1
|
Martinez-Chavez LM, Roberts JM, Karley AJ, Shaw B, Pope TW. The clip cage conundrum: Assessing the interplay of confinement method and aphid genotype in fitness studies. INSECT SCIENCE 2024; 31:1591-1602. [PMID: 38227545 DOI: 10.1111/1744-7917.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
Behavior and fitness are important ecological traits frequently measured in insect bioassays. A common method to measure them in soft-bodied herbivorous insects involves confining individuals to plant leaves using clip cages. Although studies have previously highlighted the negative effects of clip cages on leaf physiology, little is known about the impact that using this confinement method has on insect fitness. The responses of different aphid genotypes/clones to different containment methods have not previously been investigated. Here we measured key fitness traits (intrinsic rate of natural increase, mean relative growth rate, time to reach reproductive adulthood and population doubling time) in the potato aphid, Macrosiphum euphorbiae Thomas (Hemiptera: Aphididae), when confined to plants using two methods: (1) clip cages to confine aphids to individual strawberry leaves and (2) a mesh bag to confine aphids to whole strawberry plants. Our study identified a strong negative impact on all the measured aphid fitness traits when using clip cages instead of mesh bags. We also identified genotype-specific differences in response to confinement method, where clip cage confinement differentially affected the fitness of a given aphid genotype compared to the same genotype on whole plants. These results suggest that clip cage use should be carefully considered when experiments seek to quantify insect fitness and that whole plants should be used wherever possible. Given the prevalence of clip cage use in insect bioassays, our results highlight the need for caution when interpreting the existing literature as confinement method significantly impacts aphid fitness depending on their genotype.
Collapse
Affiliation(s)
- Laura Marcela Martinez-Chavez
- Centre for Crop and Environmental Science, Agriculture and Environment Department, Harper Adams University, Newport, Shropshire, UK
| | - Joe M Roberts
- Centre for Crop and Environmental Science, Agriculture and Environment Department, Harper Adams University, Newport, Shropshire, UK
| | - Alison J Karley
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Bethan Shaw
- Pest and Pathogen Ecology, NIAB, East Malling, Kent, UK
| | - Tom W Pope
- Centre for Crop and Environmental Science, Agriculture and Environment Department, Harper Adams University, Newport, Shropshire, UK
| |
Collapse
|
2
|
Wang BX, Hof AR, Matson KD, van Langevelde F, Ma CS. Climate change, host plant availability, and irrigation shape future region-specific distributions of the Sitobion grain aphid complex. PEST MANAGEMENT SCIENCE 2023; 79:2311-2324. [PMID: 36792531 DOI: 10.1002/ps.7409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 02/15/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Understanding where species occur using species distribution models has become fundamental to ecology. Although much attention has been paid to invasive species, questions about climate change related range shifts of widespread insect pests remain unanswered. Here, we incorporated bioclimatic factors and host plant availability into CLIMEX models to predict distributions under future climate scenarios of major cereal pests of the Sitobion grain aphid complex (Sitobion avenae, S. miscanthi, and S. akebiae). Additionally, we incorporated the application of irrigation in our models to explore the relevance of a frequently used management practice that may interact with effects of climate change of the pest distributions. RESULTS Our models predicted that the area potentially at high risk of outbreaks of the Sitobion grain aphid complex would increase from 41.3% to 53.3% of the global land mass. This expansion was underlined by regional shifts in both directions: expansion of risk areas in North America, Europe, most of Asia, and Oceania, and contraction of risk areas in South America, Africa, and Australia. In addition, we found that host plant availability limited the potential distribution of pests, while the application of irrigation expanded it. CONCLUSION Our study provides insights into potential risk areas of insect pests and how climate, host plant availability, and irrigation affect the occurrence of the Sitobion grain aphid complex. Our results thereby support agricultural policy makers, farmers, and other stakeholders in their development and application of management practices aimed at maximizing crop yields and minimizing economic losses. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bing-Xin Wang
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Anouschka R Hof
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Kevin D Matson
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Frank van Langevelde
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Chun-Sen Ma
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
| |
Collapse
|
3
|
Lin PA, Kansman J, Chuang WP, Robert C, Erb M, Felton GW. Water availability and plant-herbivore interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2811-2828. [PMID: 36477789 DOI: 10.1093/jxb/erac481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 06/06/2023]
Abstract
Water is essential to plant growth and drives plant evolution and interactions with other organisms such as herbivores. However, water availability fluctuates, and these fluctuations are intensified by climate change. How plant water availability influences plant-herbivore interactions in the future is an important question in basic and applied ecology. Here we summarize and synthesize the recent discoveries on the impact of water availability on plant antiherbivore defense ecology and the underlying physiological processes. Water deficit tends to enhance plant resistance and escape traits (i.e. early phenology) against herbivory but negatively affects other defense strategies, including indirect defense and tolerance. However, exceptions are sometimes observed in specific plant-herbivore species pairs. We discuss the effect of water availability on species interactions associated with plants and herbivores from individual to community levels and how these interactions drive plant evolution. Although water stress and many other abiotic stresses are predicted to increase in intensity and frequency due to climate change, we identify a significant lack of study on the interactive impact of additional abiotic stressors on water-plant-herbivore interactions. This review summarizes critical knowledge gaps and informs possible future research directions in water-plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jessica Kansman
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | | | - Matthias Erb
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - Gary W Felton
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Aleosfoor M, Zahediannezhad M, Minaei K, Fekrat L, Razi H. Effects of drought stress and plant cultivar type on demographic characteristics of the rose-grain aphid, Metopolophium dirhodum (Hemiptera: Aphididae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:196-211. [PMID: 36258274 DOI: 10.1017/s0007485322000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drought is a substantial threat to cereal production under global climatic change scenarios, albeit its aftermath on arthropod pests is yet contentious. To address this issue, demographic characteristics of Metopolophium dirhodum (Walker, 1849) (Hemiptera: Aphididae) were studied on one drought-susceptible wheat cultivar and one drought-tolerant wheat cultivar under different water treatments. Some physiological and biochemical features of wheat cultivars including leaf soluble sugar and proline contents and antioxidant enzymes activities were also investigated. Significant differences occurred in the developmental period, survival, and fecundity of M. dirhodum between wheat cultivars under various water treatments. The impact of intermediate and severe water stress on M. dirhodum was neutral and negative for the tolerant cultivar and negative for the water-susceptible cultivar, respectively. Under severe water stress, on both wheat cultivars, the aphids had low net reproductive rates and finite and intrinsic rates of increase in comparison with those reared on unstressed plants. In total, drought resulted in lower growth of population and reduced survival of aphids. Hence, in the context of projected climatic changes, acute water deficiency could probably result in reducing the abundance and menace of outburst of M. dirhodum. However, it should be noted that the potential likelihood of M. dirhodum eruptions can be drastically affected by the degree of drought intensity and host plant cultivar.
Collapse
Affiliation(s)
- Maryam Aleosfoor
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Maryam Zahediannezhad
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Kambiz Minaei
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Lida Fekrat
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hooman Razi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Yun-Ru Chen, Li DW, Wang HP, Lin SS, Yang EC. The impact of thigmotaxis deprivation on the development of the German cockroach (Blattella germanica). iScience 2022; 25:104802. [PMID: 35992075 PMCID: PMC9385682 DOI: 10.1016/j.isci.2022.104802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
Thigmotaxis is required in small animals. In this study, we examined how the shelter angle affects the development of German cockroaches, Blattella germanica. Groups and individual cockroaches showed a strong preference for shelters with an angle of ≤40° after 15 min or 24 h in shelter-selection trials. For cockroaches that developed in 90/180-degree shelters, survival and fecundity were low, and the nymphal stage lasted longer. Post-molting transcriptomes of second- and sixth-instar nymphs were analyzed at 12 h and 2 days post-molting. Upregulation was observed in genes related to ATP metabolism and cellular amide metabolism. Chitin-based cuticle development and postembryonic development-related genes were downregulated. The stress responses of cockroaches that developed in shelters with angles of 90° were similar to those of gregarious cockroaches experiencing social isolation. For German cockroaches, environmental tactile stimuli are crucial to development and homeostasis. German cockroaches tended to prefer shelters with an angle of ≤40 Both fecundity and survival are low in 90°/180° developed cockroaches Genes for cuticle development were down-regulated in 90°/180° developed cockroaches German cockroaches require a shelter with an angle of ≤40° for development
Collapse
|
6
|
Yang Y, Li X, Liu D, Pei X, Khoso AG. Rapid Changes in Composition and Contents of Cuticular Hydrocarbons in Sitobion avenae (Hemiptera: Aphididae) Clones Adapting to Desiccation Stress. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:508-518. [PMID: 35022723 DOI: 10.1093/jee/toab240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 06/14/2023]
Abstract
Cuticular hydrocarbons (CHCs) are diverse in insects, and include variable classes of cuticular lipids, contributing to waterproofing for insects under desiccation environments. However, this waterproofing function of CHCs is still not well characterized in aphids. In this study, we compared CHC profiles for desiccation-resistant and nonresistant genotypes of the grain aphid, Sitobion avenae (Fabricius), in responses to desiccation. Our result showed that a total of 27 CHCs were detected in S. avenae, and linear alkanes (e.g., n-C29) were found to be the predominant components. Long-chain monomethyl alkanes were found to associate closely with water loss rates in S. avenae in most cases. Resistant genotypes of both wing morphs had higher contents of short-chain n-alkanes under control than nonresistant genotypes, showing the importance of short-chain n-alkanes in constitutive desiccation resistance. Among these, n-C25 might provide a CHC signature to distinguish between desiccation-resistant and nonresistant individuals. Compared with linear alkanes, methyl-branched CHCs appeared to display higher plasticity in rapid responses to desiccation, especially for 2-MeC26, implying that methyl-branched CHCs could be more sensitive to desiccation, and play more important roles in induced desiccation-resistance. Thus, both constitutive and induced CHCs (linear or methyl-branched) can contribute to adaptive responses of S. avenae populations under desiccation environments. Our results provide substantial evidence for adaptive changes of desiccation resistance and associated CHCs in S. avenae, and have significant implications for aphid evolution and management in the context of global climate change.
Collapse
Affiliation(s)
- Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaosai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Abdul Ghaffar Khoso
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
7
|
Lin YY, Liu WC, Hsu YT, Hsu CH, Hu CC, Saska P, Skuhrovec J, Tuan SJ. Direct and Knock-on Effects of Water Stress on the Nutrient Contents of Triticum aestivum (Poales: Poaceae) and Population Growth of Rhopalosiphum padi (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1496-1508. [PMID: 33885757 DOI: 10.1093/jee/toab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 06/12/2023]
Abstract
To ascertain the direct effects of water stress upon wheat plants (Triticum aestivum L.) and how these effects, in turn, influence the population growth of the bird cherry-oat aphid (Rhopalosiphum padi L.), we conducted a physiological analysis of wheat seedlings grown under three different watering regimes and subsequently determined the population parameters of the aphid using the age-stage, two-sex life table. A significantly higher content of free amino acids and soluble sugars were observed in wheat seedlings exposed to drought stress compared to seedlings that were well-watered and those that were grown under waterlogged conditions. Extended phloem salivation and stylet penetration with shorter duration of sustained ingestion from phloem was observed in an electrical penetration graph (EPG) of R. padi on drought-stressed wheat seedlings. This suggested that the aphid's feeding activity, as well as nutrient intake, were impeded. The significantly higher percentage of essential amino acids found in wheat seedlings grown under waterlogged conditions promoted significantly higher fecundity and intrinsic rate of increase in R. padi populations compared to aphids fed on drought-treated or well-watered wheat seedlings. Our findings suggest that wheat seedling responses to water stress involve changes in sap composition that are responsible for altering the aphids' nutrient intake and consequently affect their population growth. From a grower's perspective, extending wheat cultivation in a rice-wheat rotation paddy field during the winter season may not be economically profitable if the fields are chronically waterlogged, since this may potentially lead to a higher infestation of cereal aphids.
Collapse
Affiliation(s)
- Ya-Ying Lin
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Wei-Cheng Liu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Yi-Ting Hsu
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ching-Hsin Hsu
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Chi-Chieh Hu
- Kaohsiung District Agricultural Research and Extension Station, Pingtung, Taiwan, Republic of China
| | - Pavel Saska
- Crop Research Institute, Group Functional Diversity of Invertebrates and Plants in Agro-Ecosystems, Drnovská, Prague 6 - Ruzyně, Czech Republic
| | - Jiří Skuhrovec
- Crop Research Institute, Group Functional Diversity of Invertebrates and Plants in Agro-Ecosystems, Drnovská, Prague 6 - Ruzyně, Czech Republic
| | - Shu-Jen Tuan
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
8
|
Yang Y, Liu D, Liu X, Wang B, Shi X. Divergence of Desiccation-Related Traits in Sitobion avenae from Northwestern China. INSECTS 2020; 11:insects11090626. [PMID: 32932880 PMCID: PMC7565472 DOI: 10.3390/insects11090626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The impact of drought on insects has become increasingly evident in the context of global climate change, but the physiological mechanisms of aphids' responses to desiccating environments are still not well understood. We sampled the wheat aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) from arid areas of northwestern China. Both desiccation-resistant and -nonresistant genotypes were identified, providing direct evidence of genetic divergence in desiccation resistance of S. avenae. Resistant genotypes of wingless S. avenae showed longer survival time and LT50 under the desiccation stress (i.e., 10% relative humidity) than nonresistant genotypes, and wingless individuals tended to have higher desiccation resistance than winged ones. Both absolute and relative water contents did not differ between the two kinds of genotypes. Resistant genotypes had lower water loss rates than nonresistant genotypes for both winged and wingless individuals, suggesting that modulation of water loss rates could be the primary strategy in resistance of this aphid against desiccation stress. Contents of cuticular hydrocarbons (CHC) (especially methyl-branched alkanes) showed significant increase for both resistant and nonresistant genotypes after exposure to the desiccation stress for 24 h. Under desiccation stress, survival time was positively correlated with contents of methyl-branched alkanes for resistant genotypes. Thus, the content of methyl-branched alkanes and their high plasticity could be closely linked to water loss rate and desiccation resistance in S. avenae. Our results provide insights into fundamental aspects and underlying mechanisms of desiccation resistance in aphids, and have significant implications for the evolution of aphid populations in the context of global warming.
Collapse
Affiliation(s)
- Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Biyao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Wang D, Liu D, Zhai Y, Zhang R, Shi X. Clonal Diversity and Genetic Differentiation of Sitobion avenae (Hemiptera: Aphididae) From Wheat and Barley in China. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1217-1226. [PMID: 30690533 DOI: 10.1093/jee/toy426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 06/09/2023]
Abstract
The English grain aphid, Sitobion avenae (Fabricius), is a cosmopolitan insect pest on cereals. Many studies on life-history traits indicate that S. avenae clones from different areas have diverged on various host plants. However, direct genetic evidence for this phenomenon is rare. Thus, S. avenae clones were collected from barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) in four provinces (i.e., Hubei, Henan, Jiangsu, and Zhejiang) of China, and characterized using six microsatellite markers. In total, 92 multilocus genotypes were found from 302 individuals of S. avenae. Population Jiangsu was found to have relatively high levels of genotypic diversity among the four geographical populations. Substantial long-distance migration of S. avenae was found from Zhejiang to the other three provinces. Thus, relatively low genetic differentiation was found between these geographic populations. Barley clones of S. avenae showed higher gene diversity compared with wheat clones. The gene flow from barley to wheat clones appeared to be more likely than that in the reverse direction. Diversity indices and structure for S. avenae clones suggested highest level of genetic divergence between barley and wheat clones in Jiangsu among all sampling locations. Besides Jiangsu, pairwise FST values indicated moderate levels of genetic divergence between barley and wheat clones in Zhejiang. Thus, compared with geographical factors, plant factors could be relatively more important in promoting genetic differentiation in S. avenae. Our results provide insights into genetic differentiation of S. avenae on different plants, as well as a basis for exploring the molecular mechanism for its differentiation on plants and biotype development.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingting Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rongfang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|