1
|
Kubota K. Efficacy of spironolactone in pulmonary arterial hypertension. Hypertens Res 2024:10.1038/s41440-024-01976-1. [PMID: 39511329 DOI: 10.1038/s41440-024-01976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Kayoko Kubota
- Departments of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
2
|
Zeder K, Siew ED, Kovacs G, Brittain EL, Maron BA. Pulmonary hypertension and chronic kidney disease: prevalence, pathophysiology and outcomes. Nat Rev Nephrol 2024; 20:742-754. [PMID: 38890546 DOI: 10.1038/s41581-024-00857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Pulmonary hypertension (PH) is common in patients with chronic kidney disease (CKD) or kidney failure, with an estimated prevalence of up to 78% in those referred for right-heart catheterization. PH is independently associated with adverse outcomes in CKD, raising the possibility that early detection and appropriate management of PH might improve outcomes in at-risk patients. Among patients with PH, the prevalence of CKD stages 3 and 4 is estimated to be as high as 36%, and CKD is also independently associated with adverse outcomes. However, the complex, heterogenous pathophysiology and clinical profile of CKD-PH requires further characterization. CKD is often associated with elevated left ventricular filling pressure and volume overload, which presumably leads to pulmonary vascular stiffening and post-capillary PH. By contrast, a distinct subgroup of patients at high risk is characterized by elevated pulmonary vascular resistance and right ventricular dysfunction in the absence of pulmonary venous hypertension, which may represent a right-sided cardiorenal syndrome defined in principle by hypervolaemia, salt avidity, low cardiac output and normal left ventricular function. Current understanding of CKD-PH is limited, despite its potentially important ramifications for clinical decision making. In particular, whether PH should be considered when determining the suitability and timing of kidney replacement therapy or kidney transplantation is unclear. More research is urgently needed to address these knowledge gaps and improve the outcomes of patients with or at risk of CKD-PH.
Collapse
Affiliation(s)
- Katarina Zeder
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- The University of Maryland-Institute for Health Computing, Bethesda, MD, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury, Nashville, TN, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Evan L Brittain
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- The University of Maryland-Institute for Health Computing, Bethesda, MD, USA.
| |
Collapse
|
3
|
Camarda ND, Ibarrola J, Biwer LA, Jaffe IZ. Mineralocorticoid Receptors in Vascular Smooth Muscle: Blood Pressure and Beyond. Hypertension 2024; 81:1008-1020. [PMID: 38426347 PMCID: PMC11023801 DOI: 10.1161/hypertensionaha.123.21358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
After half a century of evidence suggesting the existence of mineralocorticoid receptors (MR) in the vasculature, the advent of technology to specifically knockout the MR from smooth muscle cells (SMCs) in mice has elucidated contributions of SMC-MR to cardiovascular function and disease, independent of the kidney. This review summarizes the latest understanding of the molecular mechanisms by which SMC-MR contributes to (1) regulation of vasomotor function and blood pressure to contribute to systemic and pulmonary hypertension; (2) vascular remodeling in response to hypertension, vascular injury, obesity, and aging, and the impact on vascular calcification; and (3) cardiovascular pathologies including aortic aneurysm, heart valve dysfunction, and heart failure. Data are reviewed from in vitro studies using SMCs and in vivo findings from SMC-specific MR-knockout mice that implicate target genes and signaling pathways downstream of SMC-MR. By regulating expression of the L-type calcium channel subunit Cav1.2 and angiotensin II type-1 receptor, SMC-MR contributes to myogenic tone and vasoconstriction, thereby contributing to systemic blood pressure. MR activation also promotes SMC proliferation, migration, production and degradation of extracellular matrix, and osteogenic differentiation by regulating target genes including connective tissue growth factor, osteopontin, bone morphogenetic protein 2, galectin-3, and matrix metallopeptidase-2. By these mechanisms, SMC-MR promotes disease progression in models of aging-associated vascular stiffness, vascular calcification, mitral and aortic valve disease, pulmonary hypertension, and heart failure. While rarely tested, when sexes were compared, the mechanisms of SMC-MR-mediated disease were sexually dimorphic. These advances support targeting SMC-MR-mediated mechanisms to prevent and treat diverse cardiovascular disorders.
Collapse
Affiliation(s)
- Nicholas D. Camarda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Lauren A. Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Oknińska M, Zajda K, Zambrowska Z, Grzanka M, Paterek A, Mackiewicz U, Szczylik C, Kurzyna M, Piekiełko-Witkowska A, Torbicki A, Kieda C, Mączewski M. Role of Oxygen Starvation in Right Ventricular Decompensation and Failure in Pulmonary Arterial Hypertension. JACC. HEART FAILURE 2024; 12:235-247. [PMID: 37140511 DOI: 10.1016/j.jchf.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
Right ventricular (RV) function and eventually failure determine outcome in patients with pulmonary arterial hypertension (PAH). Initially, RV responds to an increased load caused by PAH with adaptive hypertrophy; however, eventually RV failure ensues. Unfortunately, it is unclear what causes the transition from compensated RV hypertrophy to decompensated RV failure. Moreover, at present, there are no therapies for RV failure; those for left ventricular (LV) failure are ineffective, and no therapies specifically targeting RV are available. Thus there is a clear need for understanding the biology of RV failure and differences in physiology and pathophysiology between RV and LV that can ultimately lead to development of such therapies. In this paper, we discuss RV adaptation and maladaptation in PAH, with a particular focus of oxygen delivery and hypoxia as the principal drivers of RV hypertrophy and failure, and attempt to pinpoint potential sites for therapy.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Zajda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Medical Institute, Warsaw, Poland
| | - Zuzanna Zambrowska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology at ECZ-Otwock, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology at ECZ-Otwock, ERN-LUNG Member, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Adam Torbicki
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology at ECZ-Otwock, ERN-LUNG Member, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Medical Institute, Warsaw, Poland; Centre for Molecular Biophysics, UPR, CNRS 4301, Orléans CEDEX 2, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
5
|
El-Hefny NEAM, Mohammed HSED, El-Mahdy RI, Haridi SHM, Mohamed AS. Serum aldosterone in right ventricular failure versus left ventricular failure before and after mineralocorticoid receptor antagonists: case-control clinical trial. Acta Cardiol 2023; 78:1110-1119. [PMID: 37811606 DOI: 10.1080/00015385.2023.2266648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Heart failure (HF) is a global growing health threat. This case-control clinical trial aimed to detect the predictive value and difference in aldosterone level between right side heart failure, heart failure with decreased ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF) and compare the efficacy and safety of adding mineralocorticoid receptor antagonist (MRA) for treatment. PATIENTS AND METHODS We recruited 151 participants, 135 HF patients divided equally into 45 patients in each group:(1) right side HF (2) HFrEF and (3) HFpEF and 16 healthy controls. Serum aldosterone, troponin and echocardiography were evaluated at the beginning of the study, three and six months after administration of MRA. RESULTS Aldosterone level was significantly greater in HF patients relative to controls. Aldosterone level can detect HF with excellent accuracy. There were significantly lower levels of aldosterone in right side HF compared to left side HF. There was a significant decrease in right ventricle dimensions, pulmonary artery systolic pressure and pulmonary artery size and significant increase in tricuspid annular plane systolic excursion after treatment in patients with right side HF. In the HFrEF group, there was a significant decrease in left ventricular end diastolic dimension and a significant increase in left ventricular EF after treatment. In the HFpEF group, there was a significant decrease in E/A and E/e' after treatment. CONCLUSIONS Aldosterone may have pathogenic role in HF. Measuring and follow-up of aldosterone levels should be considered in HF patients. MRA treatment gives a significant improvement in right side HF group.
Collapse
Affiliation(s)
| | - Hanan Sharaf El-Deen Mohammed
- Department of Internal medicine and critical care unit, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Reham I El-Mahdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Science, Badre University, Badr City, Egypt
| | - Salma Hamdy M Haridi
- Department of Internal Medicine, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Abir S Mohamed
- Faculty of Public Health and Tropical Medicine, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
6
|
Aydınyılmaz F, Guliyev İ, Özbeyaz NB, Algül E, Aker M, Şahan HF, Erzurum M, Felekoğlu MA, Kalkan K. Predicting hospitalization by TAPSE/SPAP and the role of spironolactone in asymptomatic heart failure patients. Biomark Med 2023; 17:197-207. [PMID: 37140253 DOI: 10.2217/bmm-2022-0737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Aim: To appraise the prediction of tricuspid annular plane systolic excursion (TAPSE)/systolic pulmonary artery pressure (SPAP) with regard to hospitalization and the effect of spironolactone use. Materials & methods: A total of 245 patients were evaluated for the study. Patients were followed for 1 year and cardiovascular outcomes were determined. Results: It was determined that TAPSE/SPAP was an independent predictor of hospitalization. A 0.1-mmHg decrease in TAPSE/SPAP was associated with a 9% increase in relative risk. No event was observed above the 0.47 level. Negative correlation with TAPSE (uncoupling) began in the spironolactone group when SPAP was ≥43 and in nonusers when SPAP was 38 (Pearson's correlation coefficient: -,731 vs -,383; p < 0.001 vs p = 0.037). Conclusion: TAPSE/SPAP measurement may be useful in predicting 1-year hospitalization in asymptomatic heart failure patients. This ratio was also found to be higher in patients who used spironolactone.
Collapse
Affiliation(s)
- Faruk Aydınyılmaz
- Department of Cardiology, Erzurum Bolge Training & Research Hospital, University of Health Sciences, Erzurum, 25030, Turkey
| | - İlkin Guliyev
- Department of Cardiology, Gumushane State Hospital, Gumushane, 29010, Turkey
| | - Nail B Özbeyaz
- Department of Cardiology, Pursaklar State Hospital, Ankara, 06145, Turkey
| | - Engin Algül
- Department of Cardiology, Dışkapı Yıldırım Beyazıt Training & Research Hospital, University of Health Sciences, Ankara, 06145, Turkey
| | - Mert Aker
- Department of Cardiology, Karabuk Training & Research Hospital, Karabuk, 78020, Turkey
| | - Haluk F Şahan
- Department of Cardiology, Dışkapı Yıldırım Beyazıt Training & Research Hospital, University of Health Sciences, Ankara, 06145, Turkey
| | - Muhammed Erzurum
- Department of Cardiology, Eskişehir Yunus Emre State Hospital, Eskişehir, 26000, Turkey
| | - Mehmet A Felekoğlu
- Department of Cardiology, Eskişehir Yunus Emre State Hospital, Eskişehir, 26000, Turkey
| | - Kamuran Kalkan
- Department of Cardiology, Dışkapı Yıldırım Beyazıt Training & Research Hospital, University of Health Sciences, Ankara, 06145, Turkey
| |
Collapse
|
7
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Mamazhakypov A, Lother A. Therapeutic targeting of mineralocorticoid receptors in pulmonary hypertension: Insights from basic research. Front Cardiovasc Med 2023; 10:1118516. [PMID: 36793473 PMCID: PMC9922727 DOI: 10.3389/fcvm.2023.1118516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling and associated with adverse outcomes. In patients with PH, plasma aldosterone levels are elevated, suggesting that aldosterone and its receptor, the mineralocorticoid receptor (MR), play an important role in the pathophysiology of PH. The MR plays a crucial role in adverse cardiac remodeling in left heart failure. A series of experimental studies from the past few years indicate that MR activation promotes adverse cellular processes that lead to pulmonary vascular remodeling, including endothelial cell apoptosis, smooth muscle cell (SMC) proliferation, pulmonary vascular fibrosis, and inflammation. Accordingly, in vivo studies have demonstrated that pharmacological inhibition or cell-specific deletion of the MR can prevent disease progression and partially reverse established PH phenotypes. In this review, we summarize recent advances in MR signaling in pulmonary vascular remodeling based on preclinical research and discuss the potential, but also the challenges, in bringing MR antagonists (MRAs) into clinical application.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Faculty of Medicine, Interdisciplinary Medical Intensive Care, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany,*Correspondence: Achim Lother,
| |
Collapse
|
9
|
Wolter NL, Jaffe IZ. Emerging vascular cell-specific roles for mineralocorticoid receptor: implications for understanding sex differences in cardiovascular disease. Am J Physiol Cell Physiol 2023; 324:C193-C204. [PMID: 36440858 PMCID: PMC9902217 DOI: 10.1152/ajpcell.00372.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
As growing evidence implicates extrarenal mineralocorticoid receptor (MR) in cardiovascular disease (CVD), recent studies have defined both cell- and sex-specific roles. MR is expressed in vascular smooth muscle (SMC) and endothelial cells (ECs). This review integrates published data from the past 5 years to identify novel roles for vascular MR in CVD, with a focus on understanding sex differences. Four areas are reviewed in which there is recently expanded understanding of the cell type- or sex-specific role of MR in 1) obesity-induced microvascular endothelial dysfunction, 2) vascular inflammation in atherosclerosis, 3) pulmonary hypertension, and 4) chronic kidney disease (CKD)-related CVD. The review focuses on preclinical data on each topic describing new mechanistic paradigms, cell type-specific mechanisms, sexual dimorphism if addressed, and clinical implications are then considered. New data support that MR drives vascular dysfunction induced by cardiovascular risk factors via sexually dimorphic mechanisms. In females, EC-MR contributes to obesity-induced endothelial dysfunction by regulating epithelial sodium channel expression and by inhibiting estrogen-induced nitric oxide production. In males with hyperlipidemia, EC-MR promotes large vessel inflammation by genomic regulation of leukocyte adhesion molecules, which is inhibited by the estrogen receptor. In pulmonary hypertension models, MRs in EC and SMC contribute to distinct components of disease pathologies including pulmonary vessel remodeling and RV dysfunction. Despite a female predominance in pulmonary hypertension, sex-specific roles for MR have not been explored. Vascular MR has also been directly implicated in CKD-related vascular dysfunction, independent of blood pressure. Despite these advances, sex differences in MR function remain understudied.
Collapse
Affiliation(s)
- Nicole L Wolter
- Molecular Cardiology Research Institute, https://ror.org/002hsbm82Tufts Medical Center, Boston, Massachusetts
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, https://ror.org/002hsbm82Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
10
|
Boehm M, Novoyatleva T, Kojonazarov B, Veit F, Weissmann N, Ghofrani HA, Seeger W, Schermuly RT. Retraction: Nitric Oxide Synthase 2 Induction Promotes Right Ventricular Fibrosis. Am J Respir Cell Mol Biol 2022; 67:414. [PMID: 36047772 PMCID: PMC9447137 DOI: 10.1165/rcmb.v67retraction1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mario Boehm
- Justus-Liebig University Giessen, Germany.,Excellence Cluster Cardio-Pulmonary System Giessen, Germany.,German Center for Lung Research Giessen, Germany
| | - Tatyana Novoyatleva
- Justus-Liebig University Giessen, Germany.,Excellence Cluster Cardio-Pulmonary System Giessen, Germany.,German Center for Lung Research Giessen, Germany
| | - Baktybek Kojonazarov
- Justus-Liebig University Giessen, Germany.,Excellence Cluster Cardio-Pulmonary System Giessen, Germany.,German Center for Lung Research Giessen, Germany
| | | | - Norbert Weissmann
- Justus-Liebig University Giessen, Germany.,Excellence Cluster Cardio-Pulmonary System Giessen, Germany.,German Center for Lung Research Giessen, Germany
| | - Hossein A Ghofrani
- Justus-Liebig University Giessen, Germany.,Excellence Cluster Cardio-Pulmonary System Giessen, Germany.,German Center for Lung Research Giessen, Germany
| | - Werner Seeger
- Justus-Liebig University Giessen, Germany.,Excellence Cluster Cardio-Pulmonary System Giessen, Germany.,German Center for Lung Research Giessen, Germany
| | - Ralph T Schermuly
- Justus-Liebig University Giessen, Germany.,Excellence Cluster Cardio-Pulmonary System Giessen, Germany.,German Center for Lung Research Giessen, Germany
| |
Collapse
|
11
|
Tu L, Thuillet R, Perrot J, Ottaviani M, Ponsardin E, Kolkhof P, Humbert M, Viengchareun S, Lombès M, Guignabert C. Mineralocorticoid Receptor Antagonism by Finerenone Attenuates Established Pulmonary Hypertension in Rats. HYPERTENSION (DALLAS, TEX. : 1979) 2022; 79:2262-2273. [PMID: 35979822 DOI: 10.1161/hypertensionaha.122.19207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We studied the ability of the nonsteroidal MR (mineralocorticoid receptor) antagonist finerenone to attenuate vascular remodeling and pulmonary hypertension using two complementary preclinical models (the monocrotaline and sugen/hypoxia rat models) of severe pulmonary hypertension. METHODS We first examined the distribution pattern of MR in the lungs of patients with pulmonary arterial hypertension (PAH) and in monocrotaline and sugen/hypoxia rat lungs. Subsequent studies were performed to explore the effect of MR inhibition on proliferation of pulmonary artery smooth muscle cells derived from patients with idiopathic PAH. To validate the functional importance of MR activation in the pulmonary vascular remodeling characteristic of pulmonary hypertension, mice overexpressing MR (hMR+) were studied, and curative treatments with finerenone (1 mg/kg per day by gavage), started 2 weeks after monocrotaline injection or 5 weeks after Sugen injection were realized. RESULTS We demonstrated that MR is overexpressed in experimental and human PAH and that its inhibition following siRNA-mediated MR silencing or finerenone treatment attenuates proliferation of pulmonary artery smooth muscle cells derived from patients with idiopathic PAH. In addition, we obtained evidence that hMR+ mice display increased right ventricular systolic pressure, right ventricular hypertrophy, and remodeling of pulmonary arterioles. Consistent with these observations, curative treatments with finerenone partially reversed established pulmonary hypertension, reducing total pulmonary vascular resistance and vascular remodeling. Finally, we found that continued finerenone treatment decreases inflammatory cell infiltration and vascular cell proliferation in monocrotaline and sugen/hypoxia rat lungs. CONCLUSIONS Finerenone treatment appears to be a potential therapy for PAH worthy of investigation and evaluation for clinical use in conjunction with current PAH treatments.
Collapse
Affiliation(s)
- Ly Tu
- INSERM UMR_S 999 « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, France (L.T., R.T., M.O., M.H., C.G.).,Université Paris-Saclay, Faculté de Médecine, France (L.T., R.T., M.O., M.H., C.G.)
| | - Raphaël Thuillet
- INSERM UMR_S 999 « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, France (L.T., R.T., M.O., M.H., C.G.).,Université Paris-Saclay, Faculté de Médecine, France (L.T., R.T., M.O., M.H., C.G.)
| | - Julie Perrot
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, France (J.P., S.V., M.L.)
| | - Mina Ottaviani
- INSERM UMR_S 999 « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, France (L.T., R.T., M.O., M.H., C.G.).,Université Paris-Saclay, Faculté de Médecine, France (L.T., R.T., M.O., M.H., C.G.)
| | - Emy Ponsardin
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, France (E.P.)
| | - Peter Kolkhof
- BAYER AG, Heart and Vascular Diseases, Therapeutic Area Cardiovascular Diseases, Research and Early Development, Pharmaceuticals, Wuppertal, Germany (P.K.)
| | - Marc Humbert
- INSERM UMR_S 999 « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, France (L.T., R.T., M.O., M.H., C.G.).,Université Paris-Saclay, Faculté de Médecine, France (L.T., R.T., M.O., M.H., C.G.).,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, France (M.H.)
| | - Say Viengchareun
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, France (J.P., S.V., M.L.)
| | - Marc Lombès
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, France (J.P., S.V., M.L.)
| | - Christophe Guignabert
- INSERM UMR_S 999 « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, France (L.T., R.T., M.O., M.H., C.G.).,Université Paris-Saclay, Faculté de Médecine, France (L.T., R.T., M.O., M.H., C.G.)
| |
Collapse
|
12
|
Liu Z, Zhang C, Hao J, Chen G, Liu L, Xiong Y, Chang Y, Li H, Shimosawa T, Yang F, Xu Q. Eplerenone ameliorates lung fibrosis in unilateral ureteral obstruction rats by inhibiting lymphangiogenesis. Exp Ther Med 2022; 24:623. [PMID: 36160894 PMCID: PMC9468786 DOI: 10.3892/etm.2022.11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic kidney disease (CKD) involves progressive and irreversible loss of renal function, often causing complications and comorbidities and impairing the function of various organs. In particular, lung injury is observed not only in advanced CKD but also in early-stage CKD. The present study investigated the potential involvement of mineralocorticoid receptors (MRs) and lymphatic vessels in lung injury using a 180-day unilateral ureteral obstruction (UUO) model for CKD. Changes in lung associated with lymphangiogenesis and inflammatory were analyzed in UUO rats. The pathology of the lung tissue was observed by hematoxylin and eosin and Masson's staining. Detection of the expression of lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1), Podoplanin, vascular endothelial growth factor receptor-3 (VEGFR-3) and VEGF C to investigate lymphangiogenesis. The mRNA and protein expression levels of IL-1β, monocyte chemotactic protein 1, tumor necrosis factor-α, nuclear factor κB, phosphorylated serum and glucocorticoid-induced protein kinase-1 and MR were evaluated using western blot, reverse transcription-quantitative PCR, immunohistochemical staining and immunofluorescence staining. In the present study, long-term UUO caused kidney damage, which also led to lung inflammation, accompanied by lymphangiogenesis. However, treatment with eplerenone, an MR blocker, significantly reduced the severity of lung injury and lymphangiogenesis. Therefore, lymphangiogenesis contributed to lung fibrosis in UUO rats due to activation of MRs. In addition, transdifferentiation of lymphatic epithelial cells into myofibroblasts may also be involved in lung fibrosis. Collectively, these findings provided a potential mechanism for lung fibrosis in CKD and suggested that the use of eplerenone decreased kidney damage and lung fibrosis.
Collapse
Affiliation(s)
- Ziqian Liu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Cuijuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Juan Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Gege Chen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Lingjin Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Yunzhao Xiong
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Yi Chang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Hui Li
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita, Chiba 108‑8329, Japan
| | - Fan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Qingyou Xu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| |
Collapse
|
13
|
Boehm M, Arnold N, Braithwaite A, Pickworth J, Lu C, Novoyatleva T, Kiely DG, Grimminger F, Ghofrani HA, Weissmann N, Seeger W, Lawrie A, Schermuly RT, Kojonazarov B. Correction to: Eplerenone attenuates pathological pulmonary vascular rather than right ventricular remodeling in pulmonary arterial hypertension. BMC Pulm Med 2022; 22:281. [PMID: 35858940 PMCID: PMC9301825 DOI: 10.1186/s12890-022-01978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Affiliation(s)
- Mario Boehm
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Nadine Arnold
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Adam Braithwaite
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Josephine Pickworth
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Changwu Lu
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Tatyana Novoyatleva
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Friedrich Grimminger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Hossein A Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany.
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| |
Collapse
|
14
|
Hsu CH, Huang WC, Chang WT. Future Perspectives of Pulmonary Hypertension Treatment. ACTA CARDIOLOGICA SINICA 2022; 38:435-442. [PMID: 35873130 PMCID: PMC9295042 DOI: 10.6515/acs.202207_38(4).20220331a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/31/2022] [Indexed: 01/24/2023]
Abstract
Since the discovery of three major pathophysiological mechanisms of pulmonary arterial hypertension (PAH), including prostacyclin, endothelin and nitric oxide pathways, the therapeutic options for PAH have increased. Nevertheless, despite these advances, the prognosis remains unsatisfactory for many patients with PAH. With the progress of both pre-clinical and clinical research on PAH, several novel therapeutic targets have been identified for the treatment of PAH. In this study, we review updated information of novel pathophysiological pathways of pulmonary hypertension, mainly focusing on WHO Group I PAH. Drugs based on these pathways are currently under clinical or pre-clinical investigation, however they have been approved for clinical use. Large clinical trials are required to validate the clinical safety and effects of these novel therapies.
Collapse
Affiliation(s)
- Chih-Hsin Hsu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
- Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung
- College of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Wei-Ting Chang
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center
- Department of Biotechnology, Southern Taiwan University of Science and Technology
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Monzo L, Reichenbach A, Al-Hiti H, Jurcova I, Huskova Z, Kautzner J, Melenovsky V. Pulmonary Vasculature Responsiveness to Phosphodiesterase-5A Inhibition in Heart Failure With Reduced Ejection Fraction: Possible Role of Plasma Potassium. Front Cardiovasc Med 2022; 9:883911. [PMID: 35722098 PMCID: PMC9204350 DOI: 10.3389/fcvm.2022.883911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Phosphodiesterase-5a inhibition (PDE5i) leads to favorable changes in pulmonary hemodynamic and cardiac output (CO) in patients with advanced heart failure (HF) and reduced ejection fraction (HFrEF). The hemodynamic response to PDE5i could be heterogeneous and the clinical variables associated with these changes are scarcely investigated. Materials and Methods Of 260 patients with advanced HFrEF referred for advanced therapies [cardiac transplant/left ventricular assist device (LVAD)], 55 had pulmonary hypertension (PH) and fulfilled the criteria for the PDE5i vasoreactivity test. Right heart catheterization (RHC) was performed as a part of clinical evaluation before and after 20-mg intravenous sildenafil. Absolute and relative changes in pulmonary vascular resistance (PVR) were evaluated to assess hemodynamic response to PDE5i. Clinical, biochemical, and hemodynamic factors associated with PVR changes were identified. Results Sildenafil administration reduced PVR (− 45.3%) and transpulmonary gradient (TPG; − 34.8%) and increased CO (+ 13.6%). Relative change analysis showed a negative moderate association between baseline plasma potassium and changes in PVR (r = − 0.48; p = 0.001) and TPG (r = − 0.43; p = 0.005) after PDE5i. Aldosterone concentration shows a direct moderate association with PVR changes after PDE5i. A significant moderate association was also demonstrated between CO improvement and the severity of mitral (r = 0.42; p = 0.002) and tricuspid (r = 0.39; p = 0.004) regurgitation. Conclusion We identified plasma potassium, plasma aldosterone level, and atrioventricular valve regurgitations as potential cofounders of hemodynamic response to acute administration of PDE5i. Whether modulation of potassium levels could enhance pulmonary vasoreactivity in advanced HFrEF deserves further research.
Collapse
Affiliation(s)
- Luca Monzo
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Adrian Reichenbach
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Hikmet Al-Hiti
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Ivana Jurcova
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Zuzana Huskova
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Vojtech Melenovsky
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| |
Collapse
|
16
|
Reversal of Right Ventricular Hypertrophy and Dysfunction by Prostacyclin in a Rat Model of Severe Pulmonary Arterial Hypertension. Int J Mol Sci 2022; 23:ijms23105426. [PMID: 35628236 PMCID: PMC9141343 DOI: 10.3390/ijms23105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Prostacyclin analogs are among the most effective and widely used therapies for pulmonary arterial hypertension (PAH). However, it is unknown whether they also confer protection through right ventricle (RV) myocardio-specific mechanisms. Moreover, the use of prostacyclin analogs in severe models of PAH has not been adequately tested. To further identify underlying responses to prostacyclin, a prostacyclin analogue, treprostinil, was used in a preclinical rat Sugen-chronic hypoxia (SuCH) model of severe PAH that closely resembles the human disease. Male Sprague–Dawley rats were implanted with osmotic pumps containing vehicle or treprostinil, injected concurrently with a bolus of Sugen (SU5416) and exposed to 3-week hypoxia followed by 3-week normoxia. RV function was assessed using pressure–volume loops and hypertrophy by weight assessed. To identify altered mechanisms within the RV, tissue samples were used to perform a custom RNA array analysis, histological staining, and protein and transcript level confirmatory analyses. Treprostinil significantly reduced SuCH-associated RV hypertrophy and decreased the rise in RV systolic pressure, mean pulmonary arterial (mPAP), and right atrial (RAP) pressure. Prostacyclin treatment was associated with improvements in RV stroke work, maximum rate of ventricular pressure change (max dP/dt) and the contractile index, and almost a complete reversal of SuCH-associated increase in RV end-systolic elastance, suggesting the involvement of load-independent improvements in intrinsic RV systolic contractility by prostacyclin treatment. An analysis of the RV tissues showed no changes in cardiac mitochondrial respiration and ATP generation. However, custom RNA array analysis revealed amelioration of SuCH-associated increases in newly identified TBX20 as well as the fibrotic markers collagen1α1 and collagen 3α1 upon treprostinil treatment. Taken together, our data support decreased afterload and load-independent improvements in RV function following prostacyclin administration in severe PAH, and these changes appear to associate with improvements in RV fibrotic responses.
Collapse
|
17
|
Abstract
The development of pulmonary hypertension (PH) is common and has adverse prognostic implications in patients with heart failure due to left heart disease (LHD), and thus far, there are no known treatments specifically for PH-LHD, also known as group 2 PH. Diagnostic thresholds for PH-LHD, and clinical classification of PH-LHD phenotypes, continue to evolve and, therefore, present a challenge for basic and translational scientists actively investigating PH-LHD in the preclinical setting. Furthermore, the pathobiology of PH-LHD is not well understood, although pulmonary vascular remodeling is thought to result from (1) increased wall stress due to increased left atrial pressures; (2) hemodynamic congestion-induced decreased shear stress in the pulmonary vascular bed; (3) comorbidity-induced endothelial dysfunction with direct injury to the pulmonary microvasculature; and (4) superimposed pulmonary arterial hypertension risk factors. To ultimately be able to modify disease, either by prevention or treatment, a better understanding of the various drivers of PH-LHD, including endothelial dysfunction, abnormalities in vascular tone, platelet aggregation, inflammation, adipocytokines, and systemic complications (including splanchnic congestion and lymphatic dysfunction) must be further investigated. Here, we review the diagnostic criteria and various hemodynamic phenotypes of PH-LHD, the potential biological mechanisms underlying this disorder, and pressing questions yet to be answered about the pathobiology of PH-LHD.
Collapse
Affiliation(s)
- Jessica H Huston
- Division of Cardiology, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (J.H.H.)
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.)
| |
Collapse
|
18
|
Bauersachs J, Lother A. Mineralocorticoid receptor activation and antagonism in cardiovascular disease: cellular and molecular mechanisms. Kidney Int Suppl (2011) 2022; 12:19-26. [DOI: 10.1016/j.kisu.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
|
19
|
Lu M, Chen LY, Gairhe S, Mazer AJ, Anderson SA, Nelson JN, Noguchi A, Siddique MAH, Dougherty EJ, Zou Y, Johnston KA, Yu ZX, Wang H, Wang S, Sun J, Solomon SB, Vanderpool RR, Solomon MA, Danner RL, Elinoff JM. Mineralocorticoid receptor antagonist treatment of established pulmonary arterial hypertension improves interventricular dependence in the SU5416-hypoxia rat model. Am J Physiol Lung Cell Mol Physiol 2022; 322:L315-L332. [PMID: 35043674 PMCID: PMC8858673 DOI: 10.1152/ajplung.00238.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment with mineralocorticoid receptor (MR) antagonists beginning at the outset of disease, or early thereafter, prevents pulmonary vascular remodeling in preclinical models of pulmonary arterial hypertension (PAH). However, the efficacy of MR blockade in established disease, a more clinically relevant condition, remains unknown. Therefore, we investigated the effectiveness of two MR antagonists, eplerenone (EPL) and spironolactone (SPL), after the development of severe right ventricular (RV) dysfunction in the rat SU5416-hypoxia (SuHx) PAH model. Cardiac magnetic resonance imaging (MRI) in SuHx rats at the end of week 5, before study treatment, confirmed features of established disease including reduced RV ejection fraction and RV hypertrophy, pronounced septal flattening with impaired left ventricular filling and reduced cardiac index. Five weeks of treatment with either EPL or SPL improved left ventricular filling and prevented the further decline in cardiac index compared with placebo. Interventricular septal displacement was reduced by EPL whereas SPL effects were similar, but not significant. Although MR antagonists did not significantly reduce pulmonary artery pressure or vessel remodeling in SuHx rats with established disease, animals with higher drug levels had lower pulmonary pressures. Consistent with effects on cardiac function, EPL treatment tended to suppress MR and proinflammatory gene induction in the RV. In conclusion, MR antagonist treatment led to modest, but consistent beneficial effects on interventricular dependence after the onset of significant RV dysfunction in the SuHx PAH model. These results suggest that measures of RV structure and/or function may be useful endpoints in clinical trials of MR antagonists in patients with PAH.
Collapse
Affiliation(s)
- Mengyun Lu
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Li-Yuan Chen
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Salina Gairhe
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Adrien J. Mazer
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Stasia A. Anderson
- 2Animal MRI Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jasmine N.H. Nelson
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Audrey Noguchi
- 3Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Edward J. Dougherty
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yvette Zou
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Kathryn A. Johnston
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Zu-Xi Yu
- 4Pathology Core Facility, National Heart, Lung, and Blood
Institute, National Institutes of Health, Bethesda, Maryland
| | - Honghui Wang
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Shuibang Wang
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Junfeng Sun
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Steven B. Solomon
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Rebecca R. Vanderpool
- 6Department of Medicine and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - Michael A. Solomon
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland,5Cardiology Branch, National Heart, Lung, and Blood
Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert L. Danner
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jason M. Elinoff
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Yeoh SE, Dewan P, Serenelli M, Ferreira JP, Pitt B, Swedberg K, van Veldhuisen DJ, Zannad F, Jhund PS, McMurray JJ. Effects of mineralocorticoid receptor antagonists in heart failure with reduced ejection fraction patients with chronic obstructive pulmonary disease in EMPHASIS-HF and RALES. Eur J Heart Fail 2022; 24:529-538. [PMID: 34536265 PMCID: PMC10654446 DOI: 10.1002/ejhf.2350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS Heart failure with reduced ejection fraction (HFrEF) and chronic obstructive pulmonary disease (COPD) individually cause significant morbidity and mortality. Their coexistence is associated with even worse outcomes, partly due to suboptimal heart failure therapy, especially underutilisation of beta-blockers. Our aim was to investigate outcomes in HFrEF patients with and without COPD, and the effects of mineralocorticoid receptor antagonists (MRAs) on outcomes. METHODS AND RESULTS We studied the effect of MRA therapy in a post-hoc pooled analysis of 4397 HFrEF patients in the RALES and EMPHASIS-HF trials. The primary endpoint was the composite of heart failure hospitalisation or cardiovascular death. A total of 625 (14.2%) of the 4397 patients had COPD. Patients with COPD were older, more often male, and smokers, but less frequently treated with a beta-blocker. In patients with COPD, event rates (per 100 person-years) for the primary endpoint and for all-cause mortality were 25.2 (95% confidence interval 22.1-28.7) and 17.2 (14.9-19.9), respectively, compared with 19.9 (18.8-21.1) and 12.8 (12.0-13.7) in participants without COPD. The risks of all-cause hospitalisation and sudden death were also higher in patients with COPD. The benefit of MRA, compared with placebo, was consistent in patients with or without COPD for all outcomes, e.g. hazard ratio for the primary outcome 0.66 (0.50-0.85) for COPD and 0.65 (0.58-0.73) for no COPD (interaction p = 0.93). MRA-induced hyperkalaemia was less frequent in patients with COPD. CONCLUSIONS In RALES and EMPHASIS-HF, one-in-seven patients with HFrEF had coexisting COPD. HFrEF patients with COPD had worse outcomes than those without. The benefits of MRAs were consistent, regardless of COPD status.
Collapse
Affiliation(s)
- Su E. Yeoh
- BHF Cardiovascular Research CentreUniversity of GlasgowGlasgowUK
| | - Pooja Dewan
- BHF Cardiovascular Research CentreUniversity of GlasgowGlasgowUK
| | - Matteo Serenelli
- BHF Cardiovascular Research CentreUniversity of GlasgowGlasgowUK
- Cardiovascular Centre of Ferrara UniversityFerrara UniversityFerraraItaly
| | - João Pedro Ferreira
- BHF Cardiovascular Research CentreUniversity of GlasgowGlasgowUK
- National Institute of Health and Medical Research Center for Clinical Multidisciplinary Research, INSERM U1116, University of Lorraine, Regional University Hospital of NancyFrench Clinical Research Infrastructure Network Investigation Network Initiative ‐ Cardiovascular and Renal Clinical TrialistsNancyFrance
| | - Bertram Pitt
- Department of Internal Medicine ‐ CardiologyUniversity of Michigan School of MedicineAnn ArborMIUSA
| | - Karl Swedberg
- Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Dirk J. van Veldhuisen
- Department of CardiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Faiez Zannad
- National Institute of Health and Medical Research Center for Clinical Multidisciplinary Research, INSERM U1116, University of Lorraine, Regional University Hospital of NancyFrench Clinical Research Infrastructure Network Investigation Network Initiative ‐ Cardiovascular and Renal Clinical TrialistsNancyFrance
| | - Pardeep S. Jhund
- BHF Cardiovascular Research CentreUniversity of GlasgowGlasgowUK
| | | |
Collapse
|
21
|
Barrera-Chimal J, Bonnard B, Jaisser F. Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases. Annu Rev Physiol 2022; 84:585-610. [PMID: 35143332 DOI: 10.1146/annurev-physiol-060821-013950] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mineralocorticoid receptor (MR) activation in the heart and vessels leads to pathological effects, such as excessive extracellular matrix accumulation, oxidative stress, and sustained inflammation. In these organs, the MR is expressed in cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and inflammatory cells. We review the accumulating experimental and clinical evidence that pharmacological MR antagonism has a positive impact on a battery of cardiac and vascular pathological states, including heart failure, myocardial infarction, arrhythmic diseases, atherosclerosis, vascular stiffness, and cardiac and vascular injury linked to metabolic comorbidities and chronic kidney disease. Moreover, we present perspectives on optimization of the use of MR antagonists in patients more likely to respond to such therapy and review the evidence suggesting that novel nonsteroidal MR antagonists offer an improved safety profile while retaining their cardiovascular protective effects. Finally, we highlight future therapeutic applications of MR antagonists in cardiovascular injury.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France;
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; .,INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN INI-CRCT), Université de Lorraine, Nancy, France
| |
Collapse
|
22
|
Gordon B, González-Fernández V, Dos-Subirà L. Myocardial fibrosis in congenital heart disease. Front Pediatr 2022; 10:965204. [PMID: 36467466 PMCID: PMC9715985 DOI: 10.3389/fped.2022.965204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial fibrosis resulting from the excessive deposition of collagen fibers through the myocardium is a common histopathologic finding in a wide range of cardiovascular diseases, including congenital anomalies. Interstitial fibrosis has been identified as a major cause of myocardial dysfunction since it distorts the normal architecture of the myocardium and impairs the biological function and properties of the interstitium. This review summarizes current knowledge on the mechanisms and detrimental consequences of myocardial fibrosis in heart failure and arrhythmias, discusses the usefulness of available imaging techniques and circulating biomarkers to assess this entity and reviews the current body of evidence regarding myocardial fibrosis in the different subsets of congenital heart diseases with implications in research and treatment.
Collapse
Affiliation(s)
- Blanca Gordon
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Víctor González-Fernández
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Laura Dos-Subirà
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| |
Collapse
|
23
|
Exploring Functional Differences between the Right and Left Ventricles to Better Understand Right Ventricular Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9993060. [PMID: 34497685 PMCID: PMC8421158 DOI: 10.1155/2021/9993060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The right and left ventricles have traditionally been studied as individual entities. Furthermore, modifications found in diseased left ventricles are assumed to influence on right ventricle alterations, but the connection is poorly understood. In this review, we describe the differences between ventricles under physiological and pathological conditions. Understanding the mechanisms that differentiate both ventricles would facilitate a more effective use of therapeutics and broaden our knowledge of right ventricle (RV) dysfunction. RV failure is the strongest predictor of mortality in pulmonary arterial hypertension, but at present, there are no definitive therapies directly targeting RV failure. We further explore the current state of drugs and molecules that improve RV failure in experimental therapeutics and clinical trials to treat pulmonary arterial hypertension and provide evidence of their potential benefits in heart failure.
Collapse
|
24
|
Mamazhakypov A, Hein L, Lother A. Mineralocorticoid receptors in pulmonary hypertension and right heart failure: From molecular biology to therapeutic targeting. Pharmacol Ther 2021; 231:107987. [PMID: 34480966 DOI: 10.1016/j.pharmthera.2021.107987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Pulmonary hypertension (PH) is a devastating condition characterized by pulmonary vascular remodelling, leading to progressive increase in pulmonary artery pressure and subsequent right ventricular failure. Aldosterone and the mineralocorticoid receptor (MR), a nuclear transcription factor, are key drivers of cardiovascular disease and MR antagonists are well-established in heart failure. Now, a growing body of evidence points at a detrimental role of MR in PH. Pharmacological MR blockade attenuated PH and prevented RV failure in experimental models. Mouse models with cell selective MR deletion suggest that this effect is mediated by MR in endothelial cells. While the evidence from experimental studies appears convincing, the available clinical data on MR antagonist use in patients with PH is more controversial. Integrated analysis of clinical data together with MR-dependent molecular alterations may provide insights why some patients respond to MRA treatment while others do not. Potential ways to identify MRA 'responders' include the analysis of underlying PH causes, stage of disease, or sex, as well as new biomarkers.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
25
|
Barrera-Chimal J, Jaisser F. MR (Mineralocorticoid Receptor) in Endothelial Cells: A Major Contributor in Pulmonary Arterial Hypertension Remodeling. Hypertension 2021; 78:466-468. [PMID: 34232681 DOI: 10.1161/hypertensionaha.121.17505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jonatan Barrera-Chimal
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Mexico City, Mexico (J.B.-C.).,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico (J.B.-C.)
| | - Frédéric Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, France (F.J.).,Université de Lorraine, INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network INI-CRCT, Nancy, France (F.J.)
| |
Collapse
|
26
|
Mukherjee D, Konduri GG. Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment. Compr Physiol 2021; 11:2135-2190. [PMID: 34190343 PMCID: PMC8289457 DOI: 10.1002/cphy.c200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung development and genetic conditions are an important contributor to pediatric pulmonary hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary vasodilators and strategies to restore lung growth. These strategies include optimal alveolar recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants and children with PH is highly variable and largely dependent on the underlying cause. The best outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal. © 2021 American Physiological Society. Compr Physiol 11:2135-2190, 2021.
Collapse
Affiliation(s)
- Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| | - Girija G. Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
27
|
Kowalski J, Deng L, Suennen C, Koca D, Meral D, Bode C, Hein L, Lother A. Eplerenone Improves Pulmonary Vascular Remodeling and Hypertension by Inhibition of the Mineralocorticoid Receptor in Endothelial Cells. Hypertension 2021; 78:456-465. [PMID: 33966455 DOI: 10.1161/hypertensionaha.120.16196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jessica Kowalski
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (J.K., L.D., C.S., D.K., D.M., L.H., A.L.), University of Freiburg, Germany
| | - Lisa Deng
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (J.K., L.D., C.S., D.K., D.M., L.H., A.L.), University of Freiburg, Germany
| | - Chiara Suennen
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (J.K., L.D., C.S., D.K., D.M., L.H., A.L.), University of Freiburg, Germany
| | - Duygu Koca
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (J.K., L.D., C.S., D.K., D.M., L.H., A.L.), University of Freiburg, Germany
| | - David Meral
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (J.K., L.D., C.S., D.K., D.M., L.H., A.L.), University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Cardiovascular Research Track (D.M.), University of Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Faculty of Medicine, Heart Center Freiburg University (C.B., A.L.), University of Freiburg, Germany
| | - Lutz Hein
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (J.K., L.D., C.S., D.K., D.M., L.H., A.L.), University of Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies (L.H.), University of Freiburg, Germany
| | - Achim Lother
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (J.K., L.D., C.S., D.K., D.M., L.H., A.L.), University of Freiburg, Germany.,Department of Cardiology and Angiology I, Faculty of Medicine, Heart Center Freiburg University (C.B., A.L.), University of Freiburg, Germany
| |
Collapse
|
28
|
Peters EL, Bogaard HJ, Vonk Noordegraaf A, de Man FS. Neurohormonal modulation in pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.04633-2020. [PMID: 33766951 PMCID: PMC8551560 DOI: 10.1183/13993003.04633-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension is a fatal condition of elevated pulmonary pressures, complicated by right heart failure. Pulmonary hypertension appears in various forms; one of those is pulmonary arterial hypertension (PAH) and is particularly characterised by progressive remodelling and obstruction of the smaller pulmonary vessels. Neurohormonal imbalance in PAH patients is associated with worse prognosis and survival. In this back-to-basics article on neurohormonal modulation in PAH, we provide an overview of the pharmacological and nonpharmacological strategies that have been tested pre-clinically and clinically. The benefit of neurohormonal modulation strategies in PAH patients has been limited by lack of insight into how the neurohormonal system is changed throughout the disease and difficulties in translation from animal models to human trials. We propose that longitudinal and individual assessments of neurohormonal status are required to improve the timing and specificity of neurohormonal modulation strategies. Ongoing developments in imaging techniques such as positron emission tomography may become helpful to determine neurohormonal status in PAH patients in different disease stages and optimise individual treatment responses.
Collapse
Affiliation(s)
- Eva L Peters
- Dept of Pulmonology, Amsterdam UMC, Amsterdam, The Netherlands.,Dept of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
29
|
Improved 11α-hydroxycanrenone production by modification of cytochrome P450 monooxygenase gene in Aspergillus ochraceus. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:99-114. [PMID: 32697747 DOI: 10.2478/acph-2021-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/13/2020] [Indexed: 01/19/2023]
Abstract
Eplerenone is a drug that protects the cardiovascular system. 11α-Hydroxycanrenone is a key intermediate in eplerenone synthesis. We found that although the cytochrome P450 (CYP) enzyme system in Aspergillus ochraceus strain MF018 could catalyse the conversion of canrenone to 11α-hydroxycanrenone, its biocatalytic efficiency is low. To improve the efficiency of 11α-hydroxycanrenone production, the CYP monooxygenase-coding gene of MF018 was predicted and cloned based on whole-genome sequencing results. A recombinant A. ochraceus strain MF010 with the high expression of CYP monooxygenase was then obtained through homologous recombination. The biocatalytic rate of this recombinant strain reached 93 % at 60 h without the addition of organic solvents or surfactants and was 17-18 % higher than that of the MF018 strain. Moreover, the biocatalytic time of the MF010 strain was reduced by more than 30 h compared with that of the MF018 strain. These results show that the recombinant A. ochraceus strain MF010 can overcome the limitation of substrate biocatalytic efficiency and thus holds a high poten tial for application in the industrial production of eplerenone.
Collapse
|
30
|
Veeroju S, Kojonazarov B, Weiss A, Ghofrani HA, Weissmann N, Grimminger F, Seeger W, Novoyatleva T, Schermuly RT. Therapeutic Potential of Regorafenib-A Multikinase Inhibitor in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031502. [PMID: 33540939 PMCID: PMC7867319 DOI: 10.3390/ijms22031502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by a progressive elevation of mean arterial pressure followed by right ventricular failure and death. Previous studies have indicated that numerous inhibitors of receptor tyrosine kinase signaling could be either beneficial or detrimental for the treatment of PH. Here we investigated the therapeutic potential of the multi-kinase inhibitor regorafenib (BAY 73-4506) for the treatment of PH. A peptide-based kinase activity assay was performed using the PamStation®12 platform. The 5-bromo-2′-deoxyuridine proliferation and transwell migration assays were utilized in pulmonary arterial smooth muscle cells (PASMCs). Regorafenib was administered to monocrotaline- and hypoxia-induced PH in rats and mice, respectively. Functional parameters were analyzed by hemodynamic and echocardiographic measurements. The kinase activity assay revealed upregulation of twenty-nine kinases in PASMCs from patients with idiopathic PAH (IPAH), of which fifteen were established as potential targets of regorafenib. Regorafenib showed strong anti-proliferative and anti-migratory effects in IPAH-PASMCs compared to the control PASMCs. Both experimental models indicated improved cardiac function and reduced pulmonary vascular remodeling upon regorafenib treatment. In lungs from monocrotaline (MCT) rats, regorafenib reduced the phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2. Overall, our data indicated that regorafenib plays a beneficial role in experimental PH.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Cell Movement/drug effects
- Drug Evaluation, Preclinical
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation/drug effects
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypoxia/complications
- JNK Mitogen-Activated Protein Kinases/metabolism
- MAP Kinase Signaling System/drug effects
- Mice
- Monocrotaline/toxicity
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Processing, Post-Translational/drug effects
- Pulmonary Artery/cytology
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Swathi Veeroju
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
| | - Baktybek Kojonazarov
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
- Institute for Lung Health, 35392 Giessen, Germany
| | - Astrid Weiss
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
| | - Hossein Ardeschir Ghofrani
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
| | - Norbert Weissmann
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
| | - Friedrich Grimminger
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
| | - Werner Seeger
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
- Institute for Lung Health, 35392 Giessen, Germany
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Tatyana Novoyatleva
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
- Correspondence: (T.N.); (R.T.S.); Tel.: +49-641-994-2421 (R.T.S.); Fax: +49-641-994-2419 (R.T.S.)
| | - Ralph Theo Schermuly
- Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (S.V.); (B.K.); (A.W.); (H.A.G.); (N.W.); (F.G.); (W.S.)
- Correspondence: (T.N.); (R.T.S.); Tel.: +49-641-994-2421 (R.T.S.); Fax: +49-641-994-2419 (R.T.S.)
| |
Collapse
|
31
|
Keen J, Prisco SZ, Prins KW. Sex Differences in Right Ventricular Dysfunction: Insights From the Bench to Bedside. Front Physiol 2021; 11:623129. [PMID: 33536939 PMCID: PMC7848185 DOI: 10.3389/fphys.2020.623129] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/04/2022] Open
Abstract
There are inherent distinctions in right ventricular (RV) performance based on sex as females have better RV function than males. These differences are magnified and have very important prognostic implications in two RV-centric diseases, pulmonary hypertension (PH), and arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). In both PH and ARVC/D, RV dysfunction results in poor patient outcomes. However, there are no currently approved therapies specifically targeting the failing RV, an important unmet need for these two life-threatening disorders. In this review, we highlight human data demonstrating divergent RV phenotypes in healthy, PH, and ARVC/D patients based on sex. Furthermore, we discuss the links between estrogen (the female predominant sex hormone), testosterone (the male predominant sex hormone), and dehydroepiandrosterone (a precursor hormone for multiple sex hormones in males and females) and RV function in both disorders. To provide potential mechanistic insights into sex differences in RV function, we review data that investigate how sex hormones combat or contribute to pathophysiological changes in the RV. Finally, we highlight the ongoing clinical trials in pulmonary arterial hypertension targeting estrogen and dehydroepiandrosterone signaling. Hopefully, a greater understanding of the factors that promote superior RV function in females will lead to novel therapeutic approaches to combat RV dysfunction in PH and ARVC/D.
Collapse
Affiliation(s)
- Jennifer Keen
- Pulmonary and Critical Care, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Sasha Z Prisco
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Kurt W Prins
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
32
|
Kearney K, Kotlyar E, Lau EMT. Pulmonary Vascular Disease as a Systemic and Multisystem Disease. Clin Chest Med 2021; 42:167-177. [PMID: 33541610 DOI: 10.1016/j.ccm.2020.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a disease of progressive pulmonary vascular remodeling due to abnormal proliferation of pulmonary vascular endothelial and smooth muscle cells and endothelial dysfunction. PAH is a multisystem disease with systemic manifestations and complications. This article covers the chronic heart failure syndrome, including the systemic consequences of right ventricle-pulmonary artery uncoupling and neurohormonal activation, skeletal and respiratory muscle effects, systemic endothelial dysfunction and coronary artery disease, systemic inflammation and infection, endocrine and metabolic changes, the liver and gut axis, sleep, neurologic complications, and skin and iron metabolic changes.
Collapse
Affiliation(s)
- Katherine Kearney
- Cardiology Department, St Vincent's Hospital, 394 Victoria Street, Darlinghurst, New South Wales 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Eugene Kotlyar
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Heart Transplant Unit, St Vincent's Hospital, 394 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Edmund M T Lau
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Missenden Road, Camperdown, New South Wales 2050, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia.
| |
Collapse
|
33
|
Prisco SZ, Thenappan T, Prins KW. Treatment Targets for Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2020; 5:1244-1260. [PMID: 33426379 PMCID: PMC7775863 DOI: 10.1016/j.jacbts.2020.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Right ventricle (RV) dysfunction is the strongest predictor of mortality in pulmonary arterial hypertension (PAH), but, at present, there are no therapies directly targeting the failing RV. Although there are shared molecular mechanisms in both RV and left ventricle (LV) dysfunction, there are important differences between the 2 ventricles that may allow for the development of RV-enhancing or RV-directed therapies. In this review, we discuss the current understandings of the dysregulated pathways that promote RV dysfunction, highlight RV-enriched or RV-specific pathways that may be of particular therapeutic value, and summarize recent and ongoing clinical trials that are investigating RV function in PAH. It is hoped that development of RV-targeted therapies will improve quality of life and enhance survival for this deadly disease.
Collapse
Key Words
- FAO, fatty acid oxidation
- IPAH, idiopathic pulmonary arterial hypertension
- LV, left ventricle/ventricular
- PAH, pulmonary arterial hypertension
- PH, pulmonary hypertension
- RAAS, renin-angiotensin-aldosterone system
- RV, right ventricle/ventricular
- RVH, right ventricular hypertrophy
- SSc-PAH, systemic sclerosis-associated pulmonary arterial hypertension
- clinical trials
- miRNA/miR, micro-ribonucleic acid
- pulmonary arterial hypertension
- right ventricle
Collapse
Affiliation(s)
- Sasha Z. Prisco
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thenappan Thenappan
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
34
|
Lahm T, Hess E, Barón AE, Maddox TM, Plomondon ME, Choudhary G, Maron BA, Zamanian RT, Leary PJ. Renin-Angiotensin-Aldosterone System Inhibitor Use and Mortality in Pulmonary Hypertension: Insights From the Veterans Affairs Clinical Assessment Reporting and Tracking Database. Chest 2020; 159:1586-1597. [PMID: 33031831 DOI: 10.1016/j.chest.2020.09.258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The renin-angiotensin-aldosterone system (RAAS) contributes to pulmonary hypertension (PH) pathogenesis. Although animal data suggest that RAAS inhibition attenuates PH, it is unknown if RAAS inhibition is beneficial in PH patients. RESEARCH QUESTION Is RAAS inhibitor use associated with lower mortality in a large cohort of patients with hemodynamically confirmed PH? STUDY DESIGN AND METHODS We used the Department of Veterans Affairs Clinical Assessment Reporting and Tracking Database to study retrospectively relationships between RAAS inhibitors (angiotensin converting enzyme inhibitors [ACEIs], angiotensin receptor blockers [ARBs], and aldosterone antagonists [AAs]) and mortality in 24,221 patients with hemodynamically confirmed PH. We evaluated relationships in the full and in propensity-matched cohorts. Analyses were adjusted for demographics, socioeconomic status, comorbidities, disease severity, and comedication use in staged models. RESULTS ACEI and ARB use was associated with improved survival in unadjusted Kaplan-Meier survival analyses in the full cohort and the propensity-matched cohort. This relationship was insensitive to adjustment, independent of pulmonary artery wedge pressure, and also was observed in a cohort restricted to individuals with precapillary PH. AA use was associated with worse survival in unadjusted Kaplan-Meier survival analyses in the full cohort; however, AA use was associated less robustly with mortality in the propensity-matched cohort and was not associated with worse survival after adjustment for disease severity, indicating that AAs in real-world practice are used preferentially in sicker patients and that the unadjusted association with increased mortality may be an artifice of confounding by indication of severity. INTERPRETATION ACEI and ARB use is associated with lower mortality in veterans with PH. AA use is a marker of disease severity in PH. ACEIs and ARBs may represent a novel treatment strategy for diverse PH phenotypes.
Collapse
Affiliation(s)
- Tim Lahm
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN; Indiana University School of Medicine, Indianapolis, IN.
| | - Edward Hess
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| | - Anna E Barón
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO; Colorado School of Public Health, Denver, CO
| | - Thomas M Maddox
- Washington University School of Medicine Division of Cardiology and Healthcare Innovation Lab, St. Louis, MO
| | - Mary E Plomondon
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| | - Gaurav Choudhary
- Providence Veterans Affairs Medical Center, Providence, RI; Alpert Medical School of Brown University, Providence, RI
| | - Bradley A Maron
- Veterans Affairs Boston Healthcare System, Boston, MA; Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Roham T Zamanian
- Stanford University Division of Pulmonary, Allergy, and Critical Care Medicine and Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA
| | | |
Collapse
|
35
|
Klinke A, Schubert T, Müller M, Legchenko E, Zelt JGE, Shimauchi T, Napp LC, Rothman AMK, Bonnet S, Stewart DJ, Hansmann G, Rudolph V. Emerging therapies for right ventricular dysfunction and failure. Cardiovasc Diagn Ther 2020; 10:1735-1767. [PMID: 33224787 PMCID: PMC7666928 DOI: 10.21037/cdt-20-592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Therapeutic options for right ventricular (RV) dysfunction and failure are strongly limited. Right heart failure (RHF) has been mostly addressed in the context of pulmonary arterial hypertension (PAH), where it is not possible to discern pulmonary vascular- and RV-directed effects of therapeutic approaches. In part, opposing pathomechanisms in RV and pulmonary vasculature, i.e., regarding apoptosis, angiogenesis and proliferation, complicate addressing RHF in PAH. Therapy effective for left heart failure is not applicable to RHF, e.g., inhibition of adrenoceptor signaling and of the renin-angiotensin system had no or only limited success. A number of experimental studies employing animal models for PAH or RV dysfunction or failure have identified beneficial effects of novel pharmacological agents, with most promising results obtained with modulators of metabolism and reactive oxygen species or inflammation, respectively. In addition, established PAH agents, in particular phosphodiesterase-5 inhibitors and soluble guanylate cyclase stimulators, may directly address RV integrity. Promising results are furthermore derived with microRNA (miRNA) and long non-coding RNA (lncRNA) blocking or mimetic strategies, which can target microvascular rarefaction, inflammation, metabolism or fibrotic and hypertrophic remodeling in the dysfunctional RV. Likewise, pre-clinical data demonstrate that cell-based therapies using stem or progenitor cells have beneficial effects on the RV, mainly by improving the microvascular system, however clinical success will largely depend on delivery routes. A particular option for PAH is targeted denervation of the pulmonary vasculature, given the sympathetic overdrive in PAH patients. Finally, acute and durable mechanical circulatory support are available for the right heart, which however has been tested mostly in RHF with concomitant left heart disease. Here, we aim to review current pharmacological, RNA- and cell-based therapeutic options and their potential to directly target the RV and to review available data for pulmonary artery denervation and mechanical circulatory support.
Collapse
Affiliation(s)
- Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Torben Schubert
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Marion Müller
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Jason G. E. Zelt
- Division of Cardiology, University of Ottawa Heart Institute and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Centre de recherche de IUCPQ/Laval University, Quebec, Canada
| | - L. Christian Napp
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de recherche de IUCPQ/Laval University, Quebec, Canada
| | - Duncan J. Stewart
- Division of Cardiology, University of Ottawa Heart Institute and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
36
|
Omidkhoda N, Vakilian F, Mohammadpour AH, Sathyapalan T, Sahebkar A. Aldosterone and Mineralocorticoid Receptor Antagonists on Pulmonary Hypertension and Right Ventricular Failure: A Review. Curr Pharm Des 2020; 26:3862-3870. [DOI: 10.2174/1381612826666200523171137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/06/2020] [Indexed: 12/23/2022]
Abstract
There is an increasing number of therapeutic agents being developed for the treatment of pulmonary
artery hypertension (PAH) which is a condition characterized by raised pulmonary artery pressure and right heart
failure. Despite our better understanding of the pathophysiology of PAH, the treatment outcomes are still suboptimal.
There is growing evidence suggesting the role of increases in the levels of aldosterone, which is a mineralocorticoid
hormone, in the pathophysiology of PAH; however, the extent to which hyperaldosteronism is associated
with PAH in patients is unclear. There are also a few studies assessing the effects of mineralocorticoid receptor
antagonists (MRA) in PAH. MRAs are a recognized treatment for heart failure and hypertension. In this review,
we focus on the relationship between aldosterone level in patients with PAH and right ventricular failure
and the effect of MRAs on the PAH severity.
Collapse
Affiliation(s)
- Navid Omidkhoda
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farveh Vakilian
- Atherosclerotic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir H. Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, United Kingdom
| | | |
Collapse
|
37
|
Spaczyńska M, Rocha SF, Oliver E. Pharmacology of Pulmonary Arterial Hypertension: An Overview of Current and Emerging Therapies. ACS Pharmacol Transl Sci 2020; 3:598-612. [PMID: 32832865 DOI: 10.1021/acsptsci.0c00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension is a rare and devastating disease characterized by an abnormal chronic increase in pulmonary arterial pressure above 20 mmHg at rest, with a poor prognosis if not treated. Currently, there is not a single fully effective therapy, even though a dozen of drugs have been developed in the last decades. Pulmonary arterial hypertension is a multifactorial disease, meaning that several molecular mechanisms are implicated in its pathology. The main molecular pathways regulating the pulmonary vasomotor tone-endothelin, nitric oxide, and prostacyclin-are the most biologically and therapeutically explored to date. However, drugs targeting these pathways have already found their limitations. In the last years, translational research and clinical trials have made a strong effort in suggesting and testing novel therapeutic strategies for this disease. These approaches involve targeting the main molecular pathways with novel drugs, drug repurposing for novel targets, and also using combinatorial therapies. In this review, we summarize current strategies and drugs targeting the endothelin, nitric oxide, and prostacyclin pathways, as well as, the emerging new drugs proposed to cope with vascular remodelling, metabolic switch, perivascular inflammation, epigenetic modifications, estrogen deregulation, serotonin, and other neurohumoral mechanisms characteristic of this disease. Nowadays, pulmonary arterial hypertension remains an incurable disease; however, the incoming new knowledge makes us believe that new promising therapies are coming to the clinical arena soon.
Collapse
Affiliation(s)
- Monika Spaczyńska
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Susana F Rocha
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,Centro de Investigaciones Biomédicas en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
38
|
Segar JL. Rethinking furosemide use for infants with bronchopulmonary dysplasia. Pediatr Pulmonol 2020; 55:1100-1103. [PMID: 32176837 DOI: 10.1002/ppul.24722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/01/2020] [Indexed: 12/27/2022]
Abstract
Diuretics are commonly administered to infants with bronchopulmonary dysplasia (BPD) to improve respiratory function despite the absence of prospective data demonstrating long term benefits. While many potentially adverse effects of furosemide are known to clinicians, its direct and indirect impact on multiple pathophysiological processes need to be understood. While furosemide likely has a role in the management of infants with BPD, clinicians are encouraged to recognize these potential complications associated with furosemide administration. Specifically, a deeper understanding of the impact of diuretics on sodium metabolism neurohumoral regulation of cardiopulmonary physiology is required.
Collapse
Affiliation(s)
- Jeffrey L Segar
- Division of Neonatology, Departments of Pediatrics and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
39
|
Wang Y, Zhong B, Wu Q, Tong J, Zhu T, Zhang M. Effect of Aldosterone on Senescence and Proliferation Inhibition of Endothelial Progenitor Cells Induced by Sirtuin 1 (SIRT1) in Pulmonary Arterial Hypertension. Med Sci Monit 2020; 26:e920678. [PMID: 32303670 PMCID: PMC7191948 DOI: 10.12659/msm.920678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary circulatory resistance. Pulmonary vascular endothelial dysfunction is one of the main causes of primary PAH. Endothelial progenitor cells (EPCs) can proliferate and differentiate into vascular endothelial cells and play an important role in maintaining normal endothelial function. Mineralocorticoid receptor inhibitor has been reported to be used in the treatment of PAH. However, the role and the underlying mechanism of aldosterone (ALDO) in PAH remains unclear. Material/Methods Rats were divided to 4 groups (n=10 per group) and treated with 0.9% normal saline, monocrotaline (MCT), spironolactone (SP), or MCT combined with SP. After the rats were sacrificed with an overdose of pentobarbital sodium, hematoxylin and eosin staining was performed to observe the pulmonary artery pathology section. Sirtuin 1 (SIRT1), p53, and p21 protein expression was detect by western blot. Immunofluorescence staining was performed to verify EPCs. EPCs were treated with different concentrations of ALDO. MTT assay and senescence-associated β-galactosidase staining were used to measure cell viability and senescence. Results MCT increased the vascular arterial wall thickness and wall area, inhibited SIRT1 protein expression and increased p53 and p21 protein expression in the lung tissue of rats, while SP partially reversed this effect. In addition, ALDO inhibited EPCs viability and induced senescence. The expression of p53 and p21 proteins in the EPCs were upregulated and the senescence was accelerated when EPCs were transfected with SIRT1 siRNA. Conclusions ALDO promoted EPCs senescence and inhibited EPCs proliferation by downregulating SIRT1, which regulates the p53/p21 pathway, thus promoting PAH.
Collapse
Affiliation(s)
- Yue Wang
- School of Pharmaceutical Engineering and Life Science and School of Nursing, Changzhou University, Changzhou, Jiangsu, China (mainland)
| | - Bin Zhong
- Department of Thoracic and Cardiovascular Surgery, Changzhou No. 2 People's Hospital, Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Qiyong Wu
- Department of Thoracic and Cardiovascular Surgery, Changzhou No. 2 People's Hospital, Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Jichun Tong
- Department of Thoracic and Cardiovascular Surgery, Changzhou No. 2 People's Hospital, Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Tao Zhu
- Department of Thoracic and Cardiovascular Surgery, Changzhou No. 2 People's Hospital, Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Ming Zhang
- Department of Thoracic and Cardiovascular Surgery, Changzhou No. 2 People's Hospital, Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| |
Collapse
|
40
|
Daniell H, Mangu V, Yakubov B, Park J, Habibi P, Shi Y, Gonnella PA, Fisher A, Cook T, Zeng L, Kawut SM, Lahm T. Investigational new drug enabling angiotensin oral-delivery studies to attenuate pulmonary hypertension. Biomaterials 2020; 233:119750. [PMID: 31931441 PMCID: PMC7045910 DOI: 10.1016/j.biomaterials.2019.119750] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 01/21/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a deadly and uncurable disease characterized by remodeling of the pulmonary vasculature and increased pulmonary artery pressure. Angiotensin Converting Enzyme 2 (ACE2) and its product, angiotensin-(1-7) [ANG-(1-7)] were expressed in lettuce chloroplasts to facilitate affordable oral drug delivery. Lyophilized lettuce cells were stable up to 28 months at ambient temperature with proper folding, assembly of CTB-ACE2/ANG-(1-7) and functionality. When the antibiotic resistance gene was removed, Ang1-7 expression was stable in subsequent generations in marker-free transplastomic lines. Oral gavage of monocrotaline-induced PAH rats resulted in dose-dependent delivery of ANG-(1-7) and ACE2 in plasma/tissues and PAH development was attenuated with decreases in right ventricular (RV) hypertrophy, RV systolic pressure, total pulmonary resistance and pulmonary artery remodeling. Such attenuation correlated well with alterations in the transcription of Ang-(1-7) receptor MAS and angiotensin II receptor AGTRI as well as IL-1β and TGF-β1. Toxicology studies showed that both male and female rats tolerated ~10-fold ACE2/ANG-(1-7) higher than efficacy dose. Plant cell wall degrading enzymes enhanced plasma levels of orally delivered protein drug bioencapsulated within plant cells. Efficient attenuation of PAH with no toxicity augurs well for clinical advancement of the first oral protein therapy to prevent/treat underlying pathology for this disease.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Venkata Mangu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bakhtiyor Yakubov
- Department of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Indianapolis, IN, USA
| | - Jiyoung Park
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peyman Habibi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yao Shi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia A Gonnella
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Fisher
- Department of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Indianapolis, IN, USA
| | - Todd Cook
- Department of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Indianapolis, IN, USA
| | - Lily Zeng
- Department of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Indianapolis, IN, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Indianapolis, IN, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
41
|
Maron BA, Leopold JA, Hemnes AR. Metabolic syndrome, neurohumoral modulation, and pulmonary arterial hypertension. Br J Pharmacol 2020; 177:1457-1471. [PMID: 31881099 DOI: 10.1111/bph.14968] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary vascular disease, including pulmonary arterial hypertension (PAH), is increasingly recognized to be affected by systemic alterations including up-regulation of the renin-angiotensin-aldosterone system and perturbations to metabolic pathways, particularly glucose and fat metabolism. There is increasing preclinical and clinical data that each of these pathways can promote pulmonary vascular disease and right heart failure and are not simply disease markers. More recently, trials of therapeutics aimed at neurohormonal activation or metabolic dysfunction are beginning to shed light on how interventions in these pathways may affect patients with PAH. This review will focus on underlying mechanistic data that supports neurohormonal activation and metabolic dysfunction in the pathogenesis of PAH and right heart failure as well as discussing early translational data in patients with PAH.
Collapse
Affiliation(s)
- Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
42
|
Tello K, Seeger W, Naeije R, Vanderpool R, Ghofrani HA, Richter M, Tedford RJ, Bogaard HJ. Right heart failure in pulmonary hypertension: Diagnosis and new perspectives on vascular and direct right ventricular treatment. Br J Pharmacol 2019; 178:90-107. [PMID: 31517994 DOI: 10.1111/bph.14866] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Adaptation of right ventricular (RV) function to increased afterload-known as RV-arterial coupling-is a key determinant of prognosis in pulmonary hypertension. However, measurement of RV-arterial coupling is a complex, invasive process involving analysis of the RV pressure-volume relationship during preload reduction over multiple cardiac cycles. Simplified methods have therefore been proposed, including echocardiographic and cardiac MRI approaches. This review describes the available methods for assessment of RV function and RV-arterial coupling and the effects of pharmacotherapy on these variables. Overall, pharmacotherapies for pulmonary hypertension have shown beneficial effects on various measures of RV function, but it is often unclear if these are direct RV effects or indirect results of afterload reduction. Studies of the effects of pharmacotherapies on RV-arterial coupling are limited and mostly restricted to experimental models. Simplified methods to assess RV-arterial coupling should be validated and incorporated into routine clinical follow-up and future clinical trials. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Robert Naeije
- Physiology, Erasme University Hospital, Brussels, Belgium
| | | | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Manuel Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Harm J Bogaard
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Barrera-Chimal J, Jaisser F. Vascular mineralocorticoid receptor activation and disease. Exp Eye Res 2019; 188:107796. [PMID: 31521629 DOI: 10.1016/j.exer.2019.107796] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
Mineralocorticoid receptor activation in endothelial and smooth muscle cells can promote vascular disease by increasing oxidative stress, promoting inflammation, accelerating vascular stiffness, remodeling, and calcification, altering vessel responsiveness to various vasoactive factors, thus altering vascular tone and blood pressure, and by altering angiogenesis. Here, we review the recent evidence highlighting the impact of vascular mineralocorticoid receptor activation in pathological situations, including kidney injury, vascular injury associated with metabolic diseases, atherosclerosis, cerebral vascular injury during hypertension, vascular stiffening and aging, pulmonary hypertension, vascular calcification, cardiac remodeling, wound healing, inflammation, thrombosis, and disorders related to angiogenic defects in the eye. The possible mechanisms implicating mineralocorticoid receptor activation in various vascular disorders are discussed. Altogether, recent evidence points towards pharmacological mineralocorticoid receptor inhibition as a strategy to treat diseases in which overactivation of the mineralocorticoid receptor in endothelial and/or smooth muscle cells may play a pivotal role.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Medicina Traslacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Frederic Jaisser
- INSERM U1116, Clinical Investigation Centre, Lorraine University, Vandoeuvre-lès-Nancy, France; INI-CRCT (Cardiovascular and Renal Clinical Trialists) F-CRIN Network, Nancy, France; Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.
| |
Collapse
|
44
|
Viswanathan G, Mamazhakypov A, Schermuly RT, Rajagopal S. The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Front Cardiovasc Med 2018; 5:179. [PMID: 30619886 PMCID: PMC6305072 DOI: 10.3389/fcvm.2018.00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Pressure overload of the right ventricle (RV) in pulmonary arterial hypertension (PAH) leads to RV remodeling and failure, an important determinant of outcome in patients with PAH. Several G protein-coupled receptors (GPCRs) are differentially regulated in the RV myocardium, contributing to the pathogenesis of RV adverse remodeling and dysfunction. Many pharmacological agents that target GPCRs have been demonstrated to result in beneficial effects on left ventricular (LV) failure, such as beta-adrenergic receptor and angiotensin receptor antagonists. However, the role of such drugs on RV remodeling and performance is not known at this time. Moreover, many of these same receptors are also expressed in the pulmonary vasculature, which could result in complex effects in PAH. This manuscript reviews the role of GPCRs in the RV remodeling and dysfunction and discusses activating and blocking GPCR signaling to potentially attenuate remodeling while promoting improvements of RV function in PAH.
Collapse
Affiliation(s)
- Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
45
|
Vitali SH. CrossTalk opposing view: The mouse SuHx model is not a good model of pulmonary arterial hypertension. J Physiol 2018; 597:979-981. [PMID: 30499185 DOI: 10.1113/jp275865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
Badlam JB, Austin ED. Beyond oestrogens: towards a broader evaluation of the hormone profile in pulmonary arterial hypertension. Eur Respir J 2018; 51:51/6/1801058. [PMID: 29954927 DOI: 10.1183/13993003.01058-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jessica B Badlam
- University of Colorado at Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Austin
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|