1
|
Schaer DJ, Schaer CA, Humar R, Vallelian F, Henderson R, Tanaka KA, Levy JH, Buehler PW. Navigating Hemolysis and the Renal Implications of Hemoglobin Toxicity in Cardiac Surgery. Anesthesiology 2024; 141:1162-1174. [PMID: 39159287 PMCID: PMC11560668 DOI: 10.1097/aln.0000000000005109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Acute kidney injury (AKI) affects 20% to 30% of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). This review synthesizes clinical evidence indicating that CPB-induced hemolysis plays a pivotal role in the development of AKI. The pathogenesis involves cell-free hemoglobin, which triggers oxidative stress, depletes nitric oxide, and incites inflammation, culminating in renal damage. We highlight emerging interventions, including haptoglobin administration, nitric oxide supplementation, and antioxidants, which are promising in reducing the toxicity of cell-free hemoglobin and the incidence of AKI. Current clinical data support the potential efficacy of these treatments. Our analysis concludes that sufficient proof of concept exists to further develop and test these targeted therapies for preventing hemoglobin-induced AKI in patients undergoing CPB. Cardiopulmonary bypass-induced hemolysis is linked to acute kidney injury in cardiac surgery. Emerging therapies targeting cell-free hemoglobin, like haptoglobin, nitric oxide, and antioxidants, show promise in reducing kidney injury, highlighting the need for further research.
Collapse
Affiliation(s)
- Dominik J Schaer
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian A Schaer
- Institute of Anesthesiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Reney Henderson
- Division of Cardiovascular Anesthesia, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenichi A Tanaka
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care and Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Paul W Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, and Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Liu G, He Y, Yin Z, Feng Z. An anoikis-related gene signature predicts prognosis, drug sensitivity, and immune microenvironment in cholangiocarcinoma. Heliyon 2024; 10:e32337. [PMID: 38947446 PMCID: PMC11214491 DOI: 10.1016/j.heliyon.2024.e32337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
Background Cholangiocarcinoma is a malignant invasive biliary tract carcinoma with a poor prognosis. Anoikis-related genes are prognostic features of a variety of cancers. However, the value of prognostication and therapeutic effect of anoikis-related genes in cholangiocarcinoma have not been reported. The aim of this research was developing an ARGs signature associated with cholangiocarcinoma patients. Methods We introduced transcriptome data to discover genes that were differentially expressed in cholangiocarcinoma. Subsequently, WGCNA was utilized to screen critical module genes in reference to anoikis. The univariate Cox, Lasso regression and Kaplan-Meier survival were executed to build a prognostic signature. We further performed gene functional enrichment, immune microenvironment and immunotherapy analysis between two risk subgroups. Finally, the pRRophetic algorithm was applied to compare the half inhibitory concentration value of several drugs. Results A grand total of 1844 genes with differential expression related to the cholangiocarcinoma patients were identified. Furthermore, we obtained 2678 key module genes related to anoikis. Then, a prognostic signature was developed using the 6 prognostic genes (FXYD2, PCBD1, C1RL, GMNN, LAMA4 and HACL1). Independent prognostic analysis showed that risk score and alcohol could function as separate prognostic variables. We found cetain distinction in the immune microenvironment between the two risk subgroups. Moreover, immunotherapy evaluation showed that the anoikis-related gene signature could be applied as a therapy predictor. Finally, Chemotherapeutic drug sensitivity results showed that the low-risk group responded better to bosutinib, gefitinib, gemcitabine, and paclitaxel, while the high-risk group responded better to axitinib, cisplatin, and imatinib. Conclusion The prognostic signature comprised of FXYD2, PCBD1, C1RL, GMNN, LAMA4 and HACL1 based on anoikis-related genes was established, which provided theoretical basis and reference value for the research and treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Guochao Liu
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yujian He
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, China
| | - Zhaoqiang Yin
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhijie Feng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, China
| |
Collapse
|
3
|
Galea I, Bandyopadhyay S, Bulters D, Humar R, Hugelshofer M, Schaer DJ. Haptoglobin Treatment for Aneurysmal Subarachnoid Hemorrhage: Review and Expert Consensus on Clinical Translation. Stroke 2023; 54:1930-1942. [PMID: 37232189 PMCID: PMC10289236 DOI: 10.1161/strokeaha.123.040205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating form of stroke frequently affecting young to middle-aged adults, with an unmet need to improve outcome. This special report focusses on the development of intrathecal haptoglobin supplementation as a treatment by reviewing current knowledge and progress, arriving at a Delphi-based global consensus regarding the pathophysiological role of extracellular hemoglobin and research priorities for clinical translation of hemoglobin-scavenging therapeutics. After aneurysmal subarachnoid hemorrhage, erythrocyte lysis generates cell-free hemoglobin in the cerebrospinal fluid, which is a strong determinant of secondary brain injury and long-term clinical outcome. Haptoglobin is the body's first-line defense against cell-free hemoglobin by binding it irreversibly, preventing translocation of hemoglobin into the brain parenchyma and nitric oxide-sensitive functional compartments of cerebral arteries. In mouse and sheep models, intraventricular administration of haptoglobin reversed hemoglobin-induced clinical, histological, and biochemical features of human aneurysmal subarachnoid hemorrhage. Clinical translation of this strategy imposes unique challenges set by the novel mode of action and the anticipated need for intrathecal drug administration, necessitating early input from stakeholders. Practising clinicians (n=72) and scientific experts (n=28) from 5 continents participated in the Delphi study. Inflammation, microvascular spasm, initial intracranial pressure increase, and disruption of nitric oxide signaling were deemed the most important pathophysiological pathways determining outcome. Cell-free hemoglobin was thought to play an important role mostly in pathways related to iron toxicity, oxidative stress, nitric oxide, and inflammation. While useful, there was consensus that further preclinical work was not a priority, with most believing the field was ready for an early phase trial. The highest research priorities were related to confirming haptoglobin's anticipated safety, individualized versus standard dosing, timing of treatment, pharmacokinetics, pharmacodynamics, and outcome measure selection. These results highlight the need for early phase trials of intracranial haptoglobin for aneurysmal subarachnoid hemorrhage, and the value of early input from clinical disciplines on a global scale during the early stages of clinical translation.
Collapse
Affiliation(s)
- Ian Galea
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Soham Bandyopadhyay
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Diederik Bulters
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Rok Humar
- Division of Internal Medicine (R.H., D.J.S.), Universitätsspital and University of Zurich, Switzerland
| | - Michael Hugelshofer
- Department of Neurosurgery, Clinical Neuroscience Center (M.H.), Universitätsspital and University of Zurich, Switzerland
| | - Dominik J. Schaer
- Division of Internal Medicine (R.H., D.J.S.), Universitätsspital and University of Zurich, Switzerland
| |
Collapse
|
4
|
Pires IS, Berthiaume F, Palmer AF. Engineering Therapeutics to Detoxify Hemoglobin, Heme, and Iron. Annu Rev Biomed Eng 2023; 25:1-21. [PMID: 37289555 DOI: 10.1146/annurev-bioeng-081622-031203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hemolysis (i.e., red blood cell lysis) can increase circulatory levels of cell-free hemoglobin (Hb) and its degradation by-products, namely heme (h) and iron (Fe). Under homeostasis, minor increases in these three hemolytic by-products (Hb/h/Fe) are rapidly scavenged and cleared by natural plasma proteins. Under certain pathophysiological conditions, scavenging systems become overwhelmed, leading to the accumulation of Hb/h/Fe in the circulation. Unfortunately, these species cause various side effects such as vasoconstriction, hypertension, and oxidative organ damage. Therefore, various therapeutics strategies are in development, ranging from supplementation with depleted plasma scavenger proteins to engineered biomimetic protein constructs capable of scavenging multiple hemolytic species. In this review, we briefly describe hemolysis and the characteristics of the major plasma-derived protein scavengers of Hb/h/Fe. Finally, we present novel engineering approaches designed to address the toxicity of these hemolytic by-products.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA;
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
5
|
Veres-Székely A, Szász C, Pap D, Szebeni B, Bokrossy P, Vannay Á. Zonulin as a Potential Therapeutic Target in Microbiota-Gut-Brain Axis Disorders: Encouraging Results and Emerging Questions. Int J Mol Sci 2023; 24:ijms24087548. [PMID: 37108711 PMCID: PMC10139156 DOI: 10.3390/ijms24087548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The relationship between dysbiosis and central nervous diseases has been proved in the last 10 years. Microbial alterations cause increased intestinal permeability, and the penetration of bacterial fragment and toxins induces local and systemic inflammatory processes, affecting distant organs, including the brain. Therefore, the integrity of the intestinal epithelial barrier plays a central role in the microbiota-gut-brain axis. In this review, we discuss recent findings on zonulin, an important tight junction regulator of intestinal epithelial cells, which is assumed to play a key role in maintaining of the blood-brain barrier function. In addition to focusing on the effect of microbiome on intestinal zonulin release, we also summarize potential pharmaceutical approaches to modulate zonulin-associated pathways with larazotide acetate and other zonulin receptor agonists or antagonists. The present review also addresses the emerging issues, including the use of misleading nomenclature or the unsolved questions about the exact protein sequence of zonulin.
Collapse
Affiliation(s)
- Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
6
|
Naryzhny S, Legina O. Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses. BIOMEDITSINSKAYA KHIMIYA 2022; 68:309-320. [DOI: 10.18097/pbmc20226805309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the interrelationship between the brain and the gut has become an area of high scientific interest. The intestine is responsible not only for digestion, as it contains millions of neurons, its own immune system, and affects the emotional and cognitive processes. The relationship between the gut and the brain suggests that the processes carried out by the gut microbiota play a significant role in the regulation of brain function, and vice versa. A special role here is played by intercellular tight junctions (TJ), where the zonulin protein holds an important place. Zonulin, an unprocessed precursor of mature haptoglobin, is the only physiological modulator of intercellular TJ that can reversibly regulate the permeability of the intestinal (IB) and blood-brain (BBB) barriers in the human body. BBB disruption and altered microbiota composition are associated with many diseases, including neurological disorders and neuroinflammation. That is, there is a gut-brain axis (GBA) — a communication system through which the brain modulates the functions of the gastrointestinal tract (GIT) and vice versa. GBA is based on neuronal, endocrine, and immunological mechanisms that are interconnected at the organismal, organ, cellular, and molecular levels.
Collapse
Affiliation(s)
- S.N. Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| | - O.K. Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| |
Collapse
|
7
|
Vallelian F, Buehler PW, Schaer DJ. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood 2022; 140:1837-1844. [PMID: 35660854 PMCID: PMC10653008 DOI: 10.1182/blood.2022015596] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
During hemolysis, erythrophagocytes dispose damaged red blood cells. This prevents the extracellular release of hemoglobin, detoxifies heme, and recycles iron in a linked metabolic pathway. Complementary to this process, haptoglobin and hemopexin scavenge and shuttle the red blood cell toxins hemoglobin and heme to cellular clearance. Pathological hemolysis outpaces macrophage capacity and scavenger synthesis across a diversity of diseases. This imbalance leads to hemoglobin-driven disease progression. To meet a void in treatment options, scavenger protein-based therapeutics are in clinical development.
Collapse
Affiliation(s)
- Florence Vallelian
- Division of Internal Medicine, University Hospital, University of Zurich, Zurich, Switzerland
| | - Paul W. Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
- Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD
| | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Haptoglobin 1 allele predicts higher serum haptoglobin concentration and lower multiorgan failure risk in sickle cell disease. Blood Adv 2022; 6:6242-6248. [PMID: 36006620 PMCID: PMC9792396 DOI: 10.1182/bloodadvances.2022007980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/22/2022] [Accepted: 08/14/2022] [Indexed: 12/31/2022] Open
Abstract
Haptoglobin (HP) is an acute-phase protein and the main scavenger of cell-free hemoglobin. When HP is depleted, as observed in hemolytic conditions such as sickle cell disease (SCD), cell-free hemoglobin can lead to acute organ damage. The impact of the HP 1-1, 2-1, and 2-2 isoforms on HP and cell-free hemoglobin concentrations and SCD-related complications is unclear. In a longitudinal cohort of patients with SCD, the HP 1 allele was associated with higher HP and lower cell-free hemoglobin concentrations at a routine clinic visit as well as during hospitalization for a vaso-occlusive episode or acute chest syndrome. With a median follow-up of 6.8 years, acute chest syndrome occurred in 42% (n = 163) and multiorgan failure in 14% (n = 53) of 391 patients with SCD with a minimum follow-up of 6 months. The HP 1 allele was independently associated with lower risk of developing multiorgan failure during acute chest syndrome (additive model hazard ratio, 0.5; P < .001). Future studies assessing the regulation of HP concentrations and ability to bind cell-free hemoglobin according to the HP genotype may help to identify patients with SCD at high risk for multiorgan failure and to guide interventions, such as rapid initiation of exchange transfusion or HP replacement therapy.
Collapse
|
9
|
Kohansal-Nodehi M, Swiatek-de Lange M, Tabarés G, Busskamp H. Haptoglobin polymorphism affects its N-glycosylation pattern in serum. J Mass Spectrom Adv Clin Lab 2022; 25:61-70. [PMID: 35938056 PMCID: PMC9352458 DOI: 10.1016/j.jmsacl.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Polymorphism affects glycosylation pattern of haptoglobin in healthy population. Sample phenotype classification was done based on the number and type of α-chains. Glycoproteomic analyses of haptoglobin were done using enzyme-assisted LC-MS/MS. Significant differences were obseerved in branching, sialylation and fucosylation.
Introduction Haptoglobin (Hp) is an abundant acute-phase protein secreted mainly by the liver into the bloodstream. There are three Hp protein phenotypes (Hp type 1–1, 2–1, and 2–2), which differ in the number of α- and β-chains, type of α-chain (the β-chain type remains the same in all the Hp phenotypes), and the polymers that they form via disulfide bonds. Hp has four N-glycosylation sites on the β-chain. Glycosylation of Hp has been reported frequently as a potential glycobiomarker for many diseases; however, whether Hp polymorphism affects its glycosylation has not yet been addressed extensively or in depth. Objectives This study investigated the differences between the glycosylation patterns of Hp phenotypes using serum from 12 healthy individuals (four for each Hp phenotype). Method An efficient method for isolating Hp from serum was established and subsequently the Hp phenotype of each sample was characterized by immunoblotting. Then, LC-MS/MS analysis of isolated Hp after treatment with three exoglycosidases (sialidase, α2-3 neuraminidase, Endo F3) was performed to characterize the glycosylation pattern of Hp for each individual sample. Results The data reveal significant differences among the branching, sialylation, and fucosylation of Hp types, documenting the effect of Hp polymorphism on its glycosylation. Conclusion Overall, the study suggests that Hp phenotype characterization should be considered during the investigation of Hp glycosylation.
Collapse
|
10
|
Edwards O, Burris A, Lua J, Wilkie DJ, Ezenwa MO, Doré S. Influence of Haptoglobin Polymorphism on Stroke in Sickle Cell Disease Patients. Genes (Basel) 2022; 13:144. [PMID: 35052484 PMCID: PMC8775574 DOI: 10.3390/genes13010144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
This review outlines the current clinical research investigating how the haptoglobin (Hp) genetic polymorphism and stroke occurrence are implicated in sickle cell disease (SCD) pathophysiology. Hp is a blood serum glycoprotein responsible for binding and removing toxic free hemoglobin from the vasculature. The role of Hp in patients with SCD is critical in combating blood toxicity, inflammation, oxidative stress, and even stroke. Ischemic stroke occurs when a blocked vessel decreases oxygen delivery in the blood to cerebral tissue and is commonly associated with SCD. Due to the malformed red blood cells of sickle hemoglobin S, blockage of blood flow is much more prevalent in patients with SCD. This review is the first to evaluate the role of the Hp polymorphism in the incidence of stroke in patients with SCD. Overall, the data compiled in this review suggest that further studies should be conducted to reveal and evaluate potential clinical advancements for gene therapy and Hp infusions.
Collapse
Affiliation(s)
- Olivia Edwards
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL 32610, USA; (O.E.); (A.B.); (J.L.)
| | - Alicia Burris
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL 32610, USA; (O.E.); (A.B.); (J.L.)
| | - Josh Lua
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL 32610, USA; (O.E.); (A.B.); (J.L.)
| | - Diana J. Wilkie
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL 32610, USA; (D.J.W.); (M.O.E.)
| | - Miriam O. Ezenwa
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL 32610, USA; (D.J.W.); (M.O.E.)
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL 32610, USA; (O.E.); (A.B.); (J.L.)
- Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Wu F, Liu Z, Li G, Zhou L, Huang K, Wu Z, Zhan R, Shen J. Inflammation and Oxidative Stress: Potential Targets for Improving Prognosis After Subarachnoid Hemorrhage. Front Cell Neurosci 2021; 15:739506. [PMID: 34630043 PMCID: PMC8497759 DOI: 10.3389/fncel.2021.739506] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) has a high mortality rate and causes long-term disability in many patients, often associated with cognitive impairment. However, the pathogenesis of delayed brain dysfunction after SAH is not fully understood. A growing body of evidence suggests that neuroinflammation and oxidative stress play a negative role in neurofunctional deficits. Red blood cells and hemoglobin, immune cells, proinflammatory cytokines, and peroxidases are directly or indirectly involved in the regulation of neuroinflammation and oxidative stress in the central nervous system after SAH. This review explores the role of various cellular and acellular components in secondary inflammation and oxidative stress after SAH, and aims to provide new ideas for clinical treatment to improve the prognosis of SAH.
Collapse
Affiliation(s)
- Fan Wu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchi Liu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ganglei Li
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihui Zhou
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhanxiong Wu
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Renya Zhan
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Naryzny SN, Legina OK. Haptoglobin as a Biomarker. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2021; 15:184-198. [PMID: 34422226 PMCID: PMC8365284 DOI: 10.1134/s1990750821030069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Haptoglobin (Hp) is a glycoprotein that binds free hemoglobin (Hb) in plasma and plays a critical role in tissue protection and prevention of oxidative damage. Besides, it has some regulatory functions. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. The human Нр gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of haptoglobin: homozygous Нр1-1 and Нр2-2, and heterozygous Нр2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual predisposition of a person to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting off the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the β-chain of Hp has become the main direction in the study of pathological processes, including malignant neoplasms. These characteristics indicate the possibility of the existence of Hp in the form of a multitude of proteoforms, probably performing different functions. This review is devoted to the description of the structural and functional diversity and the potential use of Hp as a biomarker of various pathologies.
Collapse
Affiliation(s)
- S. N. Naryzny
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
- St-Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Orlova Roshcha 1, 188300 Gatchina, Leningrad oblast Russia
| | - O. K. Legina
- St-Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Orlova Roshcha 1, 188300 Gatchina, Leningrad oblast Russia
| |
Collapse
|
13
|
Buzzi RM, Owczarek CM, Akeret K, Tester A, Pereira N, Butcher R, Brügger-Verdon V, Hardy MP, Illi M, Wassmer A, Vallelian F, Humar R, Hugelshofer M, Buehler PW, Gentinetta T, Schaer DJ. Modular Platform for the Development of Recombinant Hemoglobin Scavenger Biotherapeutics. Mol Pharm 2021; 18:3158-3170. [PMID: 34292741 DOI: 10.1021/acs.molpharmaceut.1c00433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free hemoglobin (Hb) is a driver of disease progression in conditions with intravascular or localized hemolysis. Genetic and acquired anemias or emergency medical conditions such as aneurysmal subarachnoid hemorrhage involve tissue Hb exposure. Haptoglobin (Hp) captures Hb in an irreversible protein complex and prevents its pathophysiological contributions to vascular nitric oxide depletion and tissue oxidation. Preclinical proof-of-concept studies suggest that human plasma-derived Hp is a promising therapeutic candidate for several Hb-driven diseases. Optimizing the efficacy and safety of Hb-targeting biotherapeutics may require structural and functional modifications for specific indications. Improved Hp variants could be designed to achieve the desired tissue distribution, metabolism, and elimination to target hemolytic disease states effectively. However, it is critical to ensure that these modifications maintain the function of Hp. Using transient mammalian gene expression of Hp combined with co-transfection of the pro-haptoglobin processing protease C1r-LP, we established a platform for generating recombinant Hp-variants. We designed an Hpβ-scaffold, which was expressed in this system at high levels as a monomeric unit (mini-Hp) while maintaining the key protective functions of Hp. We then used this Hpβ-scaffold as the basis to develop an initial proof-of-concept Hp fusion protein using human serum albumin as the fusion partner. Next, a hemopexin-Hp fusion protein with bispecific heme and Hb detoxification capacity was generated. Further, we developed a Hb scavenger devoid of CD163 scavenger receptor binding. The functions of these proteins were then characterized for Hb and heme-binding, binding of the Hp-Hb complexes with the clearance receptor CD163, antioxidant properties, and vascular nitric oxide sparing capacity. Our platform is designed to support the generation of innovative Hb scavenger biotherapeutics with novel modes of action and potentially improved formulation characteristics, function, and pharmacokinetics.
Collapse
Affiliation(s)
- Raphael M Buzzi
- Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich 8091, Switzerland
| | | | - Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital und University of Zurich, Zurich 8091, Switzerland
| | - Andrea Tester
- CSL Limited, Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Natasha Pereira
- CSL Limited, Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Rebecca Butcher
- CSL Limited, Bio21 Institute, Parkville, Victoria 3010, Australia
| | | | - Matthew P Hardy
- CSL Limited, Bio21 Institute, Parkville, Victoria 3010, Australia
| | - Marlies Illi
- Research and Development, CSL Behring AG, Bern 3014, Switzerland
| | - Andreas Wassmer
- Research and Development, CSL Behring AG, Bern 3014, Switzerland
| | - Florence Vallelian
- Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich 8091, Switzerland
| | - Rok Humar
- Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich 8091, Switzerland
| | - Michael Hugelshofer
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital und University of Zurich, Zurich 8091, Switzerland
| | - Paul W Buehler
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States.,The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | | | - Dominik J Schaer
- Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich 8091, Switzerland
| |
Collapse
|
14
|
Abstract
Haptoglobin (Hp) is a blood plasma glycoprotein that binds free hemoglobin (Hb) and plays a critical role in tissue protection and the prevention of oxidative damage. In addition, it has a number of regulatory functions. Haptoglobin is an acute phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. Only in humans, the Hp gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of Hp, homozygous Hp1-1 and Hp2-2, and heterozygous Hp2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual's predisposition to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting of the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the Hp β-chain has become the main direction in the study of pathological processes, including malignant neoplasms. Many studies are focused on the identification of PTM and changes in the level of the α2-chain of this protein in pathology. These characteristics of Hp indicate the possibility of the existence of this protein as different proteoforms, probably with different functions. This review is devoted to the description of the structural and functional diversity of Hp and its potential use as a biomarker of various pathologies.
Collapse
Affiliation(s)
- S N Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Russia
| | - O K Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Russia
| |
Collapse
|
15
|
Tamara S, Franc V, Heck AJR. A wealth of genotype-specific proteoforms fine-tunes hemoglobin scavenging by haptoglobin. Proc Natl Acad Sci U S A 2020; 117:15554-15564. [PMID: 32561649 PMCID: PMC7355005 DOI: 10.1073/pnas.2002483117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The serum haptoglobin protein (Hp) scavenges toxic hemoglobin (Hb) leaked into the bloodstream from erythrocytes. In humans, there are two frequently occurring allelic forms of Hp, resulting in three genotypes: Homozygous Hp 1-1 and Hp 2-2, and heterozygous Hp 2-1. The Hp genetic polymorphism has an intriguing effect on the quaternary structure of Hp. The simplest form, Hp 1-1, forms dimers consisting of two α1β units, connected by disulfide bridges. Hp 2-1 forms mixtures of linear (α1)2(α2)n-2(β)n oligomers (n > 1) while Hp 2-2 occurs in cyclic (α2)n(β)n oligomers (n > 2). Different Hp genotypes bind Hb with different affinities, with Hp 2-2 being the weakest binder. This behavior has a significant influence on Hp's antioxidant capacity, with potentially distinctive personalized clinical consequences. Although Hp has been studied extensively in the past, the finest molecular details of the observed differences in interactions between Hp and Hb are not yet fully understood. Here, we determined the full proteoform profiles and proteoform assemblies of all three most common genetic Hp variants. We combined several state-of-the-art analytical methods, including various forms of chromatography, mass photometry, and different tiers of mass spectrometry, to reveal how the tens to hundreds distinct proteoforms and their assemblies influence Hp's capacity for Hb binding. We extend the current knowledge by showing that Hb binding does not just depend on the donor's genotype, but is also affected by variations in Hp oligomerization, glycosylation, and proteolytic processing of the Hp α-chain.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands;
- Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
16
|
Pires IS, Palmer AF. Tangential flow filtration of haptoglobin. Biotechnol Prog 2020; 36:e3010. [PMID: 32348635 DOI: 10.1002/btpr.3010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Haptoglobin (Hp) is a plasma glycoprotein that scavenges cell-free hemoglobin (Hb). Hp has various potential therapeutic applications, but it has been mainly studied for treatment of acute hemolytic conditions that can arise from situations such as massive blood transfusion, infusion of stored red blood cells, severe burns, trauma, sepsis, radiation injury, and others. Therefore, Hp may also be beneficial during chronic hemolytic disease states such as hereditary spherocytosis, nocturnal hemoglobinuria, sickle-cell anemia, and malaria. Various methods have been developed to purify Hp from plasma or plasma fractions. However, none of these methods have exploited the large molecular weight (MW) range distribution of Hp polymers to easily isolate Hp from other plasma proteins. The present study used tangential flow filtration (TFF) to isolate polymeric Hp from plasma proteins using human Fraction IV (FIV) as the starting material. After removal of insoluble material from a suspension of FIV paste, the protein mixture was clarified on a 0.2 μm hollow fiber (HF) TFF filter. The clarified protein solution was then bracketed based on protein MW using HF filters with MW cut-offs (MWCOs) of 750, 500, and 100 kDa. Using untreated FIV, the Hp purity of the main bracket was ~75% with a total Hb binding capacity (HbBC) yield of 1.2 g starting from 500 g of FIV paste. However, pretreatment of FIV with fumed silica to remove lipoproteins increased Hp purity to >95% with a HbBC yield of 1.7 g per 500 g of FIV. Taken together this study provides a novel and scalable method to purify Hp from plasma or plasma fractions.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
Glycoproteomic measurement of site-specific polysialylation. Anal Biochem 2020; 596:113625. [DOI: 10.1016/j.ab.2020.113625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
|
18
|
Buehler PW, Humar R, Schaer DJ. Haptoglobin Therapeutics and Compartmentalization of Cell-Free Hemoglobin Toxicity. Trends Mol Med 2020; 26:683-697. [PMID: 32589936 DOI: 10.1016/j.molmed.2020.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Hemolysis and accumulation of cell-free hemoglobin (Hb) in the circulation or in confined tissue compartments such as the subarachnoid space is an important driver of disease. Haptoglobin is the Hb binding and clearance protein in human plasma and an efficient antagonist of Hb toxicity resulting from physiological red blood cell turnover. However, endogenous concentrations of haptoglobin are insufficient to provide protection against Hb-driven disease processes in conditions such as sickle cell anemia, sepsis, transfusion reactions, medical-device associated hemolysis, or after a subarachnoid hemorrhage. As a result, there is increasing interest in developing haptoglobin therapeutics to target 'toxic' cell-free Hb exposures. Here, we discuss key concepts of Hb toxicity and provide a perspective on the use of haptoglobin as a therapeutic protein.
Collapse
Affiliation(s)
- Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Rok Humar
- Division of Internal Medicine, University Hospital, Zurich, Switzerland
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital, Zurich, Switzerland.
| |
Collapse
|
19
|
When might transferrin, hemopexin or haptoglobin administration be of benefit following the transfusion of red blood cells? Curr Opin Hematol 2019; 25:452-458. [PMID: 30281034 DOI: 10.1097/moh.0000000000000458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW After transfusion, a percentage of red blood cells undergo hemolysis within macrophages. Intravascular exposures to hemin and hemoglobin (Hb) can occur after storage bag hemolysis, some transfusion reactions, during use of medical assist devices and in response to bacterial hemolysins. Proteins that regulate iron, hemin and Hb either become saturated after iron excess (transferrin, Tf) or depleted after hemin (hemopexin, Hpx) and Hb (haptoglobin, Hp) excess. Protein saturation or stoichiometric imbalance created by transfusion increases exposure to non-Tf bound iron, hemin and Hb. Tf, Hpx and Hp are being developed for hematological disorders where iron, hemin and Hb contribute to pathophysiology. However, complexed to their ligands, each represents a potential iron source for pathogens, which may complicate the use of these proteins. RECENT FINDINGS Erythrophagocytosis by macrophages and processes of cell death that lead to reactive iron exposure are increasingly described. In addition, the effects of transfusion introduced circulatory hemin and Hb are described in the literature, particularly following large volume transfusion, infection and during concomitant medical device use. SUMMARY Supplementation with Tf, Hpx and Hp suggests therapeutic potential in conditions of extravascular/intravascular hemolysis. However, their administration following transfusion may require careful assessment of concomitant disease.
Collapse
|