodynamic improvements were related to decrease pulmonary vascular remodelling, lung inflammation and pulmonary vascular cell proliferation in situ. In vivo inhibition of miR-138-5p restored KCNK3 mRNA expression and SLC45A3 protein expression in the lungs. CONCLUSIONS We confirmed that in vivo inhibition of miR-138-5p reduces the development of PH in experimental MCT-PH. The possible curative mechanisms involve at least the normalization of lung KCNK3 as well as SLC45A3 expression.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension pulmonaire : Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Audrey Courboulin
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension pulmonaire : Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension pulmonaire : Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension pulmonaire : Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Aurélie Hautefort
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension pulmonaire : Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension pulmonaire : Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension pulmonaire : Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension pulmonaire : Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Frédéric Perros
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension pulmonaire : Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
- INSERM UMR_S 999 « Hypertension pulmonaire : Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
11
|
Swietlik EM, Gräf S, Morrell NW. The role of genomics and genetics in pulmonary arterial hypertension. Glob Cardiol Sci Pract 2020; 2020:e202013. [PMID: 33150157 PMCID: PMC7590931 DOI: 10.21542/gcsp.2020.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Emilia M Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Addenbrooke's Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Addenbrooke's Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom.,NIHR BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
12
|
Han L, Song N, Hu X, Zhu A, Wei X, Liu J, Yuan S, Mao W, Chen X. Inhibition of RELM-β prevents hypoxia-induced overproliferation of human pulmonary artery smooth muscle cells by reversing PLC-mediated KCNK3 decline. Life Sci 2020; 246:117419. [PMID: 32045592 DOI: 10.1016/j.lfs.2020.117419] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/09/2023]
Abstract
AIMS Although resistin-like molecule β (RELM-β) is involved in the pathological processes of various lung diseases, such as pulmonary inflammation, asthma and fibrosis, its potential roles in hypoxic pulmonary arterial hypertension (PAH) remain largely unknown. The study aims to investigate whether RELM-β contributes to hypoxia-induced excessive proliferation of human pulmonary artery smooth muscle cells (PASMCs) and to explore the potential mechanisms of this process. MAIN METHODS Human PASMCs were exposed to normoxia or hypoxia (1% O2) for 24 h. siRNA targeting RELM-β was transfected into cells. Protein levels of KCNK3, RELM-β, pSTAT3 and STAT3 were determined by immunoblotting. The translocation of NFATc2 and expression of KCNK3 were visualized by immunofluorescence. 5-ethynyl-2'-deoxyuridine assays and cell counting kit-8 assays were performed to assess the proliferation of PASMCs. KEY FINDINGS (1) Chronic hypoxia significantly decreased KCNK3 protein levels while upregulating RELM-β protein levels in human PASMCs, which was accompanied by excessive proliferation of cells. (2) RELM-β could promote human PASMCs proliferation and activate the STAT3/NFAT axis by downregulating KCNK3 protein under normoxia. (3) Inhibition of RELM-β expression effectively prevented KCNK3-mediated cell proliferation under hypoxia. (4) Phospholipase C (PLC) inhibitor U-73122 could not only prevent the hypoxia/RELM-β-induced decrease in KCNK3 protein, but also inhibit the enhanced cell viability caused by hypoxia/RELM-β. (5) Both hypoxia and RELM-β could downregulate membrane KCNK3 protein levels by enhancing endocytosis. SIGNIFICANCE RELM-β activation is responsible for hypoxia-induced excessive proliferation of human PASMCs. Interfering with RELM-β may alleviate the progression of hypoxic PAH by upregulating PLC-dependent KCNK3 expression.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nannan Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaomin Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Afang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, CAMS&PUMC, Beijing, China
| | - Xin Wei
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinmin Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
13
|
Lambert M, Capuano V, Boet A, Tesson L, Bertero T, Nakhleh MK, Remy S, Anegon I, Pechoux C, Hautefort A, Rucker-Martin C, Manoury B, Domergue V, Mercier O, Girerd B, Montani D, Perros F, Humbert M, Antigny F. Characterization of Kcnk3-Mutated Rat, a Novel Model of Pulmonary Hypertension. Circ Res 2019; 125:678-695. [PMID: 31347976 DOI: 10.1161/circresaha.119.314793] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Pulmonary arterial hypertension is a severe lethal cardiopulmonary disease. Loss of function mutations in KCNK3 (potassium channel subfamily K member 3) gene, which encodes an outward rectifier K+ channel, have been identified in pulmonary arterial hypertension patients. OBJECTIVE We have demonstrated that KCNK3 dysfunction is common to heritable and nonheritable pulmonary arterial hypertension and to experimental pulmonary hypertension (PH). Finally, KCNK3 is not functional in mouse pulmonary vasculature. METHODS AND RESULTS Using CRISPR/Cas9 technology, we generated a 94 bp out of frame deletion in exon 1 of Kcnk3 gene and characterized these rats at the electrophysiological, echocardiographic, hemodynamic, morphological, cellular, and molecular levels to decipher the cellular mechanisms associated with loss of KCNK3. Using patch-clamp technique, we validated our transgenic strategy by demonstrating the absence of KCNK3 current in freshly isolated pulmonary arterial smooth muscle cells from Kcnk3-mutated rats. At 4 months of age, echocardiographic parameters revealed shortening of the pulmonary artery acceleration time associated with elevation of the right ventricular systolic pressure. Kcnk3-mutated rats developed more severe PH than wild-type rats after monocrotaline exposure or chronic hypoxia exposure. Kcnk3-mutation induced a lung distal neomuscularization and perivascular extracellular matrix activation. Lungs of Kcnk3-mutated rats were characterized by overactivation of ERK1/2 (extracellular signal-regulated kinase1-/2), AKT (protein kinase B), SRC, and overexpression of HIF1-α (hypoxia-inducible factor-1 α), survivin, and VWF (Von Willebrand factor). Linked with plasma membrane depolarization, reduced endothelial-NOS expression and desensitization of endothelial-derived hyperpolarizing factor, Kcnk3-mutated rats presented predisposition to vasoconstriction of pulmonary arteries and a severe loss of sildenafil-induced pulmonary arteries relaxation. Moreover, we showed strong alteration of right ventricular cardiomyocyte excitability. Finally, Kcnk3-mutated rats developed age-dependent PH associated with low serum-albumin concentration. CONCLUSIONS We established the first Kcnk3-mutated rat model of PH. Our results confirm that KCNK3 loss of function is a key event in pulmonary arterial hypertension pathogenesis. This model presents new opportunities for understanding the initiating mechanisms of PH and testing biologically relevant therapeutic molecules in the context of PH.
Collapse
Affiliation(s)
- Mélanie Lambert
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Véronique Capuano
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Angèle Boet
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Laurent Tesson
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, France (L.T., S.R., I.A.).,PTransgenic Rat ImmunoPhenomic (TRIP) facility Nantes, Nantes, France (L.T., S.R., I.A.)
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France (T.B.)
| | - Morad K Nakhleh
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, France (L.T., S.R., I.A.).,PTransgenic Rat ImmunoPhenomic (TRIP) facility Nantes, Nantes, France (L.T., S.R., I.A.)
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, France (L.T., S.R., I.A.).,PTransgenic Rat ImmunoPhenomic (TRIP) facility Nantes, Nantes, France (L.T., S.R., I.A.)
| | - Christine Pechoux
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.P.)
| | - Aurélie Hautefort
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Catherine Rucker-Martin
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Boris Manoury
- Signalisation et Physiopathologie Cardiovasculaire - UMR_S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry, France (B.M.)
| | - Valérie Domergue
- Animal Facility, Institut Paris Saclay d'Innovation Thérapeutique (UMS IPSIT), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France (V.D.)
| | - Olaf Mercier
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Barbara Girerd
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - David Montani
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Frédéric Perros
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Canada (F.P.)
| | - Marc Humbert
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Fabrice Antigny
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| |
Collapse
|
14
|
Antigny F. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33:524-526. [DOI: 10.1111/fcp.12493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Fabrice Antigny
- Faculté de Médecine Univ. Paris–Sud Université Paris‐Saclay 8 rue du Général Leclerc Le Kremlin Bicêtre94275France
- AP‐HP, Service de Pneumologie Centre de Référence de l'Hypertension PulmonaireHôpital Bicêtre 8 rue du Général Leclerc Le Plessis-Robinson94275France
- Inserm UMR_S 999 Hôpital Marie Lannelongue 133 Avenue de la Résistance Le Plessis Robinson92350France
| |
Collapse
|
15
|
Theilmann AL, Ormiston ML. Repurposing benzbromarone for pulmonary arterial hypertension: can channelling the past deliver the therapy of the future? Eur Respir J 2019; 53:53/6/1900583. [PMID: 31167883 DOI: 10.1183/13993003.00583-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Anne L Theilmann
- Queen's University, Depts of Biomedical and Molecular Sciences, Medicine and Surgery, Kingston, ON, Canada
| | - Mark L Ormiston
- Queen's University, Depts of Biomedical and Molecular Sciences, Medicine and Surgery, Kingston, ON, Canada
| |
Collapse
|
16
|
Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33:504-523. [PMID: 30851197 DOI: 10.1111/fcp.12461] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022]
Abstract
Potassium (K+ ) ion channel activity is an important determinant of vascular tone by regulating cell membrane potential (MP). Activation of K+ channels leads to membrane hyperpolarization and subsequently vasodilatation, while inhibition of the channels causes membrane depolarization and then vasoconstriction. So far five distinct types of K+ channels have been identified in vascular smooth muscle cells (VSMCs): Ca+2 -activated K+ channels (BKC a ), voltage-dependent K+ channels (KV ), ATP-sensitive K+ channels (KATP ), inward rectifier K+ channels (Kir ), and tandem two-pore K+ channels (K2 P). The activity and expression of vascular K+ channels are changed during major vascular diseases such as hypertension, pulmonary hypertension, hypercholesterolemia, atherosclerosis, and diabetes mellitus. The defective function of K+ channels is commonly associated with impaired vascular responses and is likely to become as a result of changes in K+ channels during vascular diseases. Increased K+ channel function and expression may also help to compensate for increased abnormal vascular tone. There are many pharmacological and genotypic studies which were carried out on the subtypes of K+ channels expressed in variable amounts in different vascular beds. Modulation of K+ channel activity by molecular approaches and selective drug development may be a novel treatment modality for vascular dysfunction in the future. This review presents the basic properties, physiological functions, pathophysiological, and pharmacological roles of the five major classes of K+ channels that have been determined in VSMCs.
Collapse
Affiliation(s)
- Muhammed Fatih Dogan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Oguzhan Yildiz
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| | - Seyfullah Oktay Arslan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Kemal Gokhan Ulusoy
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| |
Collapse
|
17
|
Lambert M, Capuano V, Olschewski A, Sabourin J, Nagaraj C, Girerd B, Weatherald J, Humbert M, Antigny F. Ion Channels in Pulmonary Hypertension: A Therapeutic Interest? Int J Mol Sci 2018; 19:ijms19103162. [PMID: 30322215 PMCID: PMC6214085 DOI: 10.3390/ijms19103162] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial and severe disease without curative therapies. PAH pathobiology involves altered pulmonary arterial tone, endothelial dysfunction, distal pulmonary vessel remodeling, and inflammation, which could all depend on ion channel activities (K⁺, Ca2+, Na⁺ and Cl-). This review focuses on ion channels in the pulmonary vasculature and discusses their pathophysiological contribution to PAH as well as their therapeutic potential in PAH.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Véronique Capuano
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, Graz 8010, Austria.
- Department of Physiology, Medical University Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria.
| | - Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, UMRS 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, Graz 8010, Austria.
| | - Barbara Girerd
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Jason Weatherald
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
- Division of Respirology, Department of Medicine, University of Calgary, Calgary, AB T1Y 6J4, Canada.
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T1Y 6J4, Canada.
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| |
Collapse
|
18
|
Tang D, Fakiola M, Syn G, Anderson D, Cordell HJ, Scaman ESH, Davis E, Miles SJ, McLeay T, Jamieson SE, Lassmann T, Blackwell JM. Arylsulphatase A Pseudodeficiency (ARSA-PD), hypertension and chronic renal disease in Aboriginal Australians. Sci Rep 2018; 8:10912. [PMID: 30026549 PMCID: PMC6053446 DOI: 10.1038/s41598-018-29279-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
Chronic renal disease (CRD) associated with cardiovascular disease (CVD) and/or type 2 diabetes (T2D) is a significant problem in Aboriginal Australians. Whole exome sequencing data (N = 72) showed enrichment for ClinVar pathogenic variants in gene sets/pathways linking lipoprotein, lipid and glucose metabolism. The top Ingenuity Pathway Analysis canonical pathways were Farsenoid X Receptor and Retinoid Receptor (FXR/RXR; (P = 1.86 × 10−7), Liver X Receptor and Retinoid Receptor (LXR/RXR; P = 2.88 × 10−6), and atherosclerosis signalling (P = 3.80 × 10−6). Top pathways/processes identified using Enrichr included: Reactome 2016 chylomicron-mediated lipid transport (P = 3.55 × 10−7); Wiki 2016 statin (P = 8.29 × 10−8); GO Biological Processes 2017 chylomicron remodelling (P = 1.92 × 10−8). ClinVar arylsulfatase A pseudodeficiency (ARSA-PD) pathogenic variants were common, including the missense variant c.511 G > A (p.Asp171Asn; rs74315466; frequency 0.44) only reported in Polynesians. This variant is in cis with known ARSA-PD 3′ regulatory c.*96 A > G (rs6151429; frequency 0.47) and missense c.1055 A > G (p.Asn352Ser; rs2071421; frequency 0.47) variants. These latter two variants are associated with T2D (risk haplotype GG; odds ratio 2.67; 95% CI 2.32–3.08; P = 2.43 × 10−4) in genome-wide association data (N = 402), but are more strongly associated with quantitative traits (DBP, SBP, ACR, eGFR) for hypertension and renal function in non-diabetic than diabetic subgroups. Traits associated with CVD, CRD and T2D in Aboriginal Australians provide novel insight into function of ARSA-PD variants.
Collapse
Affiliation(s)
- Dave Tang
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | | | - Genevieve Syn
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Denise Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Elizabeth S H Scaman
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth Davis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia.,Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Subiaco, Western Australia, 6008, Australia
| | - Simon J Miles
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Toby McLeay
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Timo Lassmann
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Jenefer M Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia.
| |
Collapse
|
19
|
Russo A, Di Gaetano C, Cugliari G, Matullo G. Advances in the Genetics of Hypertension: The Effect of Rare Variants. Int J Mol Sci 2018; 19:E688. [PMID: 29495593 PMCID: PMC5877549 DOI: 10.3390/ijms19030688] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Worldwide, hypertension still represents a serious health burden with nine million people dying as a consequence of hypertension-related complications. Essential hypertension is a complex trait supported by multifactorial genetic inheritance together with environmental factors. The heritability of blood pressure (BP) is estimated to be 30-50%. A great effort was made to find genetic variants affecting BP levels through Genome-Wide Association Studies (GWAS). This approach relies on the "common disease-common variant" hypothesis and led to the identification of multiple genetic variants which explain, in aggregate, only 2-3% of the genetic variance of hypertension. Part of the missing genetic information could be caused by variants too rare to be detected by GWAS. The use of exome chips and Next-Generation Sequencing facilitated the discovery of causative variants. Here, we report the advances in the detection of novel rare variants, genes, and/or pathways through the most promising approaches, and the recent statistical tests that have emerged to handle rare variants. We also discuss the need to further support rare novel variants with replication studies within larger consortia and with deeper functional studies to better understand how new genes might improve patient care and the stratification of the response to antihypertensive treatments.
Collapse
Affiliation(s)
- Alessia Russo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM, Formerly HuGeF), 10126 Turin, Italy.
| | - Cornelia Di Gaetano
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM, Formerly HuGeF), 10126 Turin, Italy.
| | - Giovanni Cugliari
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM, Formerly HuGeF), 10126 Turin, Italy.
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM, Formerly HuGeF), 10126 Turin, Italy.
| |
Collapse
|
20
|
Li F, Shi W, Wan Y, Wang Q, Feng W, Yan X, Wang J, Chai L, Zhang Q, Li M. Prediction of target genes for miR-140-5p in pulmonary arterial hypertension using bioinformatics methods. FEBS Open Bio 2017; 7:1880-1890. [PMID: 29226075 PMCID: PMC5715273 DOI: 10.1002/2211-5463.12322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/28/2017] [Accepted: 09/15/2017] [Indexed: 01/16/2023] Open
Abstract
The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro.
Collapse
Affiliation(s)
- Fangwei Li
- Department of Respiratory Medicine The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Wenhua Shi
- Department of Respiratory Medicine The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Yixin Wan
- Department of Respiratory Medicine Lanzhou University Second Hospital China
| | - Qingting Wang
- Department of Respiratory Medicine The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Wei Feng
- Department of Respiratory Medicine The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Xin Yan
- Department of Respiratory Medicine The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Jian Wang
- Department of Respiratory Medicine The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Limin Chai
- Department of Respiratory Medicine The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Qianqian Zhang
- Department of Respiratory Medicine The First Affiliated Hospital of Xi'an Jiaotong University China
| | - Manxiang Li
- Department of Respiratory Medicine The First Affiliated Hospital of Xi'an Jiaotong University China
| |
Collapse
|
21
|
Abstract
Tremendous progress has been made in understanding the genetics of pulmonary arterial hypertension (PAH) since its description in the 1950s as a primary disorder of the pulmonary vasculature. Heterozygous germline mutations in the gene coding bone morphogenetic receptor type 2 (BMPR2) are detectable in the majority of cases of heritable PAH, and in approximately 20% of cases of idiopathic pulmonary arterial hypertension (IPAH). However, recent advances in gene discovery methods have facilitated the discovery of additional genes with mutations among those with and without familial PAH. Heritable PAH is an autosomal dominant disease characterized by reduced penetrance, variable expressivity, and female predominance. Biallelic germline mutations in the gene EIF2AK4 are now associated with pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis. Growing genetic knowledge enhances our capacity to pursue and provide genetic counseling, although the issue remains complex given that the majority of carriers of PAH-related mutations will never be diagnosed with the disease.
Collapse
Affiliation(s)
- Joshua D. Chew
- Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James E. Loyd
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric D. Austin
- Division of Pulmonary, Allergy, and Immunology Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|