1
|
Moradi A, Sahebi U, Nazarian H, Majdi L, Bayat M. Oncogenic MicroRNAs: Key players in human prostate cancer pathogenesis, a narrative review. Urol Oncol 2024; 42:429-437. [PMID: 39341711 DOI: 10.1016/j.urolonc.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Prostate cancer (PC) is a leading cause of cancer-related mortality in men worldwide, and identifying key molecular players in its pathogenesis is essential for advancing effective diagnosis and therapy. MicroRNAs (miRNAs) have recently emerged as significant molecules involved in the progression of various cancers. As noncoding RNAs, miRNAs play a vital role in regulating gene expression and are implicated in several aspects of cancer pathogenesis. In the context of human PC, growing evidence suggests that certain miRNAs with oncogenic properties are key players in the initiation, progression, and metastasis of the disease. In conclusion, dysregulated miRNAs are critical in prostate cancer progression, influencing key cellular processes. Oncogenic miRNAs exhibit diagnostic and therapeutic potential in PC. Targeting these miRNAs presents novel treatment avenues, but further research is needed to fully understand their clinical utility. Additional investigation into the mechanisms of miRNA regulation and their interactions with other signaling pathways is necessary to comprehensively understand the role of oncogenic miRNAs in PC and to develop effective treatments for this disease. Overall, substantiating the role of oncogenic miRNAs in PC pathogenesis provides valuable insights into the mechanisms underlying the disease and may lead to the development of novel targeted therapies for improved patient outcomes.
Collapse
Affiliation(s)
- Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Unes Sahebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Leila Majdi
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC of Louisville in Louisville, KY; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran.
| |
Collapse
|
2
|
Skingen VE, Salberg UB, Hompland T, Fjeldbo CS, Helgeland H, Frikstad KAM, Ragnum HB, Vlatkovic L, Hole KH, Seierstad T, Lyng H. Spatial analysis of microRNA regulation at defined tumor hypoxia levels reveals biological traits of aggressive prostate cancer. J Pathol 2024; 264:270-283. [PMID: 39329425 DOI: 10.1002/path.6344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 09/28/2024]
Abstract
Mechanisms regulating the gene expression program at different hypoxia severity levels in patient tumors are not understood. We aimed to determine microRNA (miRNA) regulation of this program at defined hypoxia levels from moderate to severe in prostate cancer. Biopsies from 95 patients were used, where 83 patients received the hypoxia marker pimonidazole before prostatectomy. Forty hypoxia levels were extracted from pimonidazole-stained histological sections and correlated with miRNA and gene expression profiles determined by RNA sequencing and Illumina bead arrays. This identified miRNAs associated with moderate (n = 7) and severe (n = 28) hypoxia and predicted their target genes. The scores of miRNAs or target genes showed prognostic significance, as validated in an external cohort of 417 patients. The target genes showed enrichment of gene sets for cell proliferation and MYC activation at all hypoxia levels and PTEN inactivation at severe hypoxia. This was confirmed by RT-qPCR for MYC and PTEN, by Ki67 immunohistochemistry, and by gene set analysis in an external cohort. To assess whether miRNA regulation occurred within the predicted hypoxic regions, a method to quantify co-localization of multiple histopathology parameters at defined hypoxia levels was applied. A high Ki67 proliferation index co-localized significantly with hypoxia at all levels. The co-localization index was strongly associated with poor prognosis. Absence of PTEN staining co-localized significantly with severe hypoxia. The scores for miRNAs correlated with the co-localization index for Ki67 staining and hypoxia, consistent with miRNA regulation within the overlapping regions. This was confirmed by showing miR-210-3p expression within severe hypoxia by in situ hybridization. Cell line experiments (22Rv1, PC3) were conducted to determine whether miRNAs and target genes were regulated directly by hypoxia. Most of them were hypoxia-unresponsive, and probably regulated by other mechanisms such as MYC activation. In conclusion, in aggressive, hypoxic prostate tumors, cancer cells exhibit different proliferative gene expression programs that is regulated by miRNAs and depend on whether the cells reside in moderate or severe hypoxic regions. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vilde E Skingen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Unn Beate Salberg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tord Hompland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Christina S Fjeldbo
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Hanna Helgeland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kari-Anne M Frikstad
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald B Ragnum
- Department of Hematology and Oncology, Telemark Hospital Trust, Skien, Norway
| | | | - Knut Håkon Hole
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Therese Seierstad
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Ferreira M, Morais M, Medeiros R, Teixeira AL. MicroRNAs as Promising Therapeutic Agents Against Prostate Cancer Resistant to Castration-Where Are We Now? Pharmaceutics 2024; 16:1347. [PMID: 39598472 PMCID: PMC11597238 DOI: 10.3390/pharmaceutics16111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
MicroRNAs are a conserved class of small, tissue-specific, non-coding RNAs that regulate gene expression to preserve cellular homeostasis. Proper miRNA expression is crucial for physiological balance because it affects numerous genetic pathways, including cell cycle control, proliferation, and apoptosis, through gene expression targeting. Deregulated miRNA expression has been implicated in several cancer types, including prostate cancer (PC), acting as tumor suppressors or oncogenes. Despite the availability of promising therapies to control tumor growth and progression, effective diagnostic and therapeutic strategies for different types of cancer are still lacking. PC continues to be a significant health challenge, particularly its castration-resistant (CRPC) form, which presents major therapeutic obstacles because of its resistance to conventional androgen deprivation treatments. This review explores miRNAs' critical roles in gene regulation and cancer biology, as well as various miRNA delivery systems, highlighting their potential and the challenges in effectively targeting cancer cells. It aims to provide a comprehensive overview of the status of miRNA research in the fight against CRPC, summarizing miRNA-based therapies' successes and limitations. It also highlights the promise of miRNAs as therapeutic agents for CRPC, underlining the need for further research to overcome existing challenges and move these therapies toward clinical applications.
Collapse
Affiliation(s)
- Mariana Ferreira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Research Department, LPCC-Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, 4200-319 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
| |
Collapse
|
4
|
Dobrijević Z, Stevanović J, Šunderić M, Penezić A, Miljuš G, Danilović Luković J, Janjić F, Matijašević Joković S, Brkušanin M, Savić-Pavićević D, Nedić O, Brajušković G. Diagnostic properties of miR-146a-5p from liquid biopsies in prostate cancer: A meta-analysis. Pathol Res Pract 2024; 262:155522. [PMID: 39146829 DOI: 10.1016/j.prp.2024.155522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Several studies on biomarker properties of microRNAs from liquid biopsy in prostate cancer (PCa) identified miR-146a-5p as a potential novel diagnostic marker. However, other studies with the same or similar topic failed to confirm the supposed discriminatory ability of miR-146a-5p, for which reason we aimed at elucidating the potential biomarker role of circulatory/urinary miR-146a-5p in PCa by conducting a qualitative and quantitative data synthesis. METHODS Eligible articles were identified by searching PubMed, Scopus and Web of Science databases. Open MetaAnalyst software was used for pooling data on sensitivity, specificity, likelihood ratio and diagnostic odds ratio (OR) of miR-146a-5p. RESULTS A total of 15 articles were eligible for qualitative data synthesis, while the results from 13 studies with 2080 participants were included in the meta-analysis. The established between-study heterogeneity was high, while the expression of hsa-miR-146a was associated with a diagnostic OR of 3.544 (P < 0.001; 95 %CI 2.186-5.747). Pooled sensitivity was found to be lower than 70 % (0.655, 95 %CI 0.573-0.729, P < 0.001), while the obtained value for specificity was 65 % (95 %CI 0.583-0.709, P < 0.001). Segregating studies according to ethnicity, sample type or the type of controls did not result in significantly higher sensitivity and specificity in subgroups, compared to the overall pooled data. CONCLUSIONS The resulting pooled sensitivity, specificity and diagnostic OR do not qualify miR-146a-5p for a reliable diagnostic biomarker of PCa.
Collapse
Affiliation(s)
- Zorana Dobrijević
- University of Belgrade - Institute for the Application of Nuclear Energy, Department for Metabolism, Belgrade, Serbia.
| | - Jovana Stevanović
- University of Belgrade - Institute for the Application of Nuclear Energy, Department for Metabolism, Belgrade, Serbia
| | - Miloš Šunderić
- University of Belgrade - Institute for the Application of Nuclear Energy, Department for Metabolism, Belgrade, Serbia
| | - Ana Penezić
- University of Belgrade - Institute for the Application of Nuclear Energy, Department for Metabolism, Belgrade, Serbia
| | - Goran Miljuš
- University of Belgrade - Institute for the Application of Nuclear Energy, Department for Metabolism, Belgrade, Serbia
| | - Jelena Danilović Luković
- University of Belgrade - Institute for the Application of Nuclear Energy, Department for Immunochemistry and Glycobiology, Belgrade, Serbia
| | - Filip Janjić
- University of Belgrade - Institute for the Application of Nuclear Energy, Department for Immunochemistry and Glycobiology, Belgrade, Serbia
| | | | - Miloš Brkušanin
- University of Belgrade - Faculty of Biology, Centre for Human Molecular Genetics, Belgrade, Serbia
| | - Dušanka Savić-Pavićević
- University of Belgrade - Faculty of Biology, Centre for Human Molecular Genetics, Belgrade, Serbia
| | - Olgica Nedić
- University of Belgrade - Institute for the Application of Nuclear Energy, Department for Metabolism, Belgrade, Serbia
| | - Goran Brajušković
- University of Belgrade - Faculty of Biology, Centre for Human Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
5
|
Xu J, Xu S, Liu W, Chen J, Cai L, Zhuang W. circTP63 promotes prostate cancer progression via miR-421/VAMP associated protein A axis. J Cancer 2024; 15:5451-5461. [PMID: 39247600 PMCID: PMC11375539 DOI: 10.7150/jca.99561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Background: Circular RNAs (circRNA) have a vital role in the progression of cancers. For instance, circTP63 is upregulated in prostate cancer (PCa) tissues compared with adjacent normal tissues. However, the role of circTP63 in prostate cancer is still unclear. Methods: qRT-PCR assays were applied to detected the expression of circTP63 and miR-421 in PCa samples. Functionally, CCK-8, apoptosis assay, and transwell migration and invasion assays were used to explore the role of circTP63 in PCa progression. Mechanistically, the interaction between circTP63 and miR-421 were verified using qRT-PCR and dual-luciferase report assay. Western blot, qRT-PCR, and dual-luciferase report assay were applied to detect the interaction between miR-421 and VAMP associated protein A (VAPA). And xenograft animal model was used to detect the role of circTP63 in vivo. Results: circTP63 was upregulated and miR-421 was downregulated in PCa tissues. Functional assays revealed that circTP63 promoted the proliferation and metastasis of PCa cells in vitro. In addition, the inhibition effect of circTP63 knockdown could be rescued by miR-421 inhibition or VAPA overexpression. Mechanistically, circTP63-mediated PCa progression through directly binding to miR-421, and subsequently releasing the VAPA. In vivo, silencing of circTP63 significantly impaired PCa progression. Conclusion: In summary, our study identified circTP63 as an oncogenic circRNA, which could be a promising diagnostic and therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Urology, Jinjiang Municipal Hospital. No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Siwei Xu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Weihui Liu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Longbo Cai
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| |
Collapse
|
6
|
Bergez-Hernández F, Irigoyen-Arredondo M, Martínez-Camberos A. A systematic review of mechanisms of PTEN gene down-regulation mediated by miRNA in prostate cancer. Heliyon 2024; 10:e34950. [PMID: 39144981 PMCID: PMC11320309 DOI: 10.1016/j.heliyon.2024.e34950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The Phosphatase and Tensin Homolog gene (PTEN) is pivotal in regulating diverse cellular processes, including growth, differentiation, proliferation, and cell survival, mainly by modulating the PI3K/AKT/mTOR pathway. Alterations in the expression of the PTEN gene have been associated with epigenetic mechanisms, particularly the regulation by small non-coding RNAs, such as miRNAs. Modifications in the expression levels of miRNAs that control PTEN have been shown to lead to its underexpression. This underexpression, in turn, impacts the PI3K/AKT/mTOR pathway, thereby influencing crucial mechanisms like proliferation and apoptosis, playing an important role in the initiation and progression of prostate cancer (PCa). Thus, we aimed to systematically reviewed available information concerning the regulation of PTEN mediated by miRNA in PCa. Methods Electronic databases were searched to identify studies assessing PTEN regulation via PCa miRNAs, the search included combination of the words microRNAs, PTEN and prostatic neoplasms. The quality assessment of the articles included was carried out using an adapted version of SYRCLE and CASP tool. Results We included 39 articles that measured the relative gene expression of miRNAs in PCa and their relationship with PTEN regulation. A total of 42 miRNAs were reported involved in the development and progression of PCa via PTEN dysregulation (34 miRNAs up-regulated and eight miRNAs down-regulated). Sixteen miRNAs were shown as the principal regulators for genetic interactions leading to carcinogenesis, being the miR-21 the most reported in PCa associated with PTEN down-regulation. We showed the silencing of PTEN could be promoted by a loop between miR-200b and DNMT1 or by direct targeting of PTEN by microRNAs, leading to the constitutive activation of PI3K/AKT/mTOR and interactions with intermediary genes support apoptosis inhibition, proliferation, invasion, and metastasis in PCa. Conclusion According to our review, dysregulation of PTEN mediated mainly by miR-21, -20a, -20b, -93, -106a, and -106b up-regulation has a central role in PCa development and could be potential biomarkers for diagnosis, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
| | | | - Alejandra Martínez-Camberos
- Laboratorio de Biomedicina y Biología Molecular. Lic. en Ciencias Biomédicas, Universidad Autónoma de Occidente. Av del Mar 1200, Tellerías, 82100, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
7
|
Özdenoğlu FY, Ödemiş DA, Erciyas SK, Tunçer ŞB, Gültaşlar BK, Salduz A, Büyükkapu S, Olgaç NV, Kebudi R, Yazıcı H. High Expression of miR-218-5p in the Peripheral Blood Stream and Tumor Tissues of Pediatric Patients with Sarcomas. Biochem Genet 2024:10.1007/s10528-024-10873-8. [PMID: 38954213 DOI: 10.1007/s10528-024-10873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Sarcomas are malignant tumors that may metastasize and the course of the disease is highly aggressive in children and young adults. Because of the rare incidence of sarcomas and the heterogeneity of tumors, there is a need for non-invasive diagnostic and prognostic biomarkers in sarcomas. The aim of the study was to investigate the level of miR-218-5p in peripheral blood and tumor tissue samples of Ewing's sarcoma, osteosarcoma, spindle cell sarcoma patients, and healthy controls, and assessed whether the corresponding molecule was a diagnostic and prognostic biomarker. The study was performed patients (n = 22) diagnosed and treated with Ewing's sarcoma and osteosarcoma and in a control group of 22 healthy children who were matched for age, gender, and ethnicity with the patient group. The expression level of miR-218-5p in RNA samples from peripheral blood and tissue samples were analyzed using the RT-PCR and the expression level of miR-218-5p was evaluated by comparison with the levels in patients and healthy controls. The expression level of miR-218-5p was found to be statistically higher (3.33-fold, p = 0.006) in pediatric patients with sarcomas and when the target genes of miR-218-5p were investigated using the bioinformatics tools, the miR-218-5p was found as an important miRNA in cancer. In this study, the miR-218-5p was shown for the first time to have been highly expressed in the peripheral blood and tumor tissue of sarcoma patients. The results suggest that miR-218-5p can be used as a diagnostic and prognostic biomarker in sarcomas and will be evaluated as an important therapeutic target.
Collapse
Affiliation(s)
- Fazilet Yıldız Özdenoğlu
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
- Division of Cancer Genetics, Department of Basic Oncology, Health Sciences Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
- Vocational School of Health Service, Medical LaboratortyTechniquies, İstanbul Okan University, Tuzla, Istanbul, Türkiye
| | - Demet Akdeniz Ödemiş
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
- Turkey Cancer Institute, Health Institutes of Turkey, 34734, Kadıköy, Istanbul, Türkiye
| | - Seda Kılıç Erciyas
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Şeref Buğra Tunçer
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Büşra Kurt Gültaşlar
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Ahmet Salduz
- Istanbul Faculty of Medicine, Department of Orthopedics and Traumatology, Istanbul University, Istanbul, Türkiye
| | - Sema Büyükkapu
- Division of Pediatric Hematology and Oncology, Department of Clinical Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Necat Vakur Olgaç
- Faculty of Dentistry, Department of Oral Pathology, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Rejin Kebudi
- Division of Pediatric Hematology and Oncology, Department of Clinical Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye
| | - Hülya Yazıcı
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, 34093, Fatih, Istanbul, Türkiye.
- Istanbul Arel Medical Faculty, Department of Medical Biology and Genetics, Istanbul Arel University, 34010, Zeytinburnu, Istanbul, Türkiye.
| |
Collapse
|
8
|
Amirmahani F, Ebrahimi N, Askandar RH, Rasouli Eshkaftaki M, Fazeli K, Hamblin MR. Long Noncoding RNAs CAT2064 and CAT2042 may Function as Diagnostic Biomarkers for Prostate Cancer by Affecting Target MicrorRNAs. Indian J Clin Biochem 2024; 39:322-330. [PMID: 39005864 PMCID: PMC11239640 DOI: 10.1007/s12291-021-00999-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) is the second most common cancer in men throughout the world, and the main cause of cancer death. Long noncoding RNAs (lncRNAs) act as crucial regulators in many human cancers. In this research, we measured the expression level of novel lncRNAs and their associated micro-RNAs (miRNAs) in PCa. In the present research, three lncRNAs were selected using the Mitranscriptome projec (CAT2064, CAT2042, and CAT2164.2). Samples of prostate tissue (20 PCa, and 20 BPH) and blood (14 PCa, and 14 BPH) were collected and the Real-time Quantitative Polymerase Chain Reaction (RT-qPCR) was used to measure the expression levels of the lncRNAs and their associated miRNAs. Based on our results, CAT2064 was significantly increased and CAT2042 was significantly decreased in human PCa tissue in comparison with BPH tissue. To discriminate PCa from BPH, CAT2064 (P < 0.05; 0.8750 AUC-ROC) showed a better potential as a diagnostic molecular biomarker compared to CAT2042 (P < 0.05; 0.8454 AUC-ROC). Furthermore, RT-qPCR results measured in blood samples from PCa patients showed a higher expression level of CAT2064 (P < 0.0001; AUC-ROC value of 0.8914) in comparison to CAT2042. CAT2064 and CAT2042 showed a positive correlation with the expression of miR-5095 and miR-1273a (r = 0.02885, 0.3202; P = 0.9413, 0.2266, respectively). CAT2064 and CAT2042 also had a negative correlation with miR-1304-3p and miR-1285-5p (r = - 0.3877, - 0.09330; P = 0.15, 0.7311, respectively). Collectively, CAT2064 and CAT2042 and their miRNA targets may constitute a regulatory network in PCa, and could serve as novel biomarkers. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-021-00999-6.
Collapse
Affiliation(s)
- Farzane Amirmahani
- Department of Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Nasim Ebrahimi
- Department of Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Katayoun Fazeli
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| |
Collapse
|
9
|
Thi YVN, Vu TD, Huong NTL, Chu DT. Epigenetic contribution to the relationship between obesity and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:195-213. [PMID: 39179347 DOI: 10.1016/bs.ircmb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Obesity and cancer are two major health issues all around the world due to their elevated prevalence. Several experimental and epidemiological studies have demonstrated the relationship between obesity and cancer, in which obesity is considered a risk factor for cancer development. The ultimate goal of knowing the epigenetic contribution to the relationship between obesity and cancer is to find the method of intervention or treatment of obesity and cancer. Therefore, providing the most general perspective on epigenetic contribution to the relationship between obesity and cancer is necessary. Obesity is closely related to some common cancers that are currently encountered, including breast, esophagus, liver, kidney, uterus, colorectal, pancreatic, and gallbladder. Obesity has a significant impact that increases the risk of cancer deaths and thereby indirectly affects the choice of treatment. It is estimated that about 4-8% of cancer cases are caused by obesity. In particular, the basic mechanism to understand the relationship between cancer is very complicated and has not been fully understood. This work is aimed at summarizing the current knowledge of the role of epigenetic regulation in the relationship between obesity, and potential applications.
Collapse
Affiliation(s)
- Yen-Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-Duong Vu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | | | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
10
|
Liao W, Deng X, Chen G, Yang J, Li Y, Li L, Zhong L, Tao G, Hou J, Li M, Ding C. MiR-150-5p contributes to unexplained recurrent spontaneous abortion by targeting VEGFA and downregulating the PI3K/AKT/mTOR signaling pathway. J Assist Reprod Genet 2024; 41:63-77. [PMID: 37921969 PMCID: PMC10789717 DOI: 10.1007/s10815-023-02959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2023] Open
Abstract
PURPOSE The purpose of this study is to investigate the function of miR-150-5p in URSA. METHOD Twenty-six chorionic villous tissues were collected to examine the expression of miR-150-5p and VEGFA by using quantitative polymerase chain reaction (qPCR) and western blot assay, respectively. Transwell assay was conducted to assess the migration and invasion ability of trophoblast cells. The dual-luciferase reporter assay was applied to determine the relationship between miR-150-5p and VEGFA in vitro. Relevant signaling pathway protein expression level was measured via western blot assay. Signaling transduction inhibitor LY294002 was used to block PI3K/AKT/mTOR signaling pathway. Finally, in vivo the effect of miR-150-5p on embryonic absorption rate was evaluated in mice. RESULTS Clinical samples revealed that miR-150-5p expression was significantly elevated in the villous tissues and serum of URSA patients. Moreover, the overexpressing of miR-150-5p could inhibit both HTR-8/SVneo cell and JAR cell migration, invasion, and restrained PI3K/AKT/mTOR signaling pathway by targeting VEGFA in vitro. This inhibitory effect of miR-150-5p could be reversed by overexpressing the gene of vascular epithelial growth factor A (VEGFA). In contrary, inhibition of miR-150-5p significantly enhanced migration, invasion ability of both HTR-8/SVneo and JAR cells, and also could stimulate PI3K/AKT/mTOR signaling pathway. This promoting effect of miR-150-5p could be ameliorated by LY294002 (PI3K inhibitor). Finally, after miR-150-5p overexpression in vivo, the embryo resorption rate in pregnant mice was increased significantly. CONCLUSIONS Overall, these findings imply that miR-150-5p is among the key factors that regulate the pathogenesis of URSA.
Collapse
Affiliation(s)
- Wenyan Liao
- The First Affiliated Hospital, Department of Gynaecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xin Deng
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan, China
| | - Guodong Chen
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan, China
| | - Juanli Yang
- The First Affiliated Hospital, Department of Gynaecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yi Li
- The First Affiliated Hospital, Department of Gynaecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Li
- The First Affiliated Hospital, Department of Gynaecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lili Zhong
- The First Affiliated Hospital, Department of Gynaecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guangwei Tao
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan, China
| | - Jiafeng Hou
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan, China
| | - Mujun Li
- Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Chengming Ding
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Azani A, Omran SP, Ghasrsaz H, Idani A, Eliaderani MK, Peirovi N, Dokhani N, Lotfalizadeh MH, Rezaei MM, Ghahfarokhi MS, KarkonShayan S, Hanjani PN, Kardaan Z, Navashenagh JG, Yousefi M, Abdolahi M, Salmaninejad A. MicroRNAs as biomarkers for early diagnosis, targeting and prognosis of prostate cancer. Pathol Res Pract 2023; 248:154618. [PMID: 37331185 DOI: 10.1016/j.prp.2023.154618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Globally, prostate cancer (PC) is leading cause of cancer-related mortality in men worldwide. Despite significant advances in the treatment and management of this disease, the cure rates for PC remains low, largely due to late detection. PC detection is mostly reliant on prostate-specific antigen (PSA) and digital rectal examination (DRE); however, due to the low positive predictive value of current diagnostics, there is an urgent need to identify new accurate biomarkers. Recent studies support the biological role of microRNAs (miRNAs) in the initiation and progression of PC, as well as their potential as novel biomarkers for patients' diagnosis, prognosis, and disease relapse. In the advanced stages, cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant part of circulating vesicles and cause detectable changes in the plasma vesicular miRNA profile. Recent computational model for the identification of miRNA biomarkers discussed. In addition, accumulating evidence indicates that miRNAs can be utilized to target PC cells. In this article, the current understanding of the role of microRNAs and exosomes in the pathogenesis and their significance in PC prognosis, early diagnosis, chemoresistance, and treatment are reviewed.
Collapse
Affiliation(s)
- Alireza Azani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Parvizi Omran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghasrsaz
- Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Asra Idani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Peirovi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Dokhani
- Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | - Sepideh KarkonShayan
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parisa Najari Hanjani
- Department of Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Zahra Kardaan
- Department of Cellular Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Abdolahi
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
12
|
Natani S, Ramakrishna M, Nallavolu T, Ummanni R. MicroRNA-147b induces neuroendocrine differentiation of prostate cancer cells by targeting ribosomal protein RPS15A. Prostate 2023; 83:936-949. [PMID: 37069746 DOI: 10.1002/pros.24535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the leading cause of cancer related deaths in men, often androgen deprivation therapy (ADT) leads to the progression of androgen independent PCa (AIPC) which further leads to Neuroendocrine PCa (NEPC). Identifying the molecular mechanisms which navigate the neuroendocrine differentiation (NED) of PCa cells is clinically relevant. It has been suggested that the micro RNAs (miRNAs) play an important role in the regulation of intrinsic mechanisms relevant to tumor progression, resistance as a result leads to poor prognosis. miR-147b has been transpiring as one of the deregulated miRNAs associated with the occurrence of multiple cancers. The present study has studied the role of miRNA-147b in inducing NEPC. METHODS To investigate the functional role of miR-147b in NEPC, we have expressed miRNA mimics or inhibitors in PCa cells and monitored the progression of NEPC along with PCa cell proliferation and survival. The molecular mechanism miRNA-147b follows was studied using western blot and reverse transcription polymerase chain analysis. miRNA target prediction using bioinformatics tools followed by target validation using luciferase reporter assays was performed. RESULTS In the present study, we found that miR-147b is highly expressed in AIPC cell lines in particular neuroendocrine cells NCI-H660 and NE-LNCaP derived from LNCaP. Mechanistic studies revealed that overexpression of miR-147b or miRNA mimics induced NED in LNCaP cells in in-vitro while its inhibitor reversed the NE features (increased NE markers and reduced prostate specific antigen) of PC3, NCI-H660 and NE-LNCaP cells. In addition, miR-147b reduced the proliferation rate of LNCaP cells via elevated p27kip1 and lowered cyclin D1 for promoting differentiation. In reporter assays, we have identified ribosomal protein S15A (RPS15A) is a direct target of miRNA-147b and RPS15A expression was negatively regulated by miR-147b in PCa cells. Furthermore, we also report that RPS15A is downregulated in NEPC cells and its expression is inversely correlated with NE markers. CONCLUSION Targeting the miR-147b - RPS15A axis may overcome the progression of NEPC and serve as a novel therapeutic target to attenuate NED progression of PCa.
Collapse
Affiliation(s)
- Sirisha Natani
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Maresha Ramakrishna
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Teja Nallavolu
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Koo B, Kim Y, Jang YO, Liu H, Kim MG, Lee HJ, Woo MK, Kim C, Shin Y. A novel platform using homobifunctional hydrazide for enrichment and isolation of urinary circulating RNAs. Bioeng Transl Med 2023; 8:e10348. [PMID: 36684108 PMCID: PMC9842063 DOI: 10.1002/btm2.10348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
Changes in specific circulating RNA (circRNA) expressions can serve as diagnostic noninvasive biomarkers for prostate cancer (PCa). However, there are still unmet needs, such as unclear types and roles of circRNAs, PCa detection in benign prostatic hyperplasia (BPH) by unstandardized methods, and limitations of sample volume capacity and low circRNA concentrations. This study reports a simple and rapid circRNA enrichment and isolation technique named "HAZIS-CirR" for the analysis of urinary circRNAs. The method utilizes homobifunctional hydrazides with amine-modified zeolite and polyvinylidene fluoride (PVDF) syringe filtration for combining electrostatic and covalent coupling and size-based filtration, and it offers instrument-free isolation of circRNAs in 20 min without volume limitation, thermoregulation, and lysis. HAZIS-CirR has high capture efficiency (82.03%-92.38%) and a 10-fold more sensitive detection limit (20 fM) than before enrichment (200 fM). The clinical utility of HAZIS-CirR is confirmed by analyzing circulating mRNAs and circulating miRNAs in 89 urine samples. Furthermore, three miRNA panels that differentiate PCa from BPH and control, PCa from control, and BPH from control, respectively, are established by comparing miRNA levels. HAZIS-CirR will be used as an optimal and established method for the enrichment and isolation of circRNAs as diagnostic, prognostic, and predictive biomarkers in human cancers.
Collapse
Affiliation(s)
- Bonhan Koo
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Yunlim Kim
- Department of Urology, Asan Medical CenterUniversity of Ulsan College of MedicineSongpa‐gu, SeoulRepublic of Korea
| | - Yoon Ok Jang
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Huifang Liu
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Myung Kyun Woo
- Department of Biomedical EngineeringSchool of Electrical Engineering, University of UlsanNam‐gu, UlsanRepublic of Korea
| | - Choung‐Soo Kim
- Department of Urology, Asan Medical CenterUniversity of Ulsan College of MedicineSongpa‐gu, SeoulRepublic of Korea
- Department of UrologyEwha Womans University Mokdong HospitalYangcheon‐gu, SeoulRepublic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| |
Collapse
|
14
|
Luce A, Lombardi A, Ferri C, Zappavigna S, Tathode MS, Miles AK, Boocock DJ, Vadakekolathu J, Bocchetti M, Alfano R, Sperlongano R, Ragone A, Sapio L, Desiderio V, Naviglio S, Regad T, Caraglia M. A Proteomic Approach Reveals That miR-423-5p Modulates Glucidic and Amino Acid Metabolism in Prostate Cancer Cells. Int J Mol Sci 2022; 24:ijms24010617. [PMID: 36614061 PMCID: PMC9820599 DOI: 10.3390/ijms24010617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Recently, we have demonstrated that miR-423-5p modulates the growth and metastases of prostate cancer (PCa) cells both in vitro and in vivo. Here, we have studied the effects of miR-423-5p on the proteomic profile in order to identify its intracellular targets and the affected pathways. Applying a quantitative proteomic approach, we analyzed the effects on the protein expression profile of miR-423-5p-transduced PCa cells. Moreover, a computational analysis of predicted targets of miR-423-5p was carried out by using several target prediction tools. Proteomic analysis showed that 63 proteins were differentially expressed in miR-423-5-p-transfected LNCaP cells if compared to controls. Pathway enrichment analysis revealed that stable overexpression of miR-423-5p in LNCaP PCa cells induced inhibition of glycolysis and the metabolism of several amino acids and a parallel downregulation of proteins involved in transcription and hypoxia, the immune response through Th17-derived cytokines, inflammation via amphorin signaling, and ion transport. Moreover, upregulated proteins were related to the S phase of cell cycle, chromatin modifications, apoptosis, blood coagulation, and calcium transport. We identified seven proteins commonly represented in miR-423-5p targets and differentially expressed proteins (DEPs) and analyzed their expression and influence on the survival of PCa patients from publicly accessible datasets. Overall, our findings suggest that miR-423-5p induces alterations in glucose and amino acid metabolism in PCa cells paralleled by modulation of several tumor-associated processes.
Collapse
Affiliation(s)
- Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Carmela Ferri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
- Medicina Futura Group, Coleman S.p.A, Via Alcide De Gasperi 107/109/111, Acerra, 80011 Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Madhura S. Tathode
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Amanda K. Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - David J. Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | | | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences “DAMSS”, University of Campania “Luigi Vanvitelli”, Via S. M. di Costantinopoli 104, 80138 Naples, Italy
| | - Rossella Sperlongano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Angela Ragone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Luigi Sapio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-081-5667517
| | - Tarik Regad
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| |
Collapse
|
15
|
Joković SM, Dobrijević Z, Kotarac N, Filipović L, Popović M, Korać A, Vuković I, Savić-Pavićević D, Brajušković G. MiR-375 and miR-21 as Potential Biomarkers of Prostate Cancer: Comparison of Matching Samples of Plasma and Exosomes. Genes (Basel) 2022; 13:genes13122320. [PMID: 36553586 PMCID: PMC9778022 DOI: 10.3390/genes13122320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
MiR-21 and miR-375 have been reported as dysregulated in prostate cancer (PCa) in multiple previous studies. Still, variable or even opposing data for the expression of these microRNAs in PCa were found, and their potential biomarker properties remain elusive. In an attempt to clarify their significance as PCa biomarkers, as well as to compare different types of specimens as a source of relevant microRNAs, we used plasma and matching plasma-derived exosomes from patients with PCa and patients with benign prostatic hyperplasia (BPH). Plasma and exosomes were obtained from 34 patients with PCa and 34 patients with BPH, and their levels of expression of miR-21 and miR-375 were determined by RT-qPCR. We found no significant difference in the level of expression of these microRNAs in plasma and exosomes between patients with PCa and BPH. The level of exosomal miR-21 was elevated in PCa patients with high serum PSA values, as well as in patients with aggressive PCa, while for plasma samples, the results remained insignificant. For miR-375, we did not find an association with the values of standard prognostic parameters of PCa, nor with cancer aggressiveness. Therefore, our results support the potential prognostic role of exosomal miR-21 expression levels in PCa.
Collapse
Affiliation(s)
| | - Zorana Dobrijević
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, 11080 Belgrade, Serbia
| | - Nevena Kotarac
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11070 Belgrade, Serbia
| | - Lidija Filipović
- Innovative Centre, Faculty of Chemistry, University of Belgrade, 11070 Belgrade, Serbia
| | - Milica Popović
- Faculty of Chemistry, University of Belgrade, 11070 Belgrade, Serbia
| | - Aleksandra Korać
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11070 Belgrade, Serbia
| | - Ivan Vuković
- Clinic of Urology, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Dušanka Savić-Pavićević
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11070 Belgrade, Serbia
| | - Goran Brajušković
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11070 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
16
|
He W, Zhang F, Jiang F, Liu H, Wang G. Correlations between serum levels of microRNA-148a-3p and microRNA-485-5p and the progression and recurrence of prostate cancer. BMC Urol 2022; 22:195. [PMID: 36434610 PMCID: PMC9701040 DOI: 10.1186/s12894-022-01143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Unpredicted postoperative recurrence of prostate cancer, one of the most common malignancies among males worldwide, has become a prominent issue affecting patients after treatment. Here, we investigated the correlation between the serum miR-148a-3p and miR-485-5p expression levels and cancer recurrence in PCa patients, aiming to identify new biomarkers for diagnosis and predicting postoperative recurrence of prostate cancer. METHODS A total of 198 male PCa cases treated with surgery, postoperative radiotherapy, and chemotherapy were involved in the presented study. Serum levels of miR-148a-3p and miR-485-5p were measured before the initial operation for the involved cases, which were then followed up for two years to monitor the recurrence of cancer and to split the cases into recurrence and non-recurrence groups. Comparison of the relative expressions of serum miR-148a-3p and miR-485-5p were made and related to other clinic pathological features. RESULTS Pre-surgery serum levels of miR-148a-3p in patients with TNM stage cT1-2a prostate cancer (Gleason score < 7) were significantly lower (P < 0.05) than levels in patients with TNM Classification of Malignant Tumors (TNM) stage cT2b and higher prostate cancer (Gleason score ≥ 7). pre-surgery serum levels of miR-485-5p in patients with TNM stage cT1-2a prostate cancer (Gleason score < 7) were significantly higher (P < 0.05) than in patients with TNM stage cT2b and higher cancer (Gleason score ≥ 7). Serum miR-148a-3p level in recurrence group is higher than the non-recurrence group (P < 0.05) while serum miR-485-5p level in recurrence group is lower than non-recurrence group (P < 0.05). ROC curve analysis showed the AUCs of using miR-148a-3p, miR-485-5p, and combined detection for predicting recurrence of prostate cancer were 0.825 (95% CI 0.765-0.875, P < 0.0001), 0.790 (95% CI 0.726-0.844, P < 0.0001), and 0.913 (95% CI 0.865-0.948, P < 0.0001). CONCLUSION Pre-surgery serum miR-148a-3p level positively correlates while miR-485-5p level negatively correlates with prostate cancer's progressing and postoperative recurrence. Both molecules show potential to be used for predicting postoperative recurrence individually or combined.
Collapse
Affiliation(s)
- Wenyan He
- grid.513202.7Department of Urology, Yan’an People’s Hospital, Yan’an, China
| | - Furong Zhang
- grid.507892.10000 0004 8519 1271Department of Neurology, Affiliated Hospital of Yan’an University, Yan’an, China
| | - Feng Jiang
- grid.412750.50000 0004 1936 9166Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Huan Liu
- grid.412750.50000 0004 1936 9166Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Gang Wang
- grid.513202.7Department of Urology, Yan’an People’s Hospital, Yan’an, China
| |
Collapse
|
17
|
Onyiba CI, Scarlett CJ, Weidenhofer J. The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205118. [PMID: 36291902 PMCID: PMC9600935 DOI: 10.3390/cancers14205118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary There are diverse reports of the dual role of sirtuin genes and proteins in breast and prostate cancers. This review discusses the current information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, we highlight that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer. We also provide evidence of the direct regulation of sirtuins by miRNAs, highlighting the consequences of this regulation in breast and prostate cancer. Overall, this review reveals the potential value of sirtuins as biomarkers and/or targets for improved treatment of breast and prostate cancers. Abstract Mammalian sirtuins (SIRT1–7) are involved in a myriad of cellular processes, including apoptosis, proliferation, differentiation, epithelial-mesenchymal transition, aging, DNA repair, senescence, viability, survival, and stress response. In this review, we discuss the current information on the mechanistic roles of SIRT1–7 and their downstream effects (tumor promotion or suppression) in cancers of the breast and prostate. Specifically, we highlight the involvement of sirtuins in the regulation of various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of breast and prostate cancer. Additionally, we highlight the available information regarding SIRT1–7 regulation by miRNAs, laying much emphasis on the consequences in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Correspondence:
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
18
|
Moradi A, Whatmore P, Farashi S, Barrero RA, Batra J. IsomiR-eQTL: A Cancer-Specific Expression Quantitative Trait Loci Database of miRNAs and Their Isoforms. Int J Mol Sci 2022; 23:ijms232012493. [PMID: 36293349 PMCID: PMC9604134 DOI: 10.3390/ijms232012493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of expression quantitative trait loci (eQTL) is an important component in efforts to understand how genetic variants influence disease risk. MicroRNAs (miRNAs) are short noncoding RNA molecules capable of regulating the expression of several genes simultaneously. Recently, several novel isomers of miRNAs (isomiRs) that differ slightly in length and sequence composition compared to their canonical miRNAs have been reported. Here we present isomiR-eQTL, a user-friendly database designed to help researchers find single nucleotide polymorphisms (SNPs) that can impact miRNA (miR-eQTL) and isomiR expression (isomiR-eQTL) in 30 cancer types. The isomiR-eQTL includes a total of 152,671 miR-eQTLs and 2,390,805 isomiR-eQTLs at a false discovery rate (FDR) of 0.05. It also includes 65,733 miR-eQTLs overlapping known cancer-associated loci identified through genome-wide association studies (GWAS). To the best of our knowledge, this is the first study investigating the impact of SNPs on isomiR expression at the genome-wide level. This database may pave the way for researchers toward finding a model for personalised medicine in which miRNAs, isomiRs, and genotypes are utilised.
Collapse
Affiliation(s)
- Afshin Moradi
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane 4059, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia
| | - Paul Whatmore
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane 4000, Australia
| | - Samaneh Farashi
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane 4059, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia
| | - Roberto A. Barrero
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane 4000, Australia
| | - Jyotsna Batra
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane 4059, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
- Correspondence:
| |
Collapse
|
19
|
Coradduzza D, Solinas T, Balzano F, Culeddu N, Rossi N, Cruciani S, Azara E, Maioli M, Zinellu A, De Miglio MR, Madonia M, Falchi M, Carru C. miRNAs as molecular biomarkers for prostate cancer. J Mol Diagn 2022; 24:1171-1180. [PMID: 35835374 DOI: 10.1016/j.jmoldx.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNA able to regulate specific mRNA stability, thus influencing target gene expression. Disrupted levels of several miRNA have been associated with prostate cancer, the leading cause of cancer death among men and the fifth leading cause of death worldwide. Here, we investigated whether miR-145, miR-148, and miR-185 circulating levels in plasma could be used as molecular biomarkers, to allow distinguishing between individuals with benign prostatic hyperplasia, precancerous lesion, and prostate cancer. In this study, we recruited 170 urological clinic patients with suspected prostate cancer who underwent prostate biopsy. Total RNA was isolated from plasma, and TaqMan MicroRNA assays were used to analyze miR-145, miR-185, and miR-148 expression. First, differential miRNA expression among patient groups was evaluated. Then, miRNA levels were combined with clinical assessment outcomes, including results from invasive tests, using multivariate analysis to examine their ability in discriminating among the three patient groups. Our results suggest that miRNA is a promising molecular tool for clinical management of at-risk patients.
Collapse
Affiliation(s)
| | - Tatiana Solinas
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari
| | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Nicola Culeddu
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Niccolò Rossi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Massimo Madonia
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; University Hospital of Sassari (AOU), Sassari, Italy.
| |
Collapse
|
20
|
Leitão C, Matos B, Roque F, Herdeiro MT, Fardilha M. The Impact of Lifestyle on Prostate Cancer: A Road to the Discovery of New Biomarkers. J Clin Med 2022; 11:2925. [PMID: 35629050 PMCID: PMC9148038 DOI: 10.3390/jcm11102925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers among men, and its incidence has been rising through the years. Several risk factors have been associated with this disease and unhealthy lifestyles and inflammation were appointed as major contributors for PCa development, progression, and severity. Despite the advantages associated with the currently used diagnostic tools [prostate-specific antigen(PSA) serum levels and digital rectal examination (DRE)], the development of effective approaches for PCa diagnosis is still necessary. Finding lifestyle-associated proteins that may predict the development of PCa seems to be a promising strategy to improve PCa diagnosis. In this context, several biomarkers have been identified, including circulating biomarkers (CRP, insulin, C-peptide, TNFα-R2, adiponectin, IL-6, total PSA, free PSA, and p2PSA), urine biomarkers (PCA3, guanidine, phenylacetylglycine, and glycine), proteins expressed in exosomes (afamin, vitamin D-binding protein, and filamin A), and miRNAs expressed in prostate tissue (miRNA-21, miRNA-101, and miRNA-182). In conclusion, exploring the impact of lifestyle and inflammation on PCa development and progression may open doors to the identification of new biomarkers. The discovery of new PCa diagnostic biomarkers should contribute to reduce overdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Catarina Leitão
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.L.); (M.T.H.)
| | - Bárbara Matos
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Roque
- Research Unit for Inland Development, Polytechnic of Guarda (UDI-IPG), Avenida Doutor Francisco Sá Carneiro, 6300-559 Guarda, Portugal;
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria Teresa Herdeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.L.); (M.T.H.)
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
21
|
Diagnostic Value of microRNA-375 as Future Biomarker for Prostate Cancer Detection: A Meta-Analysis. Medicina (B Aires) 2022; 58:medicina58040529. [PMID: 35454368 PMCID: PMC9032467 DOI: 10.3390/medicina58040529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives: Responding to the need for additional biomarkers for the diagnosis of prostate cancer (PCa), mounting studies show that microRNAs (miRNAs/miRs) possess great potential as future promising diagnostic tools. However, the usefulness of these miRNAs is still highly debated, as the degree of inconsistency between study designs and results is still elevated. Herein, we present a meta-analysis evaluating the diagnostic value and accuracy of circulating miR-375, as it is one of the most studied types of miRs in PCa. Materials and Methods: The diagnostic accuracy of miR-375 was evaluated using the QUADAS-2 tool, analyzing different statistical parameters. The seven studies (from six articles) that matched our selection included 422 PCa patients and 212 controls (70 healthy volunteers + 142 with benign prostate diseases). Results and Conclusion: We obtained a p-value of 0.76 for sensitivity, 0.83 for specificity, 16 for DOR, 4.6 for LR+, 0.29 for LR−, and 0.87 for AUC (95% CI 0.83–0.89). Our results confirm that miRNA-375 has high diagnostic potential for PCa, suggesting its usefulness as a powerful biomarker. More comprehensive studies are warranted to better assess its true value as a diagnostic biomarker for this urologic disease.
Collapse
|
22
|
Khatami A, Nahand JS, Kiani SJ, Khoshmirsafa M, Moghoofei M, Khanaliha K, Tavakoli A, Emtiazi N, Bokharaei-Salim F. Human papilloma virus (HPV) and prostate cancer (PCa): The potential role of HPV gene expression and selected cellular MiRNAs in PCa development. Microb Pathog 2022; 166:105503. [DOI: 10.1016/j.micpath.2022.105503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
|
23
|
Wu Y. Circ_0044516 Enriches the Level of SARM1 as a miR-330-5p Sponge to Regulate Cell Malignant Behaviors and Tumorigenesis of Prostate Cancer. Biochem Genet 2022; 60:1346-1361. [PMID: 34993722 DOI: 10.1007/s10528-021-10160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Prostate cancer (PCa) is one of the most common and deadly cancers in men. The dysregulated circular RNAs (circRNAs) are involved in the development of various cancers, including PCa. The purpose of this study was to construct a circRNA-microRNA (miRNA)-mRNA network to explain the function of circ_0044516 in PCa. The expression analysis of circ_0044516, miR-330-5p, and sterile alpha and TIR motif-containing 1 (SARM1) was performed using real-time quantitative polymerase chain reaction, and the protein level of SARM1 was detected by western blot. The interaction between miR-330-5p and circ_0044516 or SARM1 obtained by bioinformatics prediction was verified by dual-luciferase reporter assay or RNA immunoprecipitation assay. For functional studies, cell proliferation was assessed by cell viability and colony formation ability using cell counting kit-8 assay and colony formation assay. Cell migration and invasion were studied using transwell assay. Cell apoptosis and cell cycle were investigated using flow cytometry assay. The tumorigenicity of circ_0044516 was tested by animal study. Circ_0044516 and SARM1 were highly expressed, while miR-330-5p was rarely expressed in PCa tissues and cells. Circ_0044516 acted as a miR-330-5p sponge to block miR-330-5p expression, and circ_0044516 knockdown suppressed PCa cell proliferation, migration, invasion, and cycle progression by enriching miR-330-5p. SARM1 was a target of miR-330-5p, and miR-330-5p restoration also inhibited PCa cell proliferation, migration, invasion, and cycle progression by degrading SARM1. Moreover, circ_0044516 deficiency blocked tumor growth in vivo by regulating the miR-330-5p/SARM1 axis. Circ_0044516 as a miR-330-5p sponge increases SARM1 expression, thus promoting the malignant development of PCa.
Collapse
Affiliation(s)
- Yan Wu
- Department of Urology, Section 4, People's Hospital of Hunan Province, No.89, Guhan Road, Furong District, Changsha, 410002, Hunan, China.
| |
Collapse
|
24
|
Kim J, Cho S, Park Y, Lee J, Park J. Evaluation of micro-RNA in extracellular vesicles from blood of patients with prostate cancer. PLoS One 2021; 16:e0262017. [PMID: 34972164 PMCID: PMC8719659 DOI: 10.1371/journal.pone.0262017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) contain various types of molecules including micro-RNAs, so isolating EVs can be an effective way to analyze and diagnose diseases. A lot of micro-RNAs have been known in relation to prostate cancer (PCa), and we evaluate miR-21, miR-141, and miR-221 in EVs and compare them with prostate-specific antigen (PSA). EVs were isolated from plasma of 38 patients with prostate cancer and 8 patients with benign prostatic hyperplasia (BPH), using a method that showed the highest recovery of RNA. Isolation of EVs concentrated micro-RNAs, reducing the cycle threshold (Ct) value of RT-qPCR amplification of micro-RNA such as miR-16 by 5.12 and miR-191 by 4.65, compared to the values before EV isolation. Normalization of target micro-RNAs was done using miR-191. For miR-221, the mean expression level of patients with localized PCa was significantly higher than that of the control group, having 33.45 times higher expression than the control group (p < 0.01). Area under curve (AUC) between BPH and PCa for miR-221 was 0.98 (p < 0.0001), which was better than AUC for prostate-specific antigen (PSA) level in serum for the same patients. The levels of miR-21 and miR-141 in EVs did not show significant changes in patients with PCa compared to the control group in this study. This study suggests isolating EVs can be a helpful approach in analyzing micro-RNAs with regard to disease.
Collapse
Affiliation(s)
- Jiyoon Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
| | - Siwoo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
| | - Yonghyun Park
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jiyoul Lee
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaesung Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
| |
Collapse
|
25
|
Shi WZ, Li W, Cheng Y, Zhang M, Niu XC, Gao QW, Lu Y, Tian T, Du S, Mi Y, Chang MZ, Tian Y. The cytoprotective role of omentin against oxidative stress-induced PC12 apoptosis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:483-492. [PMID: 34151664 DOI: 10.1080/21691401.2021.1892707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
Oxidative stress has been proven to play a critical role in the pathogenesis of neuronal injury. As a novel adipocytokine, omentin is produced by visceral adipose with insulin sensitizing effects and has been revealed to possess anti-inflammatory effects. However, the possible effect of omentin on oxidative stress remains unknown. The present study aimed to detect the potential protective effect of omentin against hydrogen peroxide (H2O2)-induced cytotoxicity of PC12 cells. The results showed that no cytotoxic effect was shown in PC12 cells co-cultured with omentin alone at a concentration of 50-1000 ng/mL. The CCK8 and TUNEL assays suggested that omentin could remarkably attenuate apoptosis induced by 100 μM H2O2. The PCR and western blotting showed that the expression levels of Bax was significantly inhibited by omentin via the upregulation of miR-128-3p at its 3'-UTR. Taken together, these results indicated that omentin protects PC12 cells against H2O2-induced apoptosis, and further studies need to be conducted before utilization in the clinic for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen-Zhen Shi
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Wu Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Ye Cheng
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Meng Zhang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Xiao-Chen Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Qi-Wei Gao
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Ying Lu
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
- Medical Research and Experimental Center, School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Tian Tian
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
- Medical Research and Experimental Center, School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Shan Du
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
- Medical Research and Experimental Center, School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Yan Mi
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
- Medical Research and Experimental Center, School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Ming-Ze Chang
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Ye Tian
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
- Medical Research and Experimental Center, School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| |
Collapse
|
26
|
Zhao Y, Tang X, Zhao Y, Yu Y, Liu S. Diagnostic significance of microRNA-1255b-5p in prostate cancer patients and its effect on cancer cell function. Bioengineered 2021; 12:11451-11460. [PMID: 34895055 PMCID: PMC8810192 DOI: 10.1080/21655979.2021.2009413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/04/2022] Open
Abstract
Discerning between indolent and aggressive types is a big challenge of prostate cancer clinically to guide the adequate therapeutic regimen. We aimed to examine the relationship between miR-1255b-p expression and prostate cancer and elucidate the function of miR-1255b-5p in prostate cancer. miR-1255b-5p were measured using Quantitative Real-Time PCR from the blood 103 benign prostate hyperplasia (BPH) and 153 prostate cancer patients (117 indolent cases and 36 upgrading cases). Using receiver operating characteristic (ROC) curve analysis, the discriminating ability of miR-1255b-5p was accessed between BPH and prostate cancer participants, or indolent and aggressive type. Using CCK-8 and Transwell assays, the function of miR-1255b-5p on prostate cancer cells was investigated. The levels of miR-1255b-5p were significantly raised in prostate cancer patients when compared with BPH participants. MiR-1255b-5p level can distinguish prostate cancer patients from BPH or indolent type from aggressive type. Downregulation of miR-1255b-5p can suppress the proliferative, invasive, and migratory capacity, but this effect can be eradicated by EPB41L1 inhibition. The measurement of miR-1255b-5p in blood may provide a new noninvasive approach for the diagnosis of prostate cancer. miR-1255b-5p may become a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Yuling Zhao
- Department of Laboratory, Traditional Chinese Medical Hospital of Huangdao District Qingdao, QingdaoShandong, China
| | - Xiaochun Tang
- Department of Blood Transfusion, Traditional Chinese Medical Hospital of Huangdao District Qingdao, QingdaoShandong, China
| | - Yifan Zhao
- Department of Minimally Invasive Intervention Center, Qingdao Municipal Hospital, QingdaoShandong, China
| | - Yan Yu
- Urology Department, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Shuzhen Liu
- Department of Disinfection Supply Center, Traditional Chinese Medical Hospital of Huangdao District Qingdao, QingdaoShandong, China
| |
Collapse
|
27
|
Zhang J, Yao Y, Li H, Ye S. miR-28-3p inhibits prostate cancer cell proliferation, migration and invasion, and promotes apoptosis by targeting ARF6. Exp Ther Med 2021; 22:1205. [PMID: 34584550 PMCID: PMC8422405 DOI: 10.3892/etm.2021.10639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Previous studies have reported that the expression levels of microRNA (miR)-28-3p are downregulated in prostate cancer (PCa) compared with those in adjacent normal tissues. However, to the best of our knowledge, the function and underlying mechanisms of miR-28-3p in PCa have not been reported. The present study aimed to explore the role of miR-28-3p and its mechanism in the development of PCa. In the present study, miR-28-3p and ADP-ribosylation factor 6 (ARF6) expression levels were analyzed using reverse transcription-quantitative PCR (RT-qPCR). Cell proliferation, colony formation, apoptosis, migration and invasion were determined using Cell Counting Kit-8, colony forming, flow cytometry and Transwell assays, respectively. The association between miR-28-3p and ARF6 was investigated using a dual luciferase reporter assay. ARF6, Rac1, Erk1/2 and phosphorylated (p)-Erk1/2 protein expression levels were analyzed using western blotting. The results of the present study revealed that miR-28-3p expression levels were downregulated, whereas ARF6 expression levels were upregulated in PCa cell lines (LNCaP, 22Rv-1, PC-3 and DU145) compared with those in the normal prostate line RWPE-1. The overexpression of miR-28-3p promoted cell apoptosis, and inhibited cell proliferation, colony formation, migration and invasion. However, the knockdown of miR-28-3p exerted the opposite results. The results of the dual luciferase reporter assays, RT-qPCR and western blotting indicated that ARF6 was a target gene of miR-28-3p. Finally, rescue experiments demonstrated that ARF6 overexpression attenuated the effects of the miR-28-3p mimic by upregulating Rac1 and p-Erk1/2 expression in PCa cells. In conclusion, these findings indicated that miR-28-3p may inhibit the biological behaviors of PCa cells by targeting ARF6, and therefore may represent a novel therapeutic candidate for PCa.
Collapse
Affiliation(s)
- Jiabin Zhang
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian 355000, P.R. China
| | - Yi Yao
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian 355000, P.R. China
| | - Huizhang Li
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian 355000, P.R. China
| | - Shihua Ye
- Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian 355000, P.R. China
| |
Collapse
|
28
|
Garrido MM, Bernardino RM, Marta JC, Holdenrieder S, Guimarães JT. Tumour markers of prostate cancer: The post-PSA era. Ann Clin Biochem 2021; 59:46-58. [PMID: 34463154 DOI: 10.1177/00045632211041890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although PSA-based prostate cancer (PCa) screening had a positive impact in reducing PCa mortality, it also led to overdiagnosis, overtreatment and to a significant number of unnecessary biopsies. In the post-PSA era, new biomarkers have emerged that can complement the information given by PSA, towards a better cancer diagnostic specificity, and also allow a better estimate of the aggressiveness of the disease and its clinical outcome. That means those markers have the potential to assist the clinician in the decision-making processes, such as whether or not to perform a biopsy, and to make the best treatment choice among the new therapeutic options available, including active surveillance (AS) in lower risk disease. In this article, we will review several of those more recent diagnostic markers (4Kscore®, [-2]proPSA and Prostate Health Index (PHI), SelectMDx®, ConfirmMDx®, Progensa® Prostate Cancer Antigen 3, Mi-Prostate Score, ExoDx™ Prostate Test, the Stockholm-3 test and ERSPC risk calculators) and prognostic markers (OncotypeDX® Genomic Prostate Score, Prolaris®, Decipher® and ProMark®). We will also address some new liquid biopsy approaches - circulating tumour cells and cell-free DNA (cfDNA) - with a potential role in metastatic castration-resistant PCa and will briefly give some future perspectives, mostly outlooking epigenetic markers.
Collapse
Affiliation(s)
- Manuel M Garrido
- Department of Clinical Pathology, 90463Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal.,Department of Laboratory Medicine, 37811Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Rui M Bernardino
- Department of Urology, 90463Centro Hospitalar Universitário de Lisboa central, Lisbon, Portugal
| | - José C Marta
- Department of Clinical Pathology, 90463Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, Munich Biomarker Research Center, 14924Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - João T Guimarães
- Department of Clinical Pathology, Centro Hospitalar Universitário de São João, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
29
|
Chang Y, Deng Q, Guan Z, Cheng Y, Sun Y. MiR-1273 g-3p Promotes Malignant Progression and has Prognostic Implications in Prostate Cancer. Mol Biotechnol 2021; 64:17-24. [PMID: 34431044 DOI: 10.1007/s12033-021-00384-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Prostate cancer (PCa) is the most popular cancer of mankind. Our study aimed to provide the expression and the predictive significance of miR-1273 g-3p in PCa. Moreover, the effects on cell biological activities were also investigated. The relative expression of miR-1273 g-3p in PCa tissues and cell lines was validated by quantitative real-time PCR. Kaplan-Meier curve and Cox regression analyses were performed to indicate the prognostic value. The implications of miR-1273 g-3p on cell proliferation, migration, and invasion were validated using the CCK-8 and Transwell assay. Our results provided that the expression of miR-1273 g-3p was increased in PCa tissues and cell lines. The levels of miR-1273 g-3p were associated with Gleason score, TNM stage, clinical stage, and lymph node metastasis. Overexpression of miR-1273 g-3p indicated a promising overall survival rate. Cox regression results indicated miR-1273 g-3p might be an independent marker for PCa patients. Silenced miR-1273 g-3p inhibited PCa cell proliferation, migration, and invasion. In total, miR-1273 g-3p was increased in PCa and identified as a therapeutic target and a prognostic factor for PCa patients. Overexpression of miR-1273 g-3p might be an oncogene via accelerating cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Yaxue Chang
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| | - Qian Deng
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Zhenfeng Guan
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yongyi Cheng
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yi Sun
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| |
Collapse
|
30
|
Liu L, Chen H, Yun J, Song L, Ma X, Luo S, Song Y. miRNA-483-5p Targets HDCA4 to Regulate Renal Tubular Damage in Diabetic Nephropathy. Horm Metab Res 2021; 53:562-569. [PMID: 34126643 DOI: 10.1055/a-1480-7519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study was designed to evaluate the diagnostic value of miR-483-5p in diabetic nephropathy (DN), and its effect and mechanism on apoptosis and inflammation of human proximal renal tubular cells (HK2) induced by high glucose (HG). Thirty healthy controls, 30 types 2 diabetes mellitus (T2DM) patients, and 28 DN patients were enrolled. miR-483-5p mRNA levels in serum were analyzed by RT-qPCR assays. The receiver operating characteristic curve (ROC) was used to analyze the diagnostic value of miR-483-5p in DN. HK2 cells were induced by HG to establish an in vitro study model. CCK-8 and flow cytometry was used to detect cell viability, apoptosis, and reactive oxygen species (ROS) generation. Inflammation levels were measured by ELISA. Luciferase reporter assay was used to detect target genes of miR-483-5p. miR-483-5p was decreased in DN patients. The decreased level of miR-483-5p was positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with proteinuria. miR-483-5p can significantly distinguish DN patients from healthy controls and T2DM and has a high diagnostic value. miR-483-5p decreased in HK2 cells induced by HG, and overexpression of miR-483-5p reversed HG-induced decreased cell activity, increased apoptosis, ROS production, and inflammation. Histone deacetylase 4 (HDCA4) was markedly increased in DN patients and HG-induced HK2 cells. miR-483-5p directly targeted HDCA4, and increasing miR-483-5p inhibited HDCA4 increased in HG-induced HK2. In conclusion, the results indicate that reduction of miR-483-5p has a high diagnostic value in DN, and overexpression of miR-483-5p has a certain protective effect on HK2 cells induced by HG by targeting HDCA4.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, 200137, Shanghai, China
| | - Huanzhen Chen
- Department of Endocrinology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
| | - Jie Yun
- Department of Nephrology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Liqun Song
- Department of Nephrology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Xiaopeng Ma
- Department of Nephrology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Shan Luo
- Department of Nephrology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Yexu Song
- Department of Science and Technology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| |
Collapse
|
31
|
Enwald M, Lehtimäki T, Mishra PP, Mononen N, Murtola TJ, Raitoharju E. Human Prostate Tissue MicroRNAs and Their Predicted Target Pathways Linked to Prostate Cancer Risk Factors. Cancers (Basel) 2021; 13:cancers13143537. [PMID: 34298752 PMCID: PMC8307951 DOI: 10.3390/cancers13143537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs are important in prostate cancer development, progression and metastasis. The aim of this study was to test microRNA expression profile in prostate tissue obtained from prostate cancer patients for associations with various prostate cancer related factors and to pinpoint the predicted target pathways for these microRNAs. Prostate tissue samples were obtained at prostatectomy from patients participating in a trial evaluating impact of pre-operative atorvastatin on serum prostate specific antigen (PSA) and Ki-67 expression in prostate tissue. Prostate tissue microRNA expression profiles were analyzed using OpenArray® MicroRNA Panel. Pathway enrichment analyses were conducted for predicted target genes of microRNAs that correlated significantly with studied factors. Eight microRNAs correlated significantly with studied factors of patients after Bonferroni multiple testing correction. MiR-485-3p correlated with serum HDL-cholesterol levels. In atorvastatin-treated subjects, miR-34c-5p correlated with a change in serum PSA and miR-138-3p with a change in total cholesterol. In the placebo arm, both miR-576-3p and miR-550-3p correlated with HDL-cholesterol and miR-627 with PSA. In pathway analysis, these eight microRNAs related significantly to several pathways relevant to prostate cancer. This study brings new evidence from the expression of prostate tissue microRNAs and related pathways that may link risk factors to prostate cancer and pinpoint new therapeutic possibilities.
Collapse
Affiliation(s)
- Max Enwald
- Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Terho Lehtimäki
- Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Pashupati P Mishra
- Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Nina Mononen
- Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Teemu J Murtola
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- TAYS Cancer Center, Department of Urology, 33520 Tampere, Finland
| | - Emma Raitoharju
- Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| |
Collapse
|
32
|
Abramovic I, Vrhovec B, Skara L, Vrtaric A, Nikolac Gabaj N, Kulis T, Stimac G, Ljiljak D, Ruzic B, Kastelan Z, Kruslin B, Bulic-Jakus F, Ulamec M, Katusic-Bojanac A, Sincic N. MiR-182-5p and miR-375-3p Have Higher Performance Than PSA in Discriminating Prostate Cancer from Benign Prostate Hyperplasia. Cancers (Basel) 2021; 13:cancers13092068. [PMID: 33922968 PMCID: PMC8123314 DOI: 10.3390/cancers13092068] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is the most prevalent neoplasia among men worldwide but is commonly “mimicked” by benign prostate hyperplasia (BPH). Their discrimination by the prostate-specific antigen (PSA) is often uncertain, resulting in lengthy diagnostic protocols and recurrent tissue biopsies. The development of more appropriate biomarkers, possibly present in liquid biopsy, would significantly improve PCa and BPH patient management. To address this challenge, in this study miR-375-3p, miR-182-5p, miR-21-5p, and miR-148a-3p were analyzed by ddPCR in blood plasma and seminal plasma of patients with PCa and BPH prior to tissue biopsy. Among other findings, miR-182-5p and miR-375-3p were found to have statistically significantly higher expression in PCa patients compared to BPH in blood, with a combined specificity of 90.2% to predict positive or negative biopsy results. The data presented emphasize the great potential of miRNAs as liquid biopsy biomarkers for PCa. Abstract Prostate cancer (PCa) is the most commonly diagnosed neoplasm among men. Since it often resembles benign prostate hyperplasia (BPH), biomarkers with a higher differential value than PSA are required. Epigenetic biomarkers in liquid biopsies, especially miRNA, could address this challenge. The absolute expression of miR-375-3p, miR-182-5p, miR-21-5p, and miR-148a-3p were quantified in blood plasma and seminal plasma of 65 PCa and 58 BPH patients by digital droplet PCR. The sensitivity and specificity of these microRNAs were determined using ROC curve analysis. The higher expression of miR-182-5p and miR-375-3p in the blood plasma of PCa patients was statistically significant as compared to BPH (p = 0.0363 and 0.0226, respectively). Their combination achieved a specificity of 90.2% for predicting positive or negative biopsy results, while PSA cut-off of 4 µg/L performed with only 1.7% specificity. In seminal plasma, miR-375-3p, miR-182-5p, and miR-21-5p showed a statistically significantly higher expression in PCa patients with PSA >10 µg/L compared to ones with PSA ≤10 µg/L. MiR-182-5p and miR-375-3p in blood plasma show higher performance than PSA in discriminating PCa from BPH. Seminal plasma requires further investigation as it represents an obvious source for PCa biomarker identification.
Collapse
Affiliation(s)
- Irena Abramovic
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Borna Vrhovec
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Lucija Skara
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Alen Vrtaric
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Nora Nikolac Gabaj
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Kulis
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Goran Stimac
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Dejan Ljiljak
- Department of Gynecology and Obstetrics, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Boris Ruzic
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Zeljko Kastelan
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Bozo Kruslin
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Ljudevit Jurak Clinical Department of Pathology and Cytology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Floriana Bulic-Jakus
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Monika Ulamec
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Ljudevit Jurak Clinical Department of Pathology and Cytology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- Department of Pathology, School of Dental Medicine and School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Katusic-Bojanac
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Nino Sincic
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Correspondence: ; Tel.: +385-145-66-806
| |
Collapse
|
33
|
Roldán Gallardo FF, Quintar AA. The pathological growth of the prostate gland in atherogenic contexts. Exp Gerontol 2021; 148:111304. [PMID: 33676974 DOI: 10.1016/j.exger.2021.111304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
The human prostate is an androgen-dependent gland where an imbalance in cell proliferation can lead to benign prostatic hyperplasia (BPH), which results in voiding lower urinary tract symptoms in the elderly. In the last decades, novel evidence has suggested that BPH might represent an element into the wide spectrum of disorders conforming the Metabolic Syndrome (MS). The dyslipidemic state and the other atherogenic factors of the MS have been shown to induce, maintain and/or aggravate the pathological growth of different organs, with data regarding the prostate being still limited. We here review the available epidemiological and experimental studies about the association of BPH with dyslipidemias. In particular, we have focused on Oxidized Low-Density Lipoproteins (OxLDL) as a potential trigger for vascular disease and cellular proliferation in atherogenic contexts, analyzing their putative molecular mechanisms, including the induction of specific extracellular vesicles (EVs)-derived miRNAs. In addition to the epidemiological evidence, OxLDL is proposed to play a fundamental role in the upregulation of prostatic cell proliferation by activating the Rho/Akt/p27Kip1 pathway in atherogenic contexts. miR-21, miR-141, miR-143, miR-145, miR-155, and miR-221 would be involved in the transcription of genes related to the proliferative process. Although much remains to be investigated regarding the impact of OxLDL, its receptors, and molecular mechanisms on the prostate, it is clear that EVs and miRNAs represent a promising target for proliferative pathologies of the prostate gland.
Collapse
Affiliation(s)
- Franco F Roldán Gallardo
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Amado A Quintar
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina.
| |
Collapse
|
34
|
Isolation of Extracellular Vesicles from Biological Fluids via the Aggregation-Precipitation Approach for Downstream miRNAs Detection. Diagnostics (Basel) 2021; 11:diagnostics11030384. [PMID: 33668297 PMCID: PMC7996260 DOI: 10.3390/diagnostics11030384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) have high potential as sources of biomarkers for non-invasive diagnostics. Thus, a simple and productive method of EV isolation is demanded for certain scientific and medical applications of EVs. Here we aim to develop a simple and effective method of EV isolation from different biofluids, suitable for both scientific, and clinical analyses of miRNAs transported by EVs. The proposed aggregation-precipitation method is based on the aggregation of EVs using dextran blue and the subsequent precipitation of EVs using 1.5% polyethylene glycol solutions. The developed method allows the effective isolation of EVs from plasma and urine. As shown using TEM, dynamic light scattering, and miRNA analyses, this method is not inferior to ultracentrifugation-based EV isolation in terms of its efficacy, lack of inhibitors for polymerase reactions and applicable for both healthy donors and cancer patients. This method is fast, simple, does not need complicated equipment, can be adapted for different biofluids, and has a low cost. The aggregation-precipitation method of EV isolation accessible and suitable for both research and clinical laboratories. This method has the potential to increase the diagnostic and prognostic utilization of EVs and miRNA-based diagnostics of urogenital pathologies.
Collapse
|
35
|
Assadi M, Jokar N, Ghasemi M, Nabipour I, Gholamrezanezhad A, Ahmadzadehfar H. Precision Medicine Approach in Prostate Cancer. Curr Pharm Des 2021; 26:3783-3798. [PMID: 32067601 DOI: 10.2174/1381612826666200218104921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Prostate cancer is the most prevalent type of cancer and the second cause of death in men worldwide. Various diagnostic and treatment procedures are available for this type of malignancy, but High-grade or locally advanced prostate cancers showed the potential to develop to lethal phase that can be causing dead. Therefore, new approaches are needed to prolong patients' survival and to improve their quality of life. Precision medicine is a novel emerging field that plays an essential role in identifying new sub-classifications of diseases and in providing guidance in treatment that is based on individual multi-omics data. Multi-omics approaches include the use of genomics, transcriptomics, proteomics, metabolomics, epigenomics and phenomics data to unravel the complexity of a disease-associated biological network, to predict prognostic biomarkers, and to identify new targeted drugs for individual cancer patients. We review the impact of multi-omics data in the framework of systems biology in the era of precision medicine, emphasising the combination of molecular imaging modalities with highthroughput techniques and the new treatments that target metabolic pathways involved in prostate cancer.
Collapse
Affiliation(s)
- Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mojtaba Ghasemi
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Los Angeles, CA 90033, United States
| | | |
Collapse
|
36
|
Parol M, Gzil A, Bodnar M, Grzanka D. Systematic review and meta-analysis of the prognostic significance of microRNAs related to metastatic and EMT process among prostate cancer patients. J Transl Med 2021; 19:28. [PMID: 33413466 PMCID: PMC7788830 DOI: 10.1186/s12967-020-02644-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of tumor cells to spread from their origin place and form secondary tumor foci is determined by the epithelial-mesenchymal transition process. In epithelial tumors such as prostate cancer (PCa), the loss of intercellular interactions can be observed as a change in expression of polarity proteins. Epithelial cells acquire ability to migrate, what leads to the formation of distal metastases. In recent years, the interest in miRNA molecules as potential future treatment options has increased. In tumor microenvironment, miRNAs have the ability to regulate signal transduction pathways, where they can act as suppressors or oncogenes. MiRNAs are secreted by cancer cells, and the changes in their expression levels are closely related to a cancer progression, including epithelial-mesenchymal transition. These molecules offer new diagnostic and therapeutic possibilities. Therapeutics which make use of synthesized RNA fragments and mimic or block miRNAs affected in PCa, may lead to inhibition of tumor progression and even disease re-emission. Based on appropriate qualification criteria, we conducted a selection process to identify scientific articles describing miRNAs and their relation to epithelial-mesenchymal transition in PCa patients. The studies were published in English on Pubmed, Scopus and the Web of Science before August 08, 2019. Hazard ratios (HRs) and 95% confidence intervals (CI) as well as total Gleason score were used to assess the concordance between miRNAs and presence of metastases. A total of 13 studies were included in our meta-analysis, representing 1608 PCa patients and 15 miRNA molecules. Our study clarifies a relationship between the clinicopathological features of PCa and the aberrant expression of several miRNA as well as the complex mechanism of miRNA molecules involvement in the induction and promotion of the metastatic mechanism in PCa.
Collapse
Affiliation(s)
- Martyna Parol
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
37
|
Akoto T, Bhagirath D, Saini S. MicroRNAs in treatment-induced neuroendocrine differentiation in prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:804-818. [PMID: 33426506 PMCID: PMC7793563 DOI: 10.20517/cdr.2020.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a condition commonly associated with men worldwide. Androgen deprivation therapy remains one of the targeted therapies. However, after some years, there is biochemical recurrence and metastatic progression into castration-resistant prostate cancer (CRPC). CRPC cases are treated with second-line androgen deprivation therapy, after which, these CRPCs transdifferentiate to form neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. NEPC arises via a reversible transdifferentiation process, known as neuroendocrine differentiation (NED), which is associated with altered expression of lineage markers such as decreased expression of androgen receptor and increased expression of neuroendocrine lineage markers including enolase 2, chromogranin A and synaptophysin. The etiological factors and molecular basis for NED are poorly understood, contributing to a lack of adequate molecular biomarkers for its diagnosis and therapy. Therefore, there is a need to fully understand the underlying molecular basis for this cancer. Recent studies have shown that microRNAs (miRNAs) play a key epigenetic role in driving therapy-induced NED in prostate cancer. In this review, we briefly describe the role of miRNAs in prostate cancer and CRPCs, discuss some key players in NEPCs and elaborate on miRNA dysregulation as a key epigenetic process that accompanies therapy-induced NED in metastatic CRPC. This understanding will contribute to better clinical management of the disease.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Divya Bhagirath
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
38
|
Zhang H, Ji N, Gong X, Ni S, Wang Y. NEAT1/miR-140-3p/MAPK1 mediates the viability and survival of coronary endothelial cells and affects coronary atherosclerotic heart disease. Acta Biochim Biophys Sin (Shanghai) 2020; 52:967-974. [PMID: 32844995 DOI: 10.1093/abbs/gmaa087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that long non-coding RNAs (lncRNA) play critical roles in coronary atherosclerotic heart disease (CAD). However, the function of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in CAD is unclear. In this study, we aimed to investigate the functions of lncRNA NEAT1 in CAD. RT-PCR and western blot analysis were carried out to examine the expressions of related RNAs. Colony formation assay, cell proliferation assay, apoptosis assay, and dual-luciferase reporter assay were conducted to investigate the abilities of colony migration, cell proliferation, apoptosis, and targeting. The results showed that NEAT1 was up-regulated in CAD blood samples and in human coronary endothelial cells (HCAECs). Transfection of pcNEAT1 significantly inhibited the survival rate of HCAECs and induced apoptosis of HCAECs. MiR-140-3p was down-regulated in HCAECs. NEAT1 directly targeted miR-140-3p, and the expression of miR-140-3p was inversely correlated with the expression of NEAT1 in CAD patients. In addition, co-transfection of NEAT1 with miR-140-3p mimic reversed the effect of pcNEAT1 on cell viability and apoptosis. mitogen-activated protein kinase 1 (MAPK1) was proved to be a target gene of miR-140-3p, and the miR-140-3p mimic was shown to reduce the expression of MAPK1 in HCAECs. pcNEAT1 significantly increased the expression level of MAPK1, while shNEAT1 significantly reduced the expression level of MAPK1. Our results revealed that lncRNA NEAT1 increased cell viability and inhibited CAD cell apoptosis possibly by activating the miR-140-3p/MAPK1 pathway, and lncRNA NEAT1 might serve as a potential therapeutic target for CAD.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Xinyan Gong
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Shimao Ni
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| |
Collapse
|
39
|
An Update on the Prognostic and Predictive Serum Biomarkers in Metastatic Prostate Cancer. Diagnostics (Basel) 2020; 10:diagnostics10080549. [PMID: 32752137 PMCID: PMC7459446 DOI: 10.3390/diagnostics10080549] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Serum biomarkers are molecules produced by normal and abnormal cells. Prostate specific antigen (PSA) is an example of a serum biomarker used widely in the diagnosis and prognostication of prostate cancer. PSA has its limitations as it is organ- but not cancer-specific. The aim of this review is to summarize the current published data on the potential prognostic and predictive biomarkers in metastatic prostate cancer (mPC) that can be used in conjunction with PSA. These biomarkers include microRNAs, androgen receptor variants, bone metabolism, neuroendocrine and metabolite biomarkers, and could guide treatment selection and sequence in an era where we strive to personalized therapy.
Collapse
|
40
|
Parra-Medina R, López-Kleine L, Ramírez-Clavijo S, Payán-Gómez C. Identification of candidate miRNAs in early-onset and late-onset prostate cancer by network analysis. Sci Rep 2020; 10:12345. [PMID: 32704070 PMCID: PMC7378055 DOI: 10.1038/s41598-020-69290-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of patients under 55 years old diagnosed with Prostate Cancer (EO-PCa) has increased during recent years. The molecular biology of PCa cancer in this group of patients remains unclear. Here, we applied weighted gene coexpression network analysis of the expression of miRNAs from 24 EO-PCa patients (38–45 years) and 25 late-onset PCa patients (LO-PCa, 71–74 years) to identify key miRNAs in EO-PCa patients. In total, 69 differentially expressed miRNAs were identified. Specifically, 26 and 14 miRNAs were exclusively deregulated in young and elderly patients, respectively, and 29 miRNAs were shared. We identified 20 hub miRNAs for the network built for EO-PCa. Six of these hub miRNAs exhibited prognostic significance in relapse‐free or overall survival. Additionally, two of the hub miRNAs were coexpressed with mRNAs of genes previously identified as deregulated in EO-PCa and in the most aggressive forms of PCa in African-American patients compared with Caucasian patients. These genes are involved in activation of immune response pathways, increased rates of metastasis and poor prognosis in PCa patients. In conclusion, our analysis identified miRNAs that are potentially important in the molecular pathology of EO-PCa. These genes may serve as biomarkers in EO-PCa and as possible therapeutic targets.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia.,Department of Pathology, Research Institute, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia.,Pathology Deparment, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandra Ramírez-Clavijo
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
41
|
Zhang D, Liu X, Zhang Q, Chen X. miR-138-5p inhibits the malignant progression of prostate cancer by targeting FOXC1. Cancer Cell Int 2020; 20:297. [PMID: 32669973 PMCID: PMC7350594 DOI: 10.1186/s12935-020-01386-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023] Open
Abstract
Background This study aimed to uncover the effect of miR-138-5p on the proliferation and metastasis of PCa cell lines, and further explore the potential regulatory mechanisms via regulating FOXC1. Methods 60 pairs cancer tissues and corresponding paracancerous ones from PCa patients were collected to assess the expression level of miR-138-5p by qRT-PCR. Subsequently, over-expression of miR-138-5p were established to explore the proliferation and metastasis of miR-138-5p in PCa cell lines was analyzed by CCK-8, Transwell assay and Wounding healing assay, respectively. Bioinformatics analysis and luciferase reporter gene assay were performed to search for the target genes of miR-138-5p, and FOXC1 was selected. Finally, the biological role of miR-138-5p and FOXC1 in the progression of PCa was clarified by a series of rescue experiments. Results The results of qRT-PCR revealed that miR-138-5p was lowly expressed in PCa tissues and cell lines. Besides, the PCa patients with low-miR-138-5p had a high Gleason score, lymph node metastasis and poor prognosis of PCa, compared with these patients with high-miR-138-5p. Over-expression of miR-138-5p inhibited the proliferative, migratory and invasive capacities of PC-3 and DU-145 cells. Bioinformatics analysis and luciferase reporter gene assay suggested that FOXC1 was predicted to be the target gene of miR-138-5p. Moreover, FOXC1 expression level was negatively correlated to that of miR-138-5p in PCa tissues. Importantly, over-expression of FOXC1 could reverse miR-138-5p mimic induced-inhibition of PCa malignant progression. Conclusions Downregulated miR-138-5p was closely associated with high Gleason score, more lymph node metastasis and poor prognosis of PCa patients. In addition, miR-138-5p alleviated the malignant progression of PCa by targeting and downregulating FOXC1.
Collapse
Affiliation(s)
- Dapeng Zhang
- Department of Urology Surgery, Chifengshi Hospital, Chifeng, 024000 Neimenggu China
| | - Xiaodong Liu
- Department of Urology Surgery, Chifengshi Hospital, Chifeng, 024000 Neimenggu China
| | - Qingwei Zhang
- Department of Urology Surgery, Chifengshi Hospital, Chifeng, 024000 Neimenggu China
| | - Xin Chen
- Department of Urology Surgery, Chifengshi Hospital, Chifeng, 024000 Neimenggu China
| |
Collapse
|
42
|
Jiang Z, Zhang Y, Chen X, Wang Y, Wu P, Wu C, Chen D. microRNA-1271 impedes the development of prostate cancer by downregulating PES1 and upregulating ERβ. J Transl Med 2020; 18:209. [PMID: 32448371 PMCID: PMC7245853 DOI: 10.1186/s12967-020-02349-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background As a nucleolar protein associated with ribosome biogenesis, pescadillo homolog 1 (PES1) has been reported to participate in the development of many cancers. However, its role in prostate cancer is not clearly defined. Therefore, the aim of this study is to explore the effects and the specific mechanism of PES1 in prostate cancer. Methods A microarray-based analysis was performed to analyze differentially expressed genes (DEGs) between prostate cancer and normal samples. Next, the interaction between PES1 and microRNA-1271 (miR-1271) was investigated using bioinformatics analysis in combination with dual-luciferase reporter gene assay. The expression of miR-1271 in prostate cancer cells and tissues was determined using RT-qPCR. Its effects on downstream estrogen receptor β (ERβ) signaling pathway were further examined. Moreover, we analyzed whether miR-1271 affects proliferation, apoptosis, migration and invasion of prostate cancer cells by EdU assay, flow cytometry, and Transwell assay. Lastly, a prostate cancer mouse model was conducted to measure their roles in the tumor growth. Results PES1 was identified as a prostate cancer-related DEG and found to be upregulated in prostate cancer. miR-1271, which was poorly expressed in both cells and tissues of prostate cancer, can specifically bind to PES1. Additionally, overexpression of miR-1271 activated the ERβ signaling pathway. Overexpression of miR-1271 or depletion of PES1 inhibited prostate cancer cell proliferation, migration and invasion, promoted apoptosis in vitro and suppressed tumor growth in vivo. Conclusions Taken together, overexpression of miR-1271 downregulates PES1 to activate the ERβ signaling pathway, leading to the delayed prostate cancer development. Our data highlights the potential of miR-1271 as a novel biomarker for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhenming Jiang
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuxi Zhang
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China. .,Department of Urology, People's Hospital of Datong Hui and Tu Autonomous County, Xining, 810100, People's Republic of China.
| | - Xi Chen
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yan Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, People's Republic of China
| | - Pingeng Wu
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chengzhang Wu
- Department of Urology, People's Hospital of Datong Hui and Tu Autonomous County, Xining, 810100, People's Republic of China
| | - Dong Chen
- Central Lab, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
43
|
Khakinezhad Tehrani F, Ranji N, Kouhkan F, Hosseinzadeh S. Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:469-482. [PMID: 32489562 PMCID: PMC7239422 DOI: 10.22038/ijbms.2020.39427.9349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Silibinin, as an herbal compound, has anti-cancer activity. Because of low solubility of silibinin in water and body fluids, it was encapsulated in polymersome nanoparticles and its effects were evaluated on pancreatic cancer cells and cancer stem cells. MATERIALS AND METHODS MIA PaCa-2 pancreatic cancer cells were treated with different doses of silibinin encapsulated in polymersome nanoparticles (SPNs). Stemness of MIA PaCa-2 cells was evaluated by hanging drop technique and CD133, CD24, and CD44 staining. The effects of SPNs on cell cycle, apoptosis and the expression of several genes and miRNAs were investigated. RESULTS IC50 of SPNs was determined to be 40 µg/ml after 24 hr. Our analysis showed that >98% of MIA PaCa-2 cells expressed three stem cell markers. FACS analysis showed a decrease in these markers in SPNs-treated cells. PI/AnnexinV staining revealed that 40 µg/ml and 50 µg/ml of SPNs increased apoptosis up to ~40% and >80% of treated cells, respectively. Upregulation of miR-34a, miR-126, and miR-let7b and downregulation of miR-155, miR-222 and miR-21 was observed in SPNs-treated cells. In addition, downregulation of some genes involved in proliferation or migration such as AKT3, MASPINE, and SERPINEA12, and upregulation of apoptotic genes were observed in treated cells. CONCLUSION Our results suggested that SPNs induced apoptosis and inhibited migration and proliferation in pancreatic cells and cancer stem cells through suppression of some onco-miRs and induction of some tumor suppressive miRs, as well as their targets.
Collapse
Affiliation(s)
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Fredsøe J, Rasmussen AKI, Mouritzen P, Bjerre MT, Østergren P, Fode M, Borre M, Sørensen KD. Profiling of Circulating microRNAs in Prostate Cancer Reveals Diagnostic Biomarker Potential. Diagnostics (Basel) 2020; 10:diagnostics10040188. [PMID: 32231021 PMCID: PMC7235761 DOI: 10.3390/diagnostics10040188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Early detection of prostate cancer (PC) is paramount as localized disease is generally curable, while metastatic PC is generally incurable. There is a need for improved, minimally invasive biomarkers as current diagnostic tools are inaccurate, leading to extensive overtreatment while still missing some clinically significant cancers. Consequently, we profiled the expression levels of 92 selected microRNAs by RT-qPCR in plasma samples from 753 patients, representing multiple stages of PC and non-cancer controls. First, we compared plasma miRNA levels in patients with benign prostatic hyperplasia (BPH) or localized prostate cancer (LPC), versus advanced prostate cancer (APC). We identified several dysregulated microRNAs with a large overlap of 59 up/down-regulated microRNAs between BPH versus APC and LPC versus APC. Besides identifying several novel PC-associated dysregulated microRNAs in plasma, we confirmed the previously reported upregulation of miR-375 and downregulation of miR-146a-5p. Next, by randomly splitting our dataset into a training and test set, we identified and successfully validated a novel four microRNA diagnostic ratio model, termed bCaP (miR-375*miR-33a-5p/miR-16-5p*miR-409-3p). Combined in a model with prostate specific antigen (PSA), digital rectal examination status, and age, bCaP predicted the outcomes of transrectal ultrasound (TRUS)-guided biopsies (negative vs. positive) with greater accuracy than PSA alone (Training: area under the curve (AUC), model = 0.84; AUC, PSA = 0.63. Test set: AUC, model = 0.67; AUC, PSA = 0.56). It may be possible in the future to use this simple and minimally invasive bCaP test in combination with existing clinical parameters for a more accurate selection of patients for prostate biopsy.
Collapse
Affiliation(s)
- Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; (J.F.); (M.T.B.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Peter Mouritzen
- Exiqon A/S, Skelstedet 16, 2950 Vedbaek, Denmark; (A.K.I.R.); (P.M.)
| | - Marianne T. Bjerre
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; (J.F.); (M.T.B.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Urology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Peter Østergren
- Department of Urology, Herlev and Gentofte Hospital, 2900 Hellerup, Denmark; (P.Ø.); (M.F.)
| | - Mikkel Fode
- Department of Urology, Herlev and Gentofte Hospital, 2900 Hellerup, Denmark; (P.Ø.); (M.F.)
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Urology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karina D. Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; (J.F.); (M.T.B.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Correspondence: ; Tel.: +45-7845-5316; Fax: +45-8678-2108
| |
Collapse
|
45
|
Nakamura N, Davis K, Yan J, Sloper DT, Chen T. Increased estrogen levels altered microRNA expression in prostate and plasma of rats dosed with sex hormones. Andrology 2020; 8:1360-1374. [PMID: 32103627 DOI: 10.1111/andr.12780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Elevated estrogen (E) levels caused by aging or exposure to endocrine disrupting chemicals are related to prostate disease development. Sixty to seventy percent of prostate cancer or benign prostatic hyperplasia patients are over the age of 65, while prostatitis is likely to occur in men under 45 years. MicroRNAs currently represent a class of distinctive biological indicators to be used for clinical disease diagnosis and treatment monitoring. This study aims to identify microRNAs that could serve as potential biomarkers for prostate disorders induced by elevated E levels according to their altered expression in prostate or plasma. MATERIALS AND METHODS Groups of Sprague Dawley rats (offspring) were dosed with estradiol benzoate (EB) on postnatal days 1, 3, and 5, and subcutaneously implanted with tubes containing testosterone (T)/E on postnatal day 90. Expression levels of prostate and plasma microRNAs were evaluated using microRNA microarray and validated via qRT-PCR. The expression levels of the potential targeted genes of a set of identified microRNAs were also examined by qRT-PCR. RESULTS Postnatal administration of EB, T, and E elevated serum E levels with decreased serum T levels in rats. Chronic inflammation was observed in the dorsolateral prostate. Significant changes in expression levels of several microRNAs (rno-miR-146-5p, rno-miR-329-3p, and rno-miR-126a-3p) in the dorsolateral prostate and of a microRNA (rno-miR-329-3p) in the plasma were found in the dosed rats. The target gene expression levels of the altered microRNAs also changed accordingly. CONCLUSION Chronic inflammation in the dorsolateral prostate of rats dosed with EB, T, and E resulted in deregulated expression in a set of microRNAs whose target genes were related to tumor growth or abnormal proliferation. Our findings suggest the identified microRNAs and their target genes the potential use as biomarkers to predict prostate cancer development. Validation using human samples is warranted.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR, USA
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Daniel T Sloper
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
46
|
Rao SR, Howarth A, Kratschmer P, Snaith AE, Yapp C, Ebner D, Hamdy FC, Edwards CM. Transcriptomic and Functional Screens Reveal MicroRNAs That Modulate Prostate Cancer Metastasis. Front Oncol 2020; 10:292. [PMID: 32231998 PMCID: PMC7082744 DOI: 10.3389/fonc.2020.00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Identifying new mechanisms that underlie the complex process of metastasis is vital to combat this fatal step in prostate cancer (PCa) progression. Small non-coding RNAs are emerging as important regulators of tumor cell biology. Here we take an integrative approach to elucidate the contribution of microRNAs to metastatic progression, combining transcriptomic analysis with functional screens for migration and morphology. We developed high-content microscopy, high-throughput functional screens for migration and morphology in PCa cells using a microRNA library. RNA-Seq analysis of paired epithelial and mesenchymal PCa cells identified differential expression of 200 microRNAs. Data integration identified two microRNAs that inhibited migration, induced an epithelial-like morphology and were increased in epithelial PCa cells. An overrepresentation of the AAGUGC seed sequence was detected in all three datasets. Analysis of published datasets of patients with PCa identified microRNAs of clinical relevance. The integration of high-throughput functional and expression analyses identifies microRNAs with clinical significance that modulate metastatic behavior in PCa.
Collapse
Affiliation(s)
- Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alison Howarth
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Patrick Kratschmer
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Ann E Snaith
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clarence Yapp
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Li X, Cao Q, Wang Y, Wang Y. Retracted Article: LncRNA OIP5-AS1 contributes to ox-LDL-induced inflammation and oxidative stress through regulating the miR-128-3p/CDKN2A axis in macrophages. RSC Adv 2019; 9:41709-41719. [PMID: 35541591 PMCID: PMC9076472 DOI: 10.1039/c9ra08322g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNA OIP5-AS1 (lncRNA OIP5-AS1) and microRNA-128-3p (miRNA-128-3p) have been reported to play significant roles in human diseases. However, their role in atherosclerosis (AS) has been less studied. The aim of this research was to reveal the roles and functional mechanisms of OIP5-AS1 and miRNA-128-3p in AS development. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays were performed to detect gene expression. Cell proliferation and apoptosis were assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis, respectively. In addition, ELISA was employed to determine the levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α. Oxidative stress was examined using a relevant kit. Furthermore, the interaction between miR-128-3p and OIP5-AS1 or cyclin-dependent kinase inhibitor 2A (CDKN2A) was predicted using StarBase, and then confirmed using the dual-luciferase reporter assay or the RNA immunoprecipitation (RIP) assay. We found that OIP5-AS1 and CDKN2A levels were upregulated and the miR-128-3p level was downregulated in oxidized low-density lipoprotein (ox-LDL)-induced THP1 cells. OIP5-AS1 knockdown weakened the regulatory effect of ox-LDL on cell progression. Interestingly, OIP5-AS1 directly interacted with miR-128-3p and miR-128-3p-targeted CDKN2A. Furthermore, OIP5-AS1 regulated ox-LDL-induced cell progression through modulating miR-128-3p expression, and miR-128-3p exerted its influence by modulating the CDKN2A level. Finally, we confirmed that OIP5-AS1 suppressed miR-128-3p expression to increase the level of CDKN2A. In conclusion, our findings demonstrate that OIP5-AS1 knockdown repressed the effect of ox-LDL on cell progression through regulating the miR-128-3p/CDKN2A axis, providing a potential target for the treatment of AS.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Central Sterile Supply, The First Affiliated Hospital of Henan University of Science and Technology No. 24, Jinghua Road Luoyang 471003 China +86-0379-64830544
| | - Quansheng Cao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Henan University of Science and Technology Luoyang China
| | - Yanyu Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Henan University of Science and Technology Luoyang China
| | - Yongsheng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Henan University of Science and Technology Luoyang China
| |
Collapse
|
48
|
Mulholland EJ, Green WP, Buckley NE, McCarthy HO. Exploring the Potential of MicroRNA Let-7c as a Therapeutic for Prostate Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:927-937. [PMID: 31760377 PMCID: PMC6883330 DOI: 10.1016/j.omtn.2019.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 01/20/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of mortality worldwide and often presents with aberrant microRNA (miRNA) expression. Identifying and understanding the unique expression profiles could aid in the detection and treatment of this disease. This review aims to identify miRNAs as potential therapeutic targets for PCa. Three bio-informatic searches were conducted to identify miRNAs that are reportedly implicated in the pathogenesis of PCa. Only hsa-Lethal-7 (let-7c), recognized for its role in PCa pathogenesis, was common to all three databases. Three further database searches were conducted to identify known targets of hsa-let-7c. Four targets were identified, HMGA2, c-Myc (MYC), TRAIL, and CASP3. An extensive review of the literature was undertaken to assess the role of hsa-let-7c in the progression of other malignancies and to evaluate its potential as a therapeutic target for PCa. The heterogeneous nature of cancer makes it logical to develop mechanisms by which the treatment of malignancies is tailored to an individual, harnessing specific knowledge of the underlying biology of the disease. Resetting cellular miRNA levels is an exciting prospect that will allow this ambition to be realized.
Collapse
Affiliation(s)
- Eoghan J Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - William P Green
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - Niamh E Buckley
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland.
| |
Collapse
|
49
|
Jin W, Shi J, Liu M. Overexpression of miR-671-5p indicates a poor prognosis in colon cancer and accelerates proliferation, migration, and invasion of colon cancer cells. Onco Targets Ther 2019; 12:6865-6873. [PMID: 31686843 PMCID: PMC6709824 DOI: 10.2147/ott.s219421] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose Colon cancer is one of the common malignancies worldwide, and many genes, including microRNAs (miRNAs), have been demonstrated that associated with progression of various diseases, including cancers. The aim of this study is to investigate the potential role of miR-671-5p in colon cancer. Patients and methods Reverse transcription-quantitative polymerase chain reaction (qRT-PCR) was performed to detect the expression levels of miR-671-5p in 115 paired colon cancer tissues and adjacent normal tissues, as well as in colon cancer cells. Kaplan-Meier curve and Cox regression analyses were used to estimate the prognostic significance of miR-671-5p in colon cancer. CCK-8 assay, colony-formation assay, Transwell migration and invasion assays were used to evaluate the effects of miR-671-5p on cell proliferation, migration, and invasion in colon cancer. Results We found that miR-671-5p expression was increased in colon cancer tissues and cell lines. Overexpression of miR-671-5p was found associated with lymph node metastasis, TNM stage, and poor overall survival of patients with colon cancer. By exploiting miR-671-5p mimics and inhibitors, miR-671-5p overexpression significantly increased cell proliferation, migration, and invasion, while downregulation of miR-671-5p inhibited proliferation, migration, and invasion of colon cancer cells. Conclusion Taken together, miR-671-5p may act as an oncogene in colon cancer and promote proliferation, migration, and invasion of colon cancer cells by targeting TRIM67. And it may be a promising prognostic biomarker and therapeutic application for colon cancer treatment.
Collapse
Affiliation(s)
- Wei Jin
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Jinsheng Shi
- Department of Pathology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Meiqin Liu
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| |
Collapse
|
50
|
McDonald AC, Raman JD, Shen J, Liao J, Pandya B, Vira MA. Circulating microRNAs in plasma before and after radical prostatectomy. Urol Oncol 2019; 37:814.e1-814.e7. [PMID: 31421994 DOI: 10.1016/j.urolonc.2019.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 01/30/2023]
Abstract
PURPOSE MicroRNAs (miRNAs/miRs) as circulating biomarkers for prostate cancer have yet to be determined. We examined whether circulating miRNAs in plasma could be employed as biomarkers of disease among men treated for prostate cancer by radical prostatectomy (RP). METHODS The expression of 17 preselected circulating miRNAs associated with prostate cancer (miR-381, -34a, -365, -122, -375, -1255b, -34b, -450b-5p, -885-5p, -1260, -150, -378, -671-3p, -148a, and -224) or high-grade prostate cancer (miR-28 and -100) in plasma at prostate biopsy was examined in pre- and post-RP plasma of prostate cancer patients using real-time PCR and compared using Wilcoxon signed-ranked test. Wilcoxon rank sum test was used to compare the expression of miRNAs in pre-RP plasma between pathologic tumor stage (T2 vs. T3) and Gleason score (6-7 [3 + 4] vs. ≥ 7 [4 + 3]) groups. Partial correlation coefficient between the expression of miRNAs in pre-RP plasma and serum prostate-specific antigen (PSA) level at RP, adjusting for age, was calculated. RESULTS Twenty-nine men, aged 43 to 77 years, were included. Median follow-up time after RP was 55 days. There was no significant change in the expression of miRNAs in plasma from before to after RP. However, higher expression of miR-34a, -378, and 450b-5p in pre-RP plasma was observed among T3 compared to T2 patients (P values = 0.01). Overall, there were no statistically significant relationships observed between the expression of these circulating miRNAs and Gleason score and serum PSA at RP. CONCLUSIONS There was no significant change in the expression of circulating miRNAs in plasma from before to approximately 2 months after RP. This finding may be due to the lack of immediate effect RP may have on the expression of circulating miRNAs. However, higher expression of miR-34a, -378, and -450b-5p in plasma was found among patients with more advanced disease at RP. A longer follow-up time after RP is warranted to investigate RP's possible influence on circulating miRNAs among men treated for prostate cancer and to evaluate miRNAs' diagnostic potential for prostate cancer.
Collapse
Affiliation(s)
- Alicia C McDonald
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA.
| | - Jay D Raman
- Division of Urology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA
| | - Jing Shen
- Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY
| | - Jason Liao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA
| | - Bhavyata Pandya
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA
| | - Manish A Vira
- Smith Institute for Urology, Zucker School of Medicine at Hofstra/Northwell, Northwell Cancer Institute, New Hyde Park, NY
| |
Collapse
|