1
|
Ma J, Liu D, Zhao P, Dou M, Yang X, Liu S, Nian F, Tong W, Li J, Xu Z, Zhang L, Zhang H, Li Y, Deng X, Liu Y. Intercropping of tobacco and maize at seedling stage promotes crop growth through manipulating rhizosphere microenvironment. FRONTIERS IN PLANT SCIENCE 2024; 15:1470229. [PMID: 39445144 PMCID: PMC11496092 DOI: 10.3389/fpls.2024.1470229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
Introduction Changes in the rhizosphere microbiome and metabolites resulting from crop intercropping can significantly enhance crop growth. While there has been an increasing number of studies on various crop combinations, research on the intercropping of tobacco and maize at seedling stage remains limited. Methods This study is the first to explore rhizosphere effects of intercropping between tobacco and maize seedling stages, we analyzed the nitrogen, phosphorus and potassium nutrients in the soil, and revealed the important effects on soil microbial community composition and metabolite profiles, thereby regulating crop growth and improving soil balance. Results and discussion Compared with mono-cropping, intercropping increased the biomass of the two crops and promoted the nutrient absorption of nitrogen, phosphorus and potassium. Under intercropping conditions, the activities of sucrase, catalase and nitrate reductase in tobacco rhizosphere soil and the content of available potassium, the activities of nitrate reductase and acid phosphatase in maize rhizosphere soil were significantly increasing. Rhizosphere soil bacterial and fungal communities such as Sphingomonas, Massilia, Humicola and Penicillium respond differently to crop planting patterns, and soil dominant microbial communities are regulated by environmental factors such as pH, Organic Matter, Available Potassium, Nitrate Reductase, and Urease Enzyme. Network analysis showed that soil microbial communities were more complex after intercropping, and the reciprocal relationship between bacteria and fungi was enhanced. The difference of metabolites in soil between intercropping and monocropping system was mainly concentrated in galactose metabolism, starch and sucrose metabolism pathway, and the content of carbohydrate metabolites was significantly higher than that of monocropping soil. Key metabolites such as D-Sucrose, D-Fructose-6-Phosphate, D-Glucose-1-Phosphatel significantly influence the composition of dominant microbial communities such as Sphingomonas and Penicillium. This study explained the effects of intercropping between flue-cured tobacco and maize on the content of soil metabolites and soil microbial composition in rhizosphere soil, and deepened the understanding that intercropping system can improve the growth of flue-cured crops seedlings through rhizosphere effects.
Collapse
Affiliation(s)
- Junmei Ma
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Di Liu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Peiyan Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Min Dou
- College of Resource and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiuhua Yang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shulei Liu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fuzhao Nian
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenjie Tong
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - Junying Li
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - ZhaoLi Xu
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - Liuchen Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - Hong Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - Yongzhong Li
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaopeng Deng
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - Yating Liu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Ahsan T, Tian PC, Gao J, Wang C, Liu C, Huang YQ. Effects of microbial agent and microbial fertilizer input on soil microbial community structure and diversity in a peanut continuous cropping system. J Adv Res 2024; 64:1-13. [PMID: 38030126 PMCID: PMC11464484 DOI: 10.1016/j.jare.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION The soil harbors a diverse array of microorganisms, and these are essential components of terrestrial ecosystems. The presence of microorganisms in the soil, particularly in the rhizosphere, is closely linked to plant growth and soil fertility. OBJECTIVE The primary objective of this study is to assess the potential advantages of integrating microbial inoculants with compound fertilizer in enhancing peanut yield. METHODS We utilized Illumina MiSeq high-throughput sequencing technology to conduct our investigation. The experimental design consists of four treatment groups: compound fertilizers (CF), compound fertilizers supplemented with microbial agents (CF + MA), compound fertilizers supplemented with microbial fertilizers (CF + MF), and compound fertilizers supplemented with both microbial agents and microbial fertilizers (CF + MM). RESULTS The experimental results demonstrated a significant increase in peanut yield upon application of CF + MA, CF + MF, and CF + MM treatments. During the blossom stage and pod-setting stage, the soil's catalase, urease, and acid phosphatase activities were significantly increased in the CF + MA, and CF + MM treatments compared to the CF treatment. The application of CF + MA resulted in an increase in bacterial richness in the rhizosphere soil of peanuts, as indicated by the sequencing results. The application of CF + MA, CF + MF, and CF + MM resulted in a reduction of fungal diversity. Proteobacteria, Actinobacteria, and Acidobacteria were the dominant bacterial phyla, while Ascomycota and Basidiomycota were the dominant phyla in the fungal component of the rhizosphere soil microbiome across all experimental treatments. CONCLUSION Microbial agents and fertilizers modify the peanut rhizosphere soil's microbial community structure, as per our findings. The abundance of potentially beneficial bacteria (Bradyrhizobium, Rhizobium, and Burkholderia) and fungi (Trichoderma and Cladophialophora) could increase, while pathogenic fungi (Penicillium and Fusarium) decreased, thereby significantly promoting plant growth and yield of peanut.
Collapse
Affiliation(s)
- Taswar Ahsan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Pei-Cong Tian
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jie Gao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Chen Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Chuang Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yu-Qian Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
3
|
Meng P, Xin K, Lu Z, Chen J, Tang X, Meng G, He F, Liu L, Wang H, Wang C. Intercropping with Robinia pseudoacacia reduces soft rot incidence in konjac by modulating the root bacterial community. PEST MANAGEMENT SCIENCE 2024. [PMID: 39263914 DOI: 10.1002/ps.8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Soft rot (Pectobacterium aroidearum and Dickeya) is a devastating soil-borne bacterial disease that threatens konjac production. Intercropping with false acacia has been shown to significantly reduce soft rot incidence in konjac by shifting the microbial community. However, how intercropping shapes the root bacterial community and affects soft rot incidence remains unclear. To address this, we investigated three konjac intercropping systems (false acacia, paulownia, and maize) to explore the relationships among intercropping, soft rot incidence, root bacterial community, soil enzyme activity, and soil properties. RESULTS Konjac intercropped with false acacia exhibited the lowest soft rot incidence and the lowest abundance of pathogenic taxa. Soft rot incidence was negatively correlated with total soil nitrogen and potassium but positively correlated with total and available soil phosphorus. The bacterial community structure and function in konjac roots differed among intercropping types, mainly driven by available soil phosphorus. Beneficial microorganisms such as Bradyrhizobium and Variovorax were enriched under a false acacia intercropping system and were negatively correlated with soil-available phosphorus. Additionally, the stable bacterial community in healthy konjac roots under false acacia may make konjac less susceptible to pathogen invasion. CONCLUSION The study showed that intercropping reduced the soft rot incidence by regulating the structure and stability of the konjac root bacterial community, and soil-available phosphorus was the main factor affecting the difference in the konjac root bacterial community, which provided a basis for the management of soil fertilization in konjac cultivation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Panpan Meng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Kexu Xin
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhoumin Lu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Juan Chen
- Yachang Forest Farm, Guangxi Zhuang Autonomous Region, Baise, China
| | - Xiaan Tang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Guihua Meng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Fei He
- College of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | | | - Haihua Wang
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Li D, He Z, Chen S, Chen J, Ding Z, Luo J, Li Z, Hu Y. Alleviation of cadmium uptake in rice (Oryza sativa L.) by iron plaque on the root surface generated by Providencia manganoxydans via Fe(II) oxidation. Arch Microbiol 2024; 206:387. [PMID: 39196357 DOI: 10.1007/s00203-024-04110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Iron plaque is believed to be effective in reducing the accumulation of heavy metals in rice. In this work, a known soil-derived Mn(II)-oxidizing bacterium, LLDRA6, which represents the type strain of Providencia manganoxydans, was employed to investigate the feasibility of decreasing cadmium (Cd) accumulation in rice by promoting the formation of iron plaque on the root surface. Firstly, the Fe(II) oxidation ability of LLDRA6 was evaluated using various techniques including Fourier Transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, phenanthroline photometry, and FeS gel-stabilized gradient assays. Subsequently, the formation of iron plaque on the root surface by LLDRA6 was investigated under hydroponic and pot conditions. Finally, Cd concentrations were examined in rice with and without iron plaque through pot and paddy-field tests. The results showed that LLDRA6 played an efficient role in the formation of iron plaque on seedling roots under hydroponic conditions, generating 44.87 and 36.72 g kg- 1 of iron plaque on the roots of Huazhan and TP309, respectively. In pot experiments, LLDRA6 produced iron plaque exclusively in the presence of Fe(II). Otherwise, it solely generated biofilm on the root surface. Together with Fe(II), LLDRA6 effectively reduced the concentrations of Cd in Huazhan roots, straws and grains by 25%, 46% and 44%, respectively. This combination also demonstrated a significant decrease in the Cd concentrations of TP309 roots, straws and grains by 20%, 52% and 44%, respectively. The data from the Cd translocation factor indicate that obstruction of Cd translocation by iron plaque predominantly occurred during the root-to-straw stage. In paddy-field tests, the Cd concentrations of grains harvested from the combination treatment of LLDRA6 and Fe(II) exhibited a decline ranging from 40 to 53%, which fell below the maximum acceptable value for Cd in rice grains (0.2 mg kg- 1) as per the China national standard for food security (GB2762-2017). Meanwhile, the relevant phenotypic traits regarding the yield were not adversely affected. These findings have demonstrated that LLDRA6 can impede the uptake of Cd by rice in Cd-contaminated soils through the formation of iron plaque on roots, thus providing a promising safe Cd-barrier for rice production.
Collapse
Affiliation(s)
- Ding Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
- Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Zeping He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Sha Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
- Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jinyuan Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhexu Ding
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Luo
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zongpei Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya, 572000, China.
| |
Collapse
|
5
|
Wang Q, Chen H, Gu W, Wang S, Li Y. Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172243. [PMID: 38582118 DOI: 10.1016/j.scitotenv.2024.172243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Huijuan Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Wanqing Gu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Shurui Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yinghua Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
6
|
Nasar J, Ahmad M, Gitari H, Tang L, Chen Y, Zhou XB. Maize/soybean intercropping increases nutrient uptake, crop yield and modifies soil physio-chemical characteristics and enzymatic activities in the subtropical humid region based in Southwest China. BMC PLANT BIOLOGY 2024; 24:434. [PMID: 38773357 PMCID: PMC11106902 DOI: 10.1186/s12870-024-05061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Intercropping, a widely adopted agricultural practice worldwide, aims to increase crop yield, enhance plant nutrient uptake, and optimize the utilization of natural resources, contributing to sustainable farming practices on a global scale. However, the underlying changes in soil physio-chemical characteristics and enzymatic activities, which contribute to crop yield and nutrient uptake in the intercropping systems are largely unknown. Consequently, a two-year (2021-2022) field experiment was conducted on the maize/soybean intercropping practices with/without nitrogen (N) fertilization (i.e., N0; 0 N kg ha-1 and N1; 225 N kg ha-1 for maize and 100 N kg ha-1 for soybean ) to know whether such cropping system can improve the nutrients uptake and crop yields, soil physio-chemical characteristics, and soil enzymes, which ultimately results in enhanced crop yield. The results revealed that maize intercropping treatments (i.e., N0MI and N1MI) had higher crop yield, biomass dry matter, and 1000-grain weight of maize than mono-cropping treatments (i.e., N0MM, and N1MM). Nonetheless, these parameters were optimized in N1MI treatments in both years. For instance, N1MI produced the maximum grain yield (10,105 and 11,705 kg ha-1), biomass dry matter (13,893 and 14,093 kg ha-1), and 1000-grain weight (420 and 449 g) of maize in the year 2021 and 2022, respectively. Conversely, soybean intercropping treatments (i.e., N0SI and N1SI) reduced such yield parameters for soybean. Also, the land equivalent ratio (LER) and land equivalent ratio for N fertilization (LERN) values were always greater than 1, showing the intercropping system's benefits in terms of yield and improved resource usage. Moreover, maize intercropping treatments (i.e., N0MI and N1MI) and soybean intercropping treatments (i.e., N0SI and N1SI) significantly (p < 0.05) enhanced the nutrient uptake (i.e., N, P, K, Ca, Fe, and Zn) of maize and soybean, however, these nutrients uptakes were more prominent in N1MI and N1SI treatments of maize and soybean, respectively in both years (2021 and 2022) compared with their mono-cropping treatments. Similarly, maize-soybean intercropping treatments (i.e., N0MSI and N1MSI) significantly (p < 0.05) improved the soil-based N, P, K, NH4, NO3, and soil organic matter, but, reduced the soil pH. Such maize-soybean intercropping treatments also improved the soil enzymatic activities such as protease (PT), sucrose (SC), acid phosphatase (AP), urease (UE), and catalase (CT) activities. This indicates that maize-soybean intercropping could potentially contribute to higher and better crop yield, enhanced plant nutrient uptake, improved soil nutrient pool, physio-chemical characteristics, and related soil enzymatic activities. Thus, preferring intercropping to mono-cropping could be a preferable choice for ecologically viable agricultural development.
Collapse
Affiliation(s)
- Jamal Nasar
- Guangxi Key Laboratory of Agro‑Environment and Agro‑Products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Munir Ahmad
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Harun Gitari
- Department of Agricultural Science and Technology, School of Agriculture and Environmental Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Li Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Yuan Chen
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Xun-Bo Zhou
- Guangxi Key Laboratory of Agro‑Environment and Agro‑Products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Su H, Lai H, Gao F, Zhang R, Wu S, Ge F, Li Y, Yao H. The proliferation of beneficial bacteria influences the soil C, N, and P cycling in the soybean-maize intercropping system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25688-25705. [PMID: 38483720 DOI: 10.1007/s11356-024-32851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Soybean-maize intercropping system can improve the utilization rate of farmland and the sustainability of crop production systems. However, there is a significant gap in understanding the interaction mechanisms between soil carbon (C), nitrogen (N), and phosphorus (P) cycling functional genes, rhizosphere microorganisms, and nutrient availability. To reveal the key microorganisms associated with soil nutrient utilization and C, N, and P cycling function in the soybean-maize intercropping system, we investigated the changes in soil properties, microbial community structure, and abundance of functional genes for C, N, and P cycling under soybean-maize intercropping and monocropping at different fertility stages in a pot experiment. We found that there was no significant difference in the rhizosphere microbial community between soybean-maize intercropping and monocropping at the seeding stage. As the reproductive period progressed, differences in microbial community structure between intercropping and monocropping gradually became significant, manifesting the advantages of intercropping. During the intercropping process of soybean and maize, the relative abundance of beneficial bacteria in soil rhizosphere significantly increased, particularly Streptomycetaceae and Pseudomonadaceae. Moreover, the abundances of C, N, and P cycling functional genes, such as abfA, mnp, rbcL, pmoA (C cycling), nifH, nirS-3, nosZ-2, amoB (N cycling), phoD, and ppx (P cycling), also increased significantly. Redundancy analysis and correlation analysis showed that Streptomycetaceae and Pseudomonadaceae were significantly correlated with soil properties and C, N, and P cycling functional genes. In brief, soybean and maize intercropping can change the structure of microbial community and promote the proliferation of beneficial bacteria in the soil rhizosphere. The accumulation of these beneficial bacteria increased the abundance of C, N, and P cycling functional genes in soil and enhanced the ability of plants to fully utilize environmental nutrients and promoted growth.
Collapse
Affiliation(s)
- Hao Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiling Lai
- Lianhe Equator Environmental Impact Assessment Co., Ltd, Tianjin, 300042, China
| | - Fuyun Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruipeng Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sixuan Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Furong Ge
- Beilun District Agriculture and Rural Bureau, Ningbo, 315800, Zhejiang Province, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China.
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China.
| | - Huaiying Yao
- Wuhan Institute of Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Yang L, Liang H, Wu Q, Shen P. Biochar alleviated the toxic effects of microplastics-contaminated geocarposphere soil on peanut (Arachis hypogaea L.) pod development: roles of pod nutrient metabolism and geocarposphere microbial modulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2990-3001. [PMID: 38050830 DOI: 10.1002/jsfa.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND The accumulation of microplastics in agricultural soil poses a threat to the sustainability of agriculture, impacting crop growth and soil health. Due to the geocarpy feature of peanut, geocarposphere soil environment is critical to pod development and its nutritional quality. While the effects of microplastics in the rhizosphere have been studied, their impact on peanut pod in the geocarposphere remains unknown. Biochar has emerged as a potential soil agent with the ability to remediate soil contamination. However, the mechanisms of biochar in mitigating the toxic effects of microplastics-contaminated geocarposphere soil on peanut pod development remain largely unexplored. RESULTS We evaluated the peanut pod performance and microbiome when facing microplastics contamination and biochar amendment in geocarposphere soil. The results showed that microplastics present in geocarposphere soil could directly enter the peanut pod, cause pod developmental disorder and exert adverse effects on nutritional quality. Aberrant expression of key genes associated with amino acid metabolism, lipid synthesis, and auxin and ethylene signaling pathways were the underlying molecular mechanisms of microplastics-induced peanut pod developmental inhibition. However, these expression abnormalities could be reversed by biochar application. In addition, peanut geocarposphere microbiome results showed that biochar application could restore the diversity of microbial communities inhibited by microplastics contamination and promote the relative abundance of bacteria correlated with pathogen resistance and nitrogen cycle of geocarposphere soil, further promoting peanut pod development. CONCLUSION This study demonstrated that biochar application is an effective strategy to mitigate the toxic effects of microplastics-contaminated geocarposphere soil on pod development and nutritional quality. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liyu Yang
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Haiyan Liang
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wu
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Pu Shen
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
9
|
Liu Z, Nan Z, Lin S, Meng W, Xie L, Yu H, Zhang Z, Wan S. Peanut-based intercropping systems altered soil bacterial communities, potential functions, and crop yield. PeerJ 2024; 12:e16907. [PMID: 38344295 PMCID: PMC10858685 DOI: 10.7717/peerj.16907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Intercropping is an efficient land use and sustainable agricultural practice widely adopted worldwide. However, how intercropping influences the structure and function of soil bacterial communities is not fully understood. Here, the effects of five cropping systems (sole sorghum, sole millet, sole peanut, sorghum/peanut intercropping, and millet/peanut intercropping) on soil bacterial community structure and function were investigated using Illumina MiSeq sequencing. The results showed that integrating peanut into intercropping systems increased soil available nitrogen (AN) and total nitrogen (TN) content. The alpha diversity index, including Shannon and Chao1 indices, did not differ between the five cropping systems. Non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) illustrated a distinct separation in soil microbial communities among five cropping systems. Bacterial phyla, including Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, were dominant across all cropping systems. Sorghum/peanut intercropping enhanced the relative abundance of phyla Actinobacteriota and Chloroflexi compared to the corresponding monocultures. Millet/peanut intercropping increased the relative abundance of Proteobacteria, Acidobacteriota, and Nitrospirota. The redundancy analysis (RDA) indicated that bacterial community structures were primarily shaped by soil organic carbon (SOC). The land equivalent ratio (LER) values for the two intercropping systems were all greater than one. Partial least squares path modeling analysis (PLS-PM) showed that soil bacterial community had a direct effect on yield and indirectly affected yield by altering soil properties. Our findings demonstrated that different intercropping systems formed different bacterial community structures despite sharing the same climate, reflecting changes in soil ecosystems caused by interspecific interactions. These results will provide a theoretical basis for understanding the microbial communities of peanut-based intercropping and guide agricultural practice.
Collapse
Affiliation(s)
- Zhu Liu
- Shandong Academy of Agricultural Sciences, Ji’nan, China
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhenwu Nan
- Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Songming Lin
- Shandong Academy of Agricultural Sciences, Ji’nan, China
- Qilu Normal University, Ji’nan, China
| | - Weiwei Meng
- Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Liyong Xie
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zheng Zhang
- Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences, Ji’nan, China
| |
Collapse
|
10
|
Wang Y, Lin S, Li J, Jia X, Hu M, Cai Y, Cheng P, Li M, Chen Y, Lin W, Wang H, Wu Z. Metagenomics-based exploration of key soil microorganisms contributing to continuously planted Casuarina equisetifolia growth inhibition and their interactions with soil nutrient transformation. FRONTIERS IN PLANT SCIENCE 2023; 14:1324184. [PMID: 38126014 PMCID: PMC10731376 DOI: 10.3389/fpls.2023.1324184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Casuarina equisetifolia (C. equisetifolia) is an economically important forest tree species, often cultivated in continuous monoculture as a coastal protection forest. Continuous planting has gradually affected growth and severely restricted the sustainable development of the C. equisetifolia industry. In this study, we analyzed the effects of continuous planting on C. equisetifolia growth and explored the rhizosphere soil microecological mechanism from a metagenomic perspective. The results showed that continuous planting resulted in dwarfing, shorter root length, and reduced C. equisetifolia seedling root system. Metagenomics analysis showed that 10 key characteristic microorganisms, mainly Actinoallomurus, Actinomadura, and Mycobacterium, were responsible for continuously planted C. equisetifolia trees. Quantitative analysis showed that the number of microorganisms in these three genera decreased significantly with the increase of continuous planting. Gene function analysis showed that continuous planting led to the weakening of the environmental information processing-signal transduction ability of soil characteristic microorganisms, and the decrease of C. equisetifolia trees against stress. Reduced capacity for metabolism, genetic information processing-replication and repair resulted in reduced microbial propagation and reduced microbial quantity in the rhizosphere soil of C. equisetifolia trees. Secondly, amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins were all significantly reduced, resulting in a decrease in the ability of the soil to synthesize and metabolize carbon and nitrogen. These reduced capacities further led to reduced soil microbial quantity, microbial carbon and nitrogen, microbial respiration intensity, reduced soil enzyme nutrient cycling and resistance-related enzyme activities, a significant reduction in available nutrient content of rhizosphere soils, a reduction in the ion exchange capacity, and an impediment to C. equisetifolia growth. This study provides an important basis for the management of continuously planted C. equisetifolia plantations.
Collapse
Affiliation(s)
- Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Jianjuan Li
- Editorial Department, Fujian Academy of Forestry Survey and Planning, Fuzhou, China
| | - Xiaoli Jia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mingyue Hu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhong Cai
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan, China
| | - Wenxiong Lin
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Zeyan Wu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Li J, Yang X, Tong X, Peng Y, Deng Y, Yan X, Zhou Y. Cleaner production of Chinese cabbage by intercropping from Cd contaminated soil: Effects of hyperaccumulator variety and planting strip width. CHEMOSPHERE 2023; 341:139975. [PMID: 37643648 DOI: 10.1016/j.chemosphere.2023.139975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The utilization of Cd-contaminated soil in vegetable crop production can lighten the food crisis and improve the soil environmental resilience. Intercropping is a reliable technology in safety production from contaminated soil. A field-scale experiment was carried out to unravel how plant species and pattern affect the growth and Cd uptake of Chinese cabbage from Cd contaminated land. Among all the intercropping systems designed in this study, one row of Chinese cabbage intercropping with one row of Solanum nigrum L. is the best planting mode (high yields (2.78 kg/m2) and low Cd accumulation (0.02 mg/kg) of Chinese cabbage). Combined with the in-depth joint analysis of diverse soil physicochemical features (soil nutrient characteristics and microbial community structure), biomass yield and quality, and soil microbiological properties, we elaborated that two measures (screening hyperaccumulation types and controlling planting strip width) were the major factors in determining the growth of the aboveground and underground parts of Chinese cabbage respectively, thus directly regulating the application effectiveness of intercropping technology. The intertwined mechanisms (interspecific and intraspecific relationship) of different intercropping systems are summarized, which include better utilization of space, light and other resources in the aboveground part, bioavailability of nutrient, drive of soil bacteria and alleviated soil Cd stress in the underground part, etc. Our research outputs indicate the effectiveness and feasibility of intercropping can be improved by optimizing the streamline configuration and plant mode, which provide theory of reference and practical evidence for warranting the food safety and agricultural soil remediation simultaneously.
Collapse
Affiliation(s)
- Junchun Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangdong, 510045, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuejiao Tong
- Yuhuan Enviromental Technology Co.Ltd, Shijiazhuang, Hebei, 050000, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangdong, 510045, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
12
|
Li X, Li X, Hong J, Wang Y, Guo D, Liu J, Zhang Z, He W, Xue K, Wang Q. Comparative Analyses of Soil Bacterial Colonies of Two Types of Chinese Ginger after a Major Flood Disaster. Microbiol Spectr 2023; 11:e0435522. [PMID: 36744938 PMCID: PMC10100910 DOI: 10.1128/spectrum.04355-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
Ginger, an important cash crop, has been cultivated for thousands of years in China. However, comparative studies on soil bacterial communities of Chinese ginger varieties, especially after flooding, are lacking. Here, we comprehensively compared the bacterial communities of two types of ginger soils from four different locations. Surprisingly, the 100-year flood (20 July 2021, in Henan, China) did not significantly affect the soil bacterial composition compared with previous reports. In contrast, flooding may have brought in nutrients and promoted the propagation of eutrophic bacteria, and Alphaproteobacteria were the most abundant in the Zhangliang region (~25%). However, due to the most severe flooding and inundation, the Zhangliang region, also probably contaminated with polycyclic aromatic hydrocarbons and heavy metals, showed the lowest microbial diversity. Moreover, the geographical location influenced the microbial communities more than did the soil type or ginger variety. These findings help us understand the species and composition of bacteria and infection of ginger after flooding and soaking. Further, the interaction mechanisms underlying these emerging phenomena need to be further investigated. IMPORTANCE There are few comparative studies on the soil bacterial communities of Chinese ginger varieties after flooding. After a 100-year flood (20 July 2021, in Henan, China), we comprehensively compared the bacterial communities of two types of ginger soils from four different locations. Surprisingly, this flood did not significantly affect the soil bacterial composition compared with previous reports. In contrast, it was found that the flooding may have brought in nutrients and promoted the propagation of eutrophic bacteria for the Zhangliang region. However, the flooding had also brought in polycyclic aromatic hydrocarbon and heavy metal contamination. Moreover, we also verified that geographical location influenced the microbial communities more than did the soil type or ginger variety. These findings help us understand the species and composition of bacteria and infection of ginger after flooding and soaking.
Collapse
Affiliation(s)
- Xinyang Li
- Henan University of Urban Construction, Ping Dingshan, China
| | - Xiaokang Li
- Wuhan Jinxin Gynecology and Obstetrics Hospital of Integrative Medicine, Wuhan, China
| | - Jun Hong
- Henan University of Urban Construction, Ping Dingshan, China
| | - Yan Wang
- Henan University of Urban Construction, Ping Dingshan, China
| | - Duanqiang Guo
- Henan University of Urban Construction, Ping Dingshan, China
| | - Jinlong Liu
- Henan University of Urban Construction, Ping Dingshan, China
| | - Zewen Zhang
- Henan University of Urban Construction, Ping Dingshan, China
| | - Wenwei He
- Henan University of Urban Construction, Ping Dingshan, China
| | - Kaisheng Xue
- Henan University of Urban Construction, Ping Dingshan, China
| | - Qingqing Wang
- Henan University of Urban Construction, Ping Dingshan, China
| |
Collapse
|
13
|
Wei X, Bai X, Cao P, Wang G, Han J, Zhang Z. Bacillus and microalgae biofertilizers improved quality and biomass of Salvia miltiorrhiza by altering microbial communities. CHINESE HERBAL MEDICINES 2023; 15:45-56. [PMID: 36875436 PMCID: PMC9975621 DOI: 10.1016/j.chmed.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/27/2022] [Accepted: 10/16/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Biofertilizers are reliable alternatives to chemical fertilizers due to various advantages. However, the effect of biofertilizers on Salvia miltiorrhiza yield and quality and the possible mechanisms remain little known. Here, an experiment was conducted in S. miltiorrhiza field treated with two kinds of biofertilizers including Bacillus and microalgae. Methods A field experiment was conducted on S. miltiorrhiza of one year old. The biofertilizers were applied at six treatments: (i) control check, CK; (ii) microalgae, VZ; (iii) Bacillus, TTB; (iv) microalgae + Bacillus (1:1), VTA; (v) microalgae + Bacillus (0.5:1), VTB; (vi) microalgae + Bacillus (1:0.5), VTC. Here, high-throughput sequencing, ICP-MS and UPLC were employed to systematically characterize changes of microbial diversity and structure composition, heavy metals content and bioactive compounds, respectively. Results Compared to CK, root biomass increased by 29.31%-60.39% (P < 0.001). Meanwhile, bioactive compounds were higher than CK after the application of the biofertilizers, peculiarly in TTB and VTB. However, the content of Pb contents in roots significantly reduced by 46.03% and 37.58% respectively in VTC and TTB (P < 0.05). VTA application notably increased the available nitrogen content by 53.03% (P < 0.05), indicating the improvement of soil fertility. Significantly, bacterial and fungal Chao I diversity indices showed an increasing trend with biofertilizer application (P < 0.05), and biofertilizer amendment enriched the rhizosphere soil with beneficial microorganisms that have abilities on promoting plant growth (Achromobacter and Penicillium), adsorbing heavy metal (Achromobacter and Beauveria), controlling plant pathogen (Plectosphaerella, Lechevalieria, Sorangium, Phlebiopsis and Beauveria) and promoting the accumulation of metabolites (Beauveria and Phoma). Conclusion Bacillus and microalgae biofertilizers improved the quality and biomass of S. miltiorrhiza by altering microbial communities in soil.
Collapse
Affiliation(s)
- Xuemin Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xuanjiao Bai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Pei Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
14
|
Tang X, He Y, Zhang Z, Wu H, He L, Jiang J, Meng W, Huang Z, Xiong F, Liu J, Zhong R, Han Z, Wan S, Tang R. Beneficial shift of rhizosphere soil nutrients and metabolites under a sugarcane/peanut intercropping system. FRONTIERS IN PLANT SCIENCE 2022; 13:1018727. [PMID: 36531399 PMCID: PMC9757493 DOI: 10.3389/fpls.2022.1018727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Intercropping systems have been studied as a sustainable agricultural planting pattern to increase soil quality and crop yields. However, the relationships between metabolites and soil physicochemical properties remain poorly understood under sugarcane/peanut intercropping system. Thus, we determined the rhizosphere soil physicochemical properties, and analyzed rhizosphere soil metabolites and root metabolites by metabolomics method under monoculture and intercropping patterns of sugarcane and peanut. The results showed that pH, the contents of total phosphorus (P), total potassium (K), available nitrogen (N), available phosphorus (P), and available potassium (K) were higher in rhizosphere soil of intercropping peanut than monoculture peanut, and the content of total P was higher in rhizosphere soil of intercropping sugarcane than monoculture sugarcane. Sugarcane/peanut intercropping also significantly increased the activities of acid phosphatase and urease in rhizosphere soil. The metabolomics results showed that 32 metabolites, mainly organic acids and their derivatives (25.00%), nucleotides and their metabolites (18.75%), were detected in root and rhizosphere soil samples. In the MP-S (rhizosphere soil of monoculture peanut) vs. IP-S (rhizosphere soil of intercropping peanut) comparison, 47 differential metabolites (42 upregulated) were screened, including glycerolipids (19.15%), organic acids and their derivatives (17.89%), and amino acids and their metabolites (12.77%). In the MS-S (rhizosphere soil of monoculture sugarcane) vs. IS-S (rhizosphere soil of intercropping sugarcane) comparison, 51 differential metabolites (26 upregulated) were screened, including heterocyclic compounds (15.69%), glycerolipids (11.76%), and organic acids and their derivatives (9.80%). The metabolite species from MP-S, MS-S, IP-S, and IS-S were similar, but some metabolite contents were significantly different, such as adenine, adenosine, maltotriose, thermozeaxanthin-13 and PE-NMe (20:0/24:0). Adenine and adenosine were detected in root and rhizosphere soils, and their levels were increased in the intercropping treatment, which were mainly related to enhanced purine metabolism in root and rhizosphere soils under the sugarcane/peanut intercropping system. Importantly, adenine and adenosine were significantly positively correlated with total P and total K contents, acid phosphatase and urease activities, and pH. This study clarified that the sugarcane/peanut intercropping system could improve soil nutrients and enzymes and was related to purine metabolism.
Collapse
Affiliation(s)
- Xiumei Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yonglin He
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zheng Zhang
- Key Lab of Crop Genetic Improvement and Ecological Physiology of Shandong, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haining Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liangqiong He
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jing Jiang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Weiwei Meng
- Key Lab of Crop Genetic Improvement and Ecological Physiology of Shandong, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhipeng Huang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jing Liu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ruichun Zhong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhuqiang Han
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shubo Wan
- Key Lab of Crop Genetic Improvement and Ecological Physiology of Shandong, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ronghua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
15
|
Sun L, Dong X, Wang Y, Maker G, Agarwal M, Ding Z. Tea-Soybean Intercropping Improves Tea Quality and Nutrition Uptake by Inducing Changes of Rhizosphere Bacterial Communities. Microorganisms 2022; 10:2149. [PMID: 36363740 PMCID: PMC9697773 DOI: 10.3390/microorganisms10112149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2023] Open
Abstract
The positive aspects of the tea plant/legume intercropping system draw attention to the Chinese tea industry for its benefit for soil fertility improvement with low fertilizer input. However, limited information exists as to the roles of intercropped legumes in the rhizosphere microbiome and tea quality. Hereby, soybean was selected as the intercropped plant to investigate its effect on bacterial communities, nutrient competition, tea plant development, and tea quality. Our data showed that intercropped soybean boosted the uptake of nitrogen in tea plants and enhanced the growth of young tea shoots. Nutrient competition for phosphorus and potassium in soil existed between soybeans and tea plants. Moreover, tea/soybean intercropping improved tea quality, manifested by a significantly increased content of non-ester type catechins (C, EGC, EC), total catechins and theanine, and decreased content of ester type catechins (EGCG). Significant differences in rhizobacterial composition were also observed under different systems. At the genus level, the relative abundance of beneficial bacteria, such as Bradyrhizobium, Saccharimonadales and Mycobacterium, was significantly increased with the intercropping system, while the relative abundance of denitrifying bacteria, Pseudogulbenkiania, was markedly decreased. Correlation analysis showed that Pseudogulbenkiania, SBR1031, and Burkholderiaceae clustered together showing a similar correlation with soil physicochemical and tea quality characteristics; however, other differential bacteria showed the opposite pattern. In conclusion, tea/soybean intercropping improves tea quality and nutrition uptake by increasing the relative abundance of beneficial rhizosphere bacteria and decreasing denitrifying bacteria. This study strengthens our understanding of how intercropping system regulate the soil bacterial community to maintain the health of soils in tea plantations and provides the basis for replacing chemical fertilizers and improving the ecosystem in tea plantations.
Collapse
Affiliation(s)
- Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| | - Xue Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Garth Maker
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| | - Manjree Agarwal
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
- Scientific Service Division, Chemcentre, Government of Western Australia, B.No. 500, Corner of Manning Road and Townsing Drive, Bentley, WA 6102, Australia
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| |
Collapse
|
16
|
Dong Q, Zhao X, Zhou D, Liu Z, Shi X, Yuan Y, Jia P, Liu Y, Song P, Wang X, Jiang C, Liu X, Zhang H, Zhong C, Guo F, Wan S, Yu H, Zhang Z. Maize and peanut intercropping improves the nitrogen accumulation and yield per plant of maize by promoting the secretion of flavonoids and abundance of Bradyrhizobium in rhizosphere. FRONTIERS IN PLANT SCIENCE 2022; 13:957336. [PMID: 35991432 PMCID: PMC9386453 DOI: 10.3389/fpls.2022.957336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Belowground interactions mediated by root exudates are critical for the productivity and efficiency of intercropping systems. Herein, we investigated the process of microbial community assembly in maize, peanuts, and shared rhizosphere soil as well as their regulatory mechanisms on root exudates under different planting patterns by combining metabolomic and metagenomic analyses. The results showed that the yield of intercropped maize increased significantly by 21.05% (2020) and 52.81% (2021), while the yield of intercropped peanut significantly decreased by 39.51% (2020) and 32.58% (2021). The nitrogen accumulation was significantly higher in the roots of the intercropped maize than in those of sole maize at 120 days after sowing, it increased by 129.16% (2020) and 151.93% (2021), respectively. The stems and leaves of intercropped peanut significantly decreased by 5.13 and 22.23% (2020) and 14.45 and 24.54% (2021), respectively. The root interaction had a significant effect on the content of ammonium nitrogen (NH4 +-N) as well as the activities of urease (UE), nitrate reductase (NR), protease (Pro), and dehydrogenase (DHO) in the rhizosphere soil. A combined network analysis showed that the content of NH4 +-N as well as the enzyme activities of UE, NR and Pro increased in the rhizosphere soil, resulting in cyanidin 3-sambubioside 5-glucoside and cyanidin 3-O-(6-Op-coumaroyl) glucoside-5-O-glucoside; shisonin were significantly up-regulated in the shared soil of intercropped maize and peanut, reshaped the bacterial community composition, and increased the relative abundance of Bradyrhizobium. These results indicate that interspecific root interactions improved the soil microenvironment, regulated the absorption and utilization of nitrogen nutrients, and provided a theoretical basis for high yield and sustainable development in the intercropping of maize and peanut.
Collapse
Affiliation(s)
- Qiqi Dong
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Dongying Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhenhua Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yang Yuan
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Peiyan Jia
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yingyan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Penghao Song
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaoguang Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xibo Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Feng Guo
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zheng Zhang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
17
|
Liu J, Qiu G, Liu C, Lin Y, Chen X, Li H, Fu Q, Guo B. Intercropping of Euonymus japonicus with Photinia × fraseri Improves Phytoremediation Efficiency in Cd/Cu/Zn Contaminated Field. BIOLOGY 2022; 11:1133. [PMID: 36009760 PMCID: PMC9405393 DOI: 10.3390/biology11081133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Intercropping plants for phytoremediation is a promising strategy in heavy metal-polluted soils. In this study, two typical greening plant species, Euonymus japonicus (E. japonicus) and Photinia × fraseri (P. × fraseri), were intercropped in a Cd/Cu/Zn-contaminated field. The phytoremediation efficiency was investigated by measuring the plant biomass, metal concentration, and mycorrhizal colonisation, as well as the effects on soil properties, including soil pH; soil total N; and available N, P, K, Cd, Cu, and Zn. The results showed that, compared with the monoculture system, intercropping significantly lowered the available Cd, Cu, and Zn contents, significantly improved the total and available N contents in rhizosphere soils of both plant species, and increased the hyphae colonisation rate of P. × fraseri. In both plants, intercropping significantly improved the total plant biomass. Furthermore, the concentrations Zn and Cd in the root of E. japonicus and Cu concentration in the root of P. × fraseri were enhanced by 58.16%, 107.74%, and 20.57%, respectively. Intercropping resulted in plants accumulating higher amounts of Cd, Cu, and Zn. This was particularly evident in the total amount of Cd in E. japonicus, which was 2.2 times greater than that in the monoculture system. Therefore, this study provides a feasible technique for improving phytoremediation efficiency using greening plants.
Collapse
|
18
|
Wang G, Wang D, Zhou X, Shah S, Wang L, Ahmed M, Sayyed RZ, Fahad S. Effects of Cotton–Peanut Intercropping Patterns on Cotton Yield Formation and Economic Benefits. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.900230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intercropping has been widely adopted by farmers because it often enhances crop productivity and economic returns. However, to increase the comprehensive production benefits of agricultural cultivation and increase the economic benefits of cotton in Northwest Shandong Province, a set of green, ecological, and efficient intercropping mode suitable for Northwest Shandong Province was preliminarily formed. A 2-year intercropping experiment was conducted in Xiajin and Dongping counties in Shandong Province, with six alternative intercropping patterns proposed. After analyzing the experimental data, it was determined that the traditional cotton–peanut intercropping method is not mechanized and that a new intercropping mode has been proposed: four rows of cotton and six rows of peanut. We selected the appropriate intercropping mode for Xiajin and Dongping counties. The production efficiency of 4:4 cotton intercropping in Peanut Ridge was the best in Dongping and Xiajin counties, which was 28–123% higher than that of monoculture. This planting pattern is suitable for demonstration and promotion in the two counties, as well as in the traditional cotton area of the old Yellow River in Northwest Shandong.
Collapse
|
19
|
Hadj Brahim A, Ben Ali M, Daoud L, Jlidi M, Akremi I, Hmani H, Feto NA, Ben Ali M. Biopriming of Durum Wheat Seeds with Endophytic Diazotrophic Bacteria Enhances Tolerance to Fusarium Head Blight and Salinity. Microorganisms 2022; 10:microorganisms10050970. [PMID: 35630414 PMCID: PMC9147649 DOI: 10.3390/microorganisms10050970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
There is growing interest in the use of bio inoculants based on plant growth-promoting bacteria (PGPB) to promote plant growth under biotic and abiotic stresses. Here, we provided a detailed account of the effectiveness of a number of endophytic PGPB strains, isolated from the roots of the halophyte Salicornia brachiata in promoting durum wheat growth and enhancing its tolerance to salinity and fusarium head blight (FHB) disease. Bacillus spp. strains MA9, MA14, MA17, and MA19 were found to have PGPB characteristics as they produced indole-3-acetic acid, siderophores, and lytic enzymes, fixed free atmospheric nitrogen, and solubilized inorganic phosphate in vitro. Additionally, the in vivo study that involved in planta inoculation assays under control and stress conditions indicated that all PGPB strains significantly (p < 0.05) increased the total plant length, dry weight, root area, seed weight, and nitrogen, protein, and mineral contents. Particularly, the MA17 strain showed a superior performance since it was the most efficient in reducing disease incidence in wheat explants by 64.5%, in addition to having the strongest plant growth promotion activity under salt stress. Both in vitro and in vivo assays showed that MA9, MA14, MA17, and MA19 strains were able to play significant PGPB roles. However, biopriming with Bacillus subtilis MA17 offered the highest plant growth promotion and salinity tolerance, and bioprotection against FHB. Hence, it would be worth testing the MA17 strain under field conditions as a step towards its commercial production. Moreover, the strain could be further assessed for its plausible role in bioprotection and growth promotion in other crop plants. Thus, it was believed that the strain has the potential to significantly contribute to wheat production in arid and semi-arid regions, especially the salt-affected Middle Eastern Region, in addition to its potential role in improving wheat production under biotic and abiotic stresses in other parts of the world.
Collapse
Affiliation(s)
- Adel Hadj Brahim
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LBMIE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.B.A.); (L.D.); (M.J.); (I.A.); (H.H.)
- Correspondence: (A.H.B.); (M.B.A.)
| | - Manel Ben Ali
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LBMIE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.B.A.); (L.D.); (M.J.); (I.A.); (H.H.)
- Astrum Biotech, Business Incubator, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Lobna Daoud
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LBMIE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.B.A.); (L.D.); (M.J.); (I.A.); (H.H.)
- Astrum Biotech, Business Incubator, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Mouna Jlidi
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LBMIE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.B.A.); (L.D.); (M.J.); (I.A.); (H.H.)
| | - Ismahen Akremi
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LBMIE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.B.A.); (L.D.); (M.J.); (I.A.); (H.H.)
| | - Houda Hmani
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LBMIE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.B.A.); (L.D.); (M.J.); (I.A.); (H.H.)
| | - Naser Aliye Feto
- OMICS Research Group, Department of Biotechnology, Vaal University of Technology, Vanderbijlpark 1911, South Africa;
| | - Mamdouh Ben Ali
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LBMIE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (M.B.A.); (L.D.); (M.J.); (I.A.); (H.H.)
- Astrum Biotech, Business Incubator, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia
- Correspondence: (A.H.B.); (M.B.A.)
| |
Collapse
|
20
|
Zhao X, Dong Q, Han Y, Zhang K, Shi X, Yang X, Yuan Y, Zhou D, Wang K, Wang X, Jiang C, Liu X, Zhang H, Zhang Z, Yu H. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity. BMC Microbiol 2022; 22:14. [PMID: 34996375 PMCID: PMC8740425 DOI: 10.1186/s12866-021-02425-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut. RESULTS The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41, Candidatus-udaeobacter, Stropharia, Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi. CONCLUSION Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.
Collapse
Affiliation(s)
- Xinhua Zhao
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qiqi Dong
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Han
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Kezhao Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaolong Shi
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xu Yang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yuan
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dongying Zhou
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Kai Wang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoguang Wang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chunji Jiang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xibo Liu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - He Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhimeng Zhang
- Shandong Peanut Research Institute, Qingdao, 266100, Shandong, China
| | - Haiqiu Yu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
21
|
Wang Z, Zhou M, Liu H, Huang C, Ma Y, Ge HX, Ge X, Fu S. Pecan agroforestry systems improve soil quality by stimulating enzyme activity. PeerJ 2022; 10:e12663. [PMID: 35036087 PMCID: PMC8740511 DOI: 10.7717/peerj.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Forest and plantation intercropping are efficient agroforestry systems that optimize land use and promote agroforestry around the world. However, diverse agroforestry systems on the same upper-plantation differently affect the physical and chemical properties of the soil. METHODS The treatments for this study included a single cultivation (CK) pecan control and three agroforestry systems (pecan + Paeonia suffruticosa + Hemerocallis citrina, pecan + Paeonia suffruticosa, and pecan + Paeonia lactiflora). Soil samples were categorized according to the sampling depth (0-20 cm, 20-40 cm, 40-60 cm). RESULTS The results demonstrated that the bulk density (BD) of soil under the pecan agroforestry system (PPH and PPL) was reduced by 16.13% and 7.10%, respectively, and the soil moisture content (MC) and total soil porosity (TPO) increased. Improvements in the physical properties of the soil under the PPS agroforestry system were not obvious when compared with the pecan monoculture. The soil total phosphorus (TP), total nitrogen (TN), available potassium (AK), and total carbon (TC) increased significantly, while the soil urease (S-UE), alkaline phosphatase (S-AKP), and 1,4-β-N-acetylglucosamines (S-NAG) enzyme activity also increased significantly, following agroforestry. Overall, the pecan agroforestry system significantly improved the physical properties of the pecan plantation soil, enriched the soil nutrients, and increased the activity of soil enzymes related to TC, TN, and TP cycles.
Collapse
Affiliation(s)
- Zhaocheng Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Mengyu Zhou
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Hua Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Cheng Huang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Yuhua Ma
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Hao xin Ge
- Fuyang Xinfeng Seed Industry Co., Ltd., Fuyang, Anhui, China
| | - Xiang Ge
- Fuyang Xinfeng Seed Industry Co., Ltd., Fuyang, Anhui, China
| | - Songling Fu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
22
|
Malviya MK, Solanki MK, Li CN, Wang Z, Zeng Y, Verma KK, Singh RK, Singh P, Huang HR, Yang LT, Song XP, Li YR. Sugarcane-Legume Intercropping Can Enrich the Soil Microbiome and Plant Growth. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.606595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil microbes have a direct impact on plant metabolism and health. The current study investigates the comparative rhizobiome between sugarcane monoculture and sugarcane–soybean intercropping. A greenhouse experiment was performed with two treatments: (1) sugarcane monoculture and (2) sugarcane–soybean intercropped. We used a high-throughput sequencing (HTS) platform to analyze the microbial community. We used the 16S rRNA gene and internal transcribed spacer region primers to identify the microbial diversity. HTS results revealed that a total of 2,979 and 124 bacterial and fungal operational taxonomic units (OTUs) were observed, respectively. Microbial diversity results concluded that the intercropping system has a beneficial impact on soil microbes. The highest numbers of bacterial and fungal OTUs were found in the intercropping system, and these results also collaborated with quantitative PCR results. Additionally, intercropped sugarcane plants showed a higher weight of above- and below-ground parts than the monoculture. Soil chemical analysis results also complemented that the intercropping system nourished organic carbon, total nitrogen, and soil enzyme activities. Correlation analysis of the diversity index and abundance concluded that soil nutrient content positively influenced the microbial abundance that improves plant growth. The present study frames out the profound insights of microbial community interaction under the sugarcane–soybean intercropping system. This information could help improve or increase the sugarcane crop production without causing any negative impact on sugarcane plant growth and development.
Collapse
|
23
|
Shi X, Zhao X, Ren J, Dong J, Zhang H, Dong Q, Jiang C, Zhong C, Zhou Y, Yu H. Influence of Peanut, Sorghum, and Soil Salinity on Microbial Community Composition in Interspecific Interaction Zone. Front Microbiol 2021; 12:678250. [PMID: 34108953 PMCID: PMC8180576 DOI: 10.3389/fmicb.2021.678250] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023] Open
Abstract
Soil microorganisms play important roles in crop production and sustainable agricultural management. However, soil conditions and crop selection are key determining factors for soil microbial communities. This study investigated the effect of plant types and soil salinity on the microbial community of interspecific interaction zone (II) based on the sorghum/peanut intercropping system. Microbial community diversity and composition were determined through PacBio single molecule, real-time sequencing of 16S rDNA and internal transcribed spacer (ITS) genes. Results showed Proteobacteria, Bacteroidota, and Acidobacteriota to be the dominant bacterial phyla in IP, II, and IS, whereas Ascomycota, Basidiomycota, and Mucoromycota were the dominant fungal phyla. Under salt-treated soil conditions, the plants-specific response altered the composition of the microbial community (diversity and abundance). Additionally, the interspecific interactions were also helpful for maintaining the stability and ecological functions of microbial communities by restructuring the otherwise stable core microbiome. The phylogenetic structure of the bacterial community was greatly similar between IP and II while that of the fungal community was greatly similar between IP and IS; however, the phylogenetic distance between IP and IS increased remarkably upon salinity stress. Overall, salinity was a dominant factor shaping the microbial community structure, although plants could also shape the rhizosphere microenvironment by host specificity when subjected to environmental stresses. In particular, peanut still exerted a greater influence on the microbial community of the interaction zone than sorghum.
Collapse
Affiliation(s)
- Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jinyao Ren
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jiale Dong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Qiqi Dong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
24
|
Tang X, Jiang J, Huang Z, Wu H, Wang J, He L, Xiong F, Zhong R, Liu J, Han Z, Tang R, He L. Sugarcane/peanut intercropping system improves the soil quality and increases the abundance of beneficial microbes. J Basic Microbiol 2021; 61:165-176. [PMID: 33448033 DOI: 10.1002/jobm.202000750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/11/2022]
Abstract
Sugarcane/peanut intercropping is a highly efficient planting pattern in South China. However, the effects of sugarcane/peanut intercropping on soil quality need to be clarified. This study characterized the soil microbial community and the soil quality in sugarcane/peanut intercropping systems by the Illumina MiSeq platform. The results showed that the intercropping sugarcane (IS) system significantly increased the total N (TN), available N (AN), available P (AP), pH value, and acid phosphatase activity (ACP), but it had little effect on the total P (TP), total K (TK), available K (AK), organic matter (OM), urease activity, protease activity, catalase activity, and sucrase activity, compared with those in monocropping sugarcane (MS) and monocropping peanut (MP) systems. Both intercropping peanut (IP) and IS soils contained more bacteria and fungi than soils in the MP and MS fields, and the microbes identified were mainly Chloroflexi and Acidobacteria, respectively. Intercropping significantly increased the number of unique microbes in IS soils (68 genera), compared with the numbers in the IP (14), MS (17), and MP (16) systems. The redundancy analysis revealed that the abundances of culturable Acidobacteriaceae subgroup 1, nonculturable DA111, and culturable Acidobacteria were positively correlated with the measured soil quality in the intercropping system. Furthermore, the sugarcane/peanut intercropping significantly increased the economic benefit by 87.84% and 36.38%, as compared with that of the MP and MS, respectively. These results suggest that peanut and sugarcane intercropping increases the available N and P content by increasing the abundance of rhizospheric microbes, especially Acidobacteriaceae subgroup 1, DA111, and Acidobacteria.
Collapse
Affiliation(s)
- Xiumei Tang
- Agricultural College of Guangxi University, Nanning, Guangxi, China.,Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jing Jiang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Zhipeng Huang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Haining Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jin Wang
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Liangqiong He
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ruichun Zhong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jing Liu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Zhuqiang Han
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ronghua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Longfei He
- Agricultural College of Guangxi University, Nanning, Guangxi, China
| |
Collapse
|