1
|
Gonzalez M, Clayton S, Wauson E, Christian D, Tran QK. Promotion of nitric oxide production: mechanisms, strategies, and possibilities. Front Physiol 2025; 16:1545044. [PMID: 39917079 PMCID: PMC11799299 DOI: 10.3389/fphys.2025.1545044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The discovery of nitric oxide (NO) and the role of endothelial cells (ECs) in its production has revolutionized medicine. NO can be produced by isoforms of NO synthases (NOS), including the neuronal (nNOS), inducible (iNOS), and endothelial isoforms (eNOS), and via the non-classical nitrate-nitrite-NO pathway. In particular, endothelium-derived NO, produced by eNOS, is essential for cardiovascular health. Endothelium-derived NO activates soluble guanylate cyclase (sGC) in vascular smooth muscle cells (VSMCs), elevating cyclic GMP (cGMP), causing vasodilation. Over the past four decades, the importance of this pathway in cardiovascular health has fueled the search for strategies to enhance NO bioavailability and/or preserve the outcomes of NO's actions. Currently approved approaches operate in three directions: 1) providing exogenous NO, 2) promoting sGC activity, and 3) preventing degradation of cGMP by inhibiting phosphodiesterase 5 activity. Despite clear benefits, these approaches face challenges such as the development of nitrate tolerance and endothelial dysfunction. This highlights the need for sustainable options that promote endogenous NO production. This review will focus on strategies to promote endogenous NO production. A detailed review of the mechanisms regulating eNOS activity will be first provided, followed by a review of strategies to promote endogenous NO production based on the levels of available preclinical and clinical evidence, and perspectives on future possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, West Des Moines, IA, United States
| |
Collapse
|
2
|
Storz MA, Huber R, Hannibal L. Impact of vitamin B12 supplement intake cessation on vitamin B12 status in a healthy vegan: A close interval monitoring case study. Nutrition 2024; 125:112498. [PMID: 38833779 DOI: 10.1016/j.nut.2024.112498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/05/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Healthy plant-based diets, such as the lacto-ovo-vegetarian and the vegan diet, offer numerous benefits to human health. Poorly designed plant-based diets, however, bear the risk for vitamin- and micronutrient deficiencies. Vitamin B12 (B12, cobalamin) is a nutrient of particular concern in both diets, and should be readily supplemented on a continuous basis to ensure adequate B12 levels and to prevent deficiencies. CASE REPORT This case reports describes the history of a healthy man in his mid-30s who adopted a vegan diet approximately 10 y ago. Well informed about the risks of vitamin B12 deficiency on a plant-based diet, he regularly supplemented methylcobalamin for years (single oral dose: 500 µg, 3-4 times a week) in order to maintain an adequate vitamin B12 status. In late 2023, however, he decided to cease B12 supplementation for undisclosed reasons. Subsequent to this decision, we closely monitored his B12 status and longitudinally measured serum B12, homocysteine, and holotranscobalamin (holo-TC). Total serum folate was also determined as it is a modifier of homocysteine concentration. A gradual decrease in holo-TC and vitamin B12 levels was observed after 4 weeks and supplements had to be re-introduced after 16 weeks. Homocysteine increased concomitantly up to 18.2 μmol/L after 20 weeks. CONCLUSIONS While a short-term B12 supplement intake cessation might be well tolerated by vegans with an adequate B12 status, an interruption of more than 8 weeks could signify B12 loss approaching suboptimal status. This case report reiterates the need for continuous B12 supplementation in persons following an unfortified plant-based diet.
Collapse
Affiliation(s)
- Maximilian Andreas Storz
- Department of Internal Medicine II, Centre for Complementary Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.
| | - Roman Huber
- Department of Internal Medicine II, Centre for Complementary Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Voloshyna L, Smiyan S, Voloshyn O, Buzdugan I, Bukach O, Voloshynovych N, Doholich O. Peculiarities of clinical signs, course and treatment of musculoskeletal system lesions in post-COVID syndrome. Reumatologia 2023; 61:339-344. [PMID: 37970119 PMCID: PMC10634412 DOI: 10.5114/reum/172575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/19/2023] [Indexed: 11/17/2023] Open
Abstract
Introduction Post-COVID syndrome (PCS) is a frequent phenomenon of patients who have suffered from an acute attack of COVID-19 infection, and it is characterized by a wide range of symptoms from different organs and systems including the musculoskeletal system (MSS). However, peculiarities of MSS lesions have not been sufficiently studied to date, in particular, in the aspect of the therapeutic process. We aimed to investigate peculiarities of MSS lesions in patients with PCS. Material and methods Observations were carried out in 142 patients with PCS and MSS lesions. The age of patients was 36-67 years. Up-to-date methods of disease verification were used. An acute period of COVID-19 in all the patients was of moderate severity without oxygen support. Results Musculoskeletal system lesions in patients with PCS were found to appear 1-4 weeks after the experienced acute period of COVID-19 infection. Against the background of significant arthralgia (100%) in 93 (65.5%) patients manifestations of acute arthritis were detected, the frequency of which increased with age. Musculoskeletal system lesions were found against the background of dominating PCS manifestations from the cardiovascular and digestive systems. Deterioration of the course and results of treatment of diseases caused by an age-related polymorbid background was determined. Certain difficulties in the treatment of MSS lesions by means of non-steroidal anti-inflammatory drugs and limitation in the use of glucocorticosteroids are caused by severe gastroduodenopathy and arterial hypertension. Long-term, up to 6 months, administration of L-arginine, L-carnitine and quercetin in the rehabilitation complex improved the overall results of treatment of PCS manifestations including arthropathy. Conclusions Musculoskeletal system lesions in patients with PCS are not the main constituent of this syndrome. Difficulties in the treatment of arthropathy are due to the signs of gastroduodenopathy and arterial hypertension. Additional administration of L-arginine, L-carnitine and quercetin is reasonable.
Collapse
Affiliation(s)
- Larysa Voloshyna
- Bucovinian State Medical University, State Medical Institute, Chernivtsi, Ukraine
| | - Svitlana Smiyan
- Danylo Halytsky Lviv National Medical University, I. Horbachevsky Ternopil National Medical University, National Scientific Center “MD Strazhesko Institute of Cardiology”, Ukraine
| | - Oleksandr Voloshyn
- Bucovinian State Medical University, State Medical Institute, Chernivtsi, Ukraine
| | - Inna Buzdugan
- Bucovinian State Medical University, State Medical Institute, Chernivtsi, Ukraine
| | - Olga Bukach
- Bucovinian State Medical University, State Medical Institute, Chernivtsi, Ukraine
| | | | - Oleksandra Doholich
- Bucovinian State Medical University, State Medical Institute, Chernivtsi, Ukraine
| |
Collapse
|
4
|
Poeggeler B, Singh SK, Sambamurti K, Pappolla MA. Nitric Oxide as a Determinant of Human Longevity and Health Span. Int J Mol Sci 2023; 24:14533. [PMID: 37833980 PMCID: PMC10572643 DOI: 10.3390/ijms241914533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The master molecular regulators and mechanisms determining longevity and health span include nitric oxide (NO) and superoxide anion radicals (SOR). L-arginine, the NO synthase (NOS) substrate, can restore a healthy ratio between the dangerous SOR and the protective NO radical to promote healthy aging. Antioxidant supplementation orchestrates protection against oxidative stress and damage-L-arginine and antioxidants such as vitamin C increase NO production and bioavailability. Uncoupling of NO generation with the appearance of SOR can be induced by asymmetric dimethylarginine (ADMA). L-arginine can displace ADMA from the site of NO formation if sufficient amounts of the amino acid are available. Antioxidants such as ascorbic acids can scavenge SOR and increase the bioavailability of NO. The topics of this review are the complex interactions of antioxidant agents with L-arginine, which determine NO bioactivity and protection against age-related degeneration.
Collapse
Affiliation(s)
- Burkhard Poeggeler
- Department of Physiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University Göttingen, Zappenburg 2, D-38524 Sassenburg, Germany
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India;
| | - Kumar Sambamurti
- Department of Neurobiology, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA;
| | - Miguel A. Pappolla
- Department of Neurology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA;
| |
Collapse
|
5
|
Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 2023; 28:21. [PMID: 36890458 PMCID: PMC9996905 DOI: 10.1186/s11658-023-00423-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/10/2023] Open
Abstract
Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, aging, or smoking increase vascular oxidative stress that strongly affects eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide anion (O2-) instead of NO, thus becoming a source of harmful free radicals exacerbating the oxidative stress further. eNOS uncoupling is thought to be one of the major underlying causes of endothelial dysfunction observed in the pathogenesis of vascular diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxidative depletion of the critical eNOS cofactor BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S-glutathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncoupling by improving cofactor availability, restoration of L-Arg/ADMA ratio, or modulation of eNOS S-glutathionylation are briefly outlined.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Lawrence W Dobrucki
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland. .,BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdansk, Poland.
| |
Collapse
|
6
|
Lu XT, Wang YN, Mo QW, Huang BX, Wang YF, Huang ZH, Luo Y, Maierhaba W, He TT, Li SY, Huang RZ, Yang MT, Liu XZ, Liu ZY, Chen S, Fang AP, Zhang XG, Zhu HL. Effects of low-dose B vitamins plus betaine supplementation on lowering homocysteine concentrations among Chinese adults with hyperhomocysteinemia: a randomized, double-blind, controlled preliminary clinical trial. Eur J Nutr 2023; 62:1599-1610. [PMID: 36717385 PMCID: PMC9886420 DOI: 10.1007/s00394-023-03087-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
PURPOSE To test the hypothesis that daily supplementation with low-dose B vitamins plus betaine could significantly reduce plasma homocysteine concentrations in Chinese adults with hyperhomocysteinemia and free from background mandatory folic acid fortification. METHODS One hundred apparently healthy adults aged 18-65 years with hyperhomocysteinemia were recruited in South China from July 2019 to June 2021. They were randomly assigned to either the supplement group (daily supplementation: 400 μg folic acid, 8 mg vitamin B6, 6.4 μg vitamin B12 and 1 g betaine) or the placebo group for 12 weeks. Fasting venous blood was collected at baseline, week 4 and week 12 to determine the concentrations of homocysteine, folate, vitamin B12 and betaine. Generalized estimation equations were used for statistical analysis. RESULTS Statistically significant increments in blood concentrations of folate, vitamin B12 and betaine after the intervention in the supplement group indicated good participant compliance. At baseline, there were no significant differences in plasma homocysteine concentration between the two groups (P = 0.265). After 12-week supplementation, compared with the placebo group, there was a significant reduction in plasma homocysteine concentrations in the supplement group (mean group difference - 3.87; covariate-adjusted P = 0.012; reduction rate 10.1%; covariate-adjusted P < 0.001). In the supplement group, the decreased concentration of plasma homocysteine was associated with increments of blood concentrations of both folate (β = -1.680, P = 0.004) and betaine (β = -1.421, P = 0.020) after 12 weeks of supplementation. CONCLUSIONS Daily supplementation with low-dose B vitamins plus betaine for 12 weeks effectively decreased plasma homocysteine concentrations in Chinese adults with hyperhomocysteinemia. TRIAL REGISTRATION This trial was registered at clinicaltrials.gov as NCT03720249 on October 25, 2018. Website: https://clinicaltrials.gov/ct2/show/NCT03720249 .
Collapse
Affiliation(s)
- Xiao-Ting Lu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yi-Na Wang
- Department of VIP Medical Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Qi-Wan Mo
- Medical Examination Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Bi-Xia Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yu-Fang Wang
- BYHEALTH Institute of Nutrition and Health, No.3 Kehui 3Rd Street, No.99 Kexue Avenue Central, Guangzhou, 510663 Guangdong China
| | - Zi-Hui Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Yan Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Wusiman Maierhaba
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Tong-Tong He
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Shu-Yi Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Rong-Zhu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Meng-Tao Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Xiao-Zhan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Ai-Ping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xu-Guang Zhang
- BYHEALTH Institute of Nutrition and Health, No.3 Kehui 3Rd Street, No.99 Kexue Avenue Central, Guangzhou, 510663 Guangdong China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
7
|
Averta C, Mancuso E, Spiga R, Miceli S, Succurro E, Fiorentino TV, Perticone M, Mannino GC, Thamtarana PJ, Sciacqua A, Sesti G, Andreozzi F. The Functional Polymorphism of DDAH2 rs9267551 Is an Independent Determinant of Arterial Stiffness. Front Cardiovasc Med 2022; 8:811431. [PMID: 35047582 PMCID: PMC8761764 DOI: 10.3389/fcvm.2021.811431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background: The association of circulating asymmetric dimethylarginine (ADMA) levels with cardiovascular risk and arterial stiffness has been reportedly demonstrated, although the causal involvement of ADMA in the pathogenesis of these conditions is still debated. Dimethylaminohydrolase 2 (DDAH2) is the enzyme responsible for ADMA hydrolysis in the vasculature, and carriers of the polymorphism rs9267551 C in the 5′-UTR of DDAH2 have been reported to have higher DDAH2 expression and reduced levels of serum ADMA. Approach and Results: We genotyped rs9267551 in 633 adults of European ancestry and measured their carotid–femoral pulse wave velocity (cfPWV), the gold-standard method to estimate arterial stiffness. cfPWV resulted significantly lower in rs9267551 C allele carriers (Δ = −1.12 m/s, P < 0.01) after correction for age, sex and BMI, and a univariate regression showed that the presence of rs9267551 C variant was negatively associated with cfPWV (β = −0.110, P < 0.01). In a multivariable regression model, subjects carrying the rs9267551 C allele manifested significantly lower cfPWV than GG carriers (β = −0.098, P = 0.01) independently from several potential confounders. We measured circulating ADMA levels in a subset of 344 subjects. A mediation analysis revealed that the effect of DDAH2 rs9267551 genotype on cfPWV was mediated by the variation in ADMA levels. Conclusions: These evidences hint that the presence of rs9267551 C allele may explain, at least in part, a reduction in vessel rigidity as measured by cfPWV, and support the attribution of a causative role to ADMA in the pathogenesis of arterial stiffness.
Collapse
Affiliation(s)
- Carolina Averta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: Gaia Chiara Mannino
| | - Prapaporn Jungtrakoon Thamtarana
- Siriraj Center of Research Excellence for Diabetes and Obesity, Division of Molecular Medicine, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
8
|
Onalo R, Cilliers A, Cooper P. Impact of oral L-arginine supplementation on blood pressure dynamics in children with severe sickle cell vaso-occlusive crisis. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2021; 11:136-147. [PMID: 33815929 PMCID: PMC8012291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Sickle cell anaemia (SCA) patients generally have lower blood pressures compared to those with the AA haemoglobin genotype. However, during vaso-occlusive crises (SCA-VOC), blood pressures (BP) may elevate transiently to levels beyond the 95th percentile. The risk of stroke or even death increases with increasing systolic BP in SCA. Therefore, interventions targeted at BP reduction may be essential during severe vaso-occlusive episodes. Reduction in BP was achieved with arginine therapy in a meta-analysis of randomized controlled trials (RCT) in non-sickle cell adults. The impact of oral arginine (given for pain control) on the BP of children with SCA-VOC has not been documented. METHODS A double-blind RCT of oral L-arginine hydrochloride as adjuvant therapy for pain reduction was conducted in children with SCA-VOC, aged 5-17 years, over a 2-year period. The mean change in BP and the time to achieve BP <90th percentile was added as part of the outcome variables. The anthropometry, pain scores and mercury sphygmomanometry were done following standard procedures. BP percentiles were generated using the Fourth Report guidelines. Differences in the time to normalization of BP in the treatment arms were tested with Kaplan-Meier analysis. RESULTS Sixty-six children (57.6% male) were randomized into L-arginine (35 patients) or placebo (31 patients) arm. The prevalence of hypertension (BP ≥95th percentile) at presentation tended to increase as the pain scores increased, from a prevalence of 50% in patients with a score of 7 to 65% in those with score of 10 (systolic hypertension) and from 44.4% in patients with pain score of 7 to 50% in patients with pain score of 10 (diastolic hypertension). Patients that received arginine recorded a 12.8±3.2 mmHg decline in mean systolic BP compared to the placebo group, where a mean difference of 7.6±1.5 mmHg was observed, P<0.001. Similarly, the mean diastolic BP reduced by 13% in the arginine group and 7.5% in the placebo group, P<0.001. Children who received arginine tended to achieve BP normalization much faster than the placebo group (P=0.112), and no serious adverse events were documented related to the hypertension or arginine administration. CONCLUSIONS High blood pressure (≥95th percentile) is common amongst children with SCA-VOC and are mostly asymptomatic. Administration of oral arginine given for pain control achieves a reduction of the BP at a faster rate in children compared to placebo and it is safe.
Collapse
Affiliation(s)
- Richard Onalo
- Department of Paediatrics, Faculty of Clinical Sciences, University of Abuja, Nigeria and Department of Paediatrics & Child Health, Faculty of Clinical Sciences, University of The WitwatersrandJohannesburg, South Africa
- Department of Paediatrics & Child Health, University of The WitwatersrandJohannesburg, South Africa
| | - Antoinette Cilliers
- Division of Paediatric Cardiology, Department of Paediatrics, Chris Hani Baragwanath Academic Hospital, University of The WitwatersrandJohannesburg, South Africa
| | - Peter Cooper
- Department of Paediatrics & Child Health, University of The WitwatersrandJohannesburg, South Africa
| |
Collapse
|
9
|
Zhao YX, Tong L, Zhang GM, Zhao XH, Sa YP, Liu Y, Lu DX, Ga Q, Wu P. L-Arginine Supplementation Improves Vascular Endothelial Dysfunction Induced by High-Fat Diet in Rats Exposed to Hypoxia. Wilderness Environ Med 2020; 31:400-406. [PMID: 33132032 DOI: 10.1016/j.wem.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Our previous study showed that high-fat diet inhibited the increase in nitric oxide and endothelial nitric oxide synthase expression in the aortic endothelium of rats exposed to hypoxia, and hypoxia plus a high-fat diet led to earlier and more severe vascular endothelial dysfunction (VED) than hypoxia alone. The purpose of the present study was to investigate the effects of L-arginine on high-fat diet-induced VED of rats in hypoxia. METHODS Forty male Sprague-Dawley rats were randomly divided into 4 groups and treated with hypoxia (H group), hypoxia plus high-fat diet (H+HFD group), hypoxia plus L-arginine (H+L-Arg group), and hypoxia plus high-fat diet and L-arginine (H+HFD+L-Arg group) for 1 wk. Hypoxia was simulated in a hypobaric chamber with an altitude of 5000 m. Aortic morphology and endothelium-dependent vasorelaxation were used to assess VED. RESULTS High-fat diet impaired vascular remodeling and reduced endothelium-dependent vasodilator response to acetylcholine in rats exposed to hypoxia, secondary to dysregulation of the nitric oxide pathway. L-arginine supplementation significantly increased plasma nitrates and nitrites and endothelial nitric oxide synthase mRNA levels and improved ultrastructural changes in aortic endothelium and endothelium-dependent vasodilator response. CONCLUSIONS L-arginine prevents aortic ultrastructural changes and reverses VED induced by high-fat diet in rats exposed to hypoxia, which may have implications for VED induced by high-fat diet in high altitude dwellers.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- Department of Traditional Chinese Medicine, Qinghai University Medical College, Qinghai, China
| | - Li Tong
- Department of Traditional Chinese Medicine, Qinghai University Medical College, Qinghai, China
| | - Guang-Mei Zhang
- Department of Traditional Chinese Medicine, Qinghai University Medical College, Qinghai, China
| | - Xie-Hui Zhao
- Department of Traditional Chinese Medicine, Qinghai University Medical College, Qinghai, China
| | - Yu-Ping Sa
- Department of Traditional Chinese Medicine, Qinghai University Medical College, Qinghai, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, Qinghai University Medical College, Qinghai, China
| | - Dian-Xiang Lu
- Department of Traditional Chinese Medicine, Qinghai University Medical College, Qinghai, China
| | - Qin Ga
- Research Center for High Altitude Medical Sciences, Qinghai University Medical College, Qinghai, China
| | - Ping Wu
- Department of Traditional Chinese Medicine, Qinghai University Medical College, Qinghai, China.
| |
Collapse
|
10
|
Robertson NU, Schoonees A, Brand A, Visser J. Pine bark (Pinus spp.) extract for treating chronic disorders. Cochrane Database Syst Rev 2020; 9:CD008294. [PMID: 32990945 PMCID: PMC8094515 DOI: 10.1002/14651858.cd008294.pub5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pine bark (Pinus spp.) extract is rich in bioflavonoids, predominantly proanthocyanidins, which are antioxidants. Commercially-available extract supplements are marketed for preventing or treating various chronic conditions associated with oxidative stress. This is an update of a previously published review. OBJECTIVES To assess the efficacy and safety of pine bark extract supplements for treating chronic disorders. SEARCH METHODS We searched three databases and three trial registries; latest search: 30 September 2019. We contacted the manufacturers of pine bark extracts to identify additional studies and hand-searched bibliographies of included studies. SELECTION CRITERIA Randomised controlled trials (RCTs) evaluating pine bark extract supplements in adults or children with any chronic disorder. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial eligibility, extracted data and assessed risk of bias. Where possible, we pooled data in meta-analyses. We used GRADE to evaluate the certainty of evidence. Primary outcomes were participant- and investigator-reported clinical outcomes directly related to each disorder and all-cause mortality. We also assessed adverse events and biomarkers of oxidative stress. MAIN RESULTS This review included 27 RCTs (22 parallel and five cross-over designs; 1641 participants) evaluating pine bark extract supplements across 10 chronic disorders: asthma (two studies; 86 participants); attention deficit hyperactivity disorder (ADHD) (one study; 61 participants), cardiovascular disease (CVD) and risk factors (seven studies; 338 participants), chronic venous insufficiency (CVI) (two studies; 60 participants), diabetes mellitus (DM) (six studies; 339 participants), erectile dysfunction (three studies; 277 participants), female sexual dysfunction (one study; 83 participants), osteoarthritis (three studies; 293 participants), osteopenia (one study; 44 participants) and traumatic brain injury (one study; 60 participants). Two studies exclusively recruited children; the remainder recruited adults. Trials lasted between four weeks and six months. Placebo was the control in 24 studies. Overall risk of bias was low for four, high for one and unclear for 22 studies. In adults with asthma, we do not know whether pine bark extract increases change in forced expiratory volume in one second (FEV1) % predicted/forced vital capacity (FVC) (mean difference (MD) 7.70, 95% confidence interval (CI) 3.19 to 12.21; one study; 44 participants; very low-certainty evidence), increases change in FEV1 % predicted (MD 7.00, 95% CI 0.10 to 13.90; one study; 44 participants; very low-certainty evidence), improves asthma symptoms (risk ratio (RR) 1.85, 95% CI 1.32 to 2.58; one study; 60 participants; very low-certainty evidence) or increases the number of people able to stop using albuterol inhalers (RR 6.00, 95% CI 1.97 to 18.25; one study; 60 participants; very low-certainty evidence). In children with ADHD, we do not know whether pine bark extract decreases inattention and hyperactivity assessed by parent- and teacher-rating scales (narrative synthesis; one study; 57 participants; very low-certainty evidence) or increases the change in visual-motoric coordination and concentration (MD 3.37, 95% CI 2.41 to 4.33; one study; 57 participants; very low-certainty evidence). In participants with CVD, we do not know whether pine bark extract decreases diastolic blood pressure (MD -3.00 mm Hg, 95% CI -4.51 to -1.49; one study; 61 participants; very low-certainty evidence); increases HDL cholesterol (MD 0.05 mmol/L, 95% CI -0.01 to 0.11; one study; 61 participants; very low-certainty evidence) or decreases LDL cholesterol (MD -0.03 mmol/L, 95% CI -0.05 to 0.00; one study; 61 participants; very low-certainty evidence). In participants with CVI, we do not know whether pine bark extract decreases pain scores (MD -0.59, 95% CI -1.02 to -0.16; one study; 40 participants; very low-certainty evidence), increases the disappearance of pain (RR 25.0, 95% CI 1.58 to 395.48; one study; 40 participants; very low-certainty evidence) or increases physician-judged treatment efficacy (RR 4.75, 95% CI 1.97 to 11.48; 1 study; 40 participants; very low-certainty evidence). In type 2 DM, we do not know whether pine bark extract leads to a greater reduction in fasting blood glucose (MD 1.0 mmol/L, 95% CI 0.91 to 1.09; one study; 48 participants;very low-certainty evidence) or decreases HbA1c (MD -0.90 %, 95% CI -1.78 to -0.02; 1 study; 48 participants; very low-certainty evidence). In a mixed group of participants with type 1 and type 2 DM we do not know whether pine bark extract decreases HbA1c (MD -0.20 %, 95% CI -1.83 to 1.43; one study; 67 participants; very low-certainty evidence). In men with erectile dysfunction, we do not know whether pine bark extract supplements increase International Index of Erectile Function-5 scores (not pooled; two studies; 147 participants; very low-certainty evidence). In women with sexual dysfunction, we do not know whether pine bark extract increases satisfaction as measured by the Female Sexual Function Index (MD 5.10, 95% CI 3.49 to 6.71; one study; 75 participants; very low-certainty evidence) or leads to a greater reduction of pain scores (MD 4.30, 95% CI 2.69 to 5.91; one study; 75 participants; very low-certainty evidence). In adults with osteoarthritis of the knee, we do not know whether pine bark extract decreases composite Western Ontario and McMaster Universities Osteoarthritis Index scores (MD -730.00, 95% CI -1011.95 to -448.05; one study; 37 participants; very low-certainty evidence) or the use of non-steroidal anti-inflammatory medication (MD -18.30, 95% CI -25.14 to -11.46; one study; 35 participants; very low-certainty evidence). We do not know whether pine bark extract increases bone alkaline phosphatase in post-menopausal women with osteopenia (MD 1.16 ug/L, 95% CI -2.37 to 4.69; one study; 40 participants; very low-certainty evidence). In individuals with traumatic brain injury, we do not know whether pine bark extract decreases cognitive failure scores (MD -2.24, 95% CI -11.17 to 6.69; one study; 56 participants; very low-certainty evidence) or post-concussion symptoms (MD -0.76, 95% CI -5.39 to 3.87; one study; 56 participants; very low-certainty evidence). For most comparisons, studies did not report outcomes of hospital admissions or serious adverse events. AUTHORS' CONCLUSIONS Small sample sizes, limited numbers of RCTs per condition, variation in outcome measures, and poor reporting of the included RCTs mean no definitive conclusions regarding the efficacy or safety of pine bark extract supplements are possible.
Collapse
Affiliation(s)
- Nina U Robertson
- Division of Human Nutrition, Stellenbosch University, Cape Town, South Africa
| | - Anel Schoonees
- Centre for Evidence-based Health Care, Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Amanda Brand
- Centre for Evidence-based Health Care, Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Janicke Visser
- Division of Human Nutrition, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
11
|
Sepandi M, Abbaszadeh S, qobady S, Taghdir M. Effect of L-Arginine supplementation on lipid profiles and inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2019; 148:104407. [DOI: 10.1016/j.phrs.2019.104407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 01/11/2023]
|
12
|
The Effects of Oral l-Arginine and l-Citrulline Supplementation on Blood Pressure. Nutrients 2019; 11:nu11071679. [PMID: 31336573 PMCID: PMC6683098 DOI: 10.3390/nu11071679] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/14/2019] [Accepted: 07/19/2019] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is a well-known vasodilator produced by the vascular endothelium via the enzyme endothelial nitric oxide synthase (eNOS). The inadequate production of NO has been linked to elevated blood pressure (BP) in both human and animal studies, and might be due to substrate inaccessibility. This review aimed to investigate whether oral administration of the amino acids l-arginine (Arg) and l-citrulline (Cit), which are potential substrates for eNOS, could effectively reduce BP by increasing NO production. Both Arg and Cit are effective at increasing plasma Arg. Cit is approximately twice as potent, which is most likely due to a lower first-pass metabolism. The current data suggest that oral Arg supplementation can lower BP by 5.39/2.66 mmHg, which is an effect that is comparable with diet changes and exercise implementation. The antihypertensive properties of Cit are more questionable, but are likely in the range of 4.1/2.08 to 7.54/3.77 mmHg. The exact mechanism by which Cit and Arg exert their effect is not fully understood, as normal plasma Arg concentration greatly exceeds the Michaelis constant (Km) of eNOS. Thus, elevated plasma Arg concentrations would not be expected to increase endogenous NO production significantly, but have nonetheless been observed in other studies. This phenomenon is known as the "l-arginine paradox".
Collapse
|
13
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Use of Nutraceuticals in Angiogenesis-Dependent Disorders. Molecules 2018; 23:molecules23102676. [PMID: 30340320 PMCID: PMC6222874 DOI: 10.3390/molecules23102676] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
The term of angiogenesis refers to the growth of new vessels from pre-existing capillaries. The phenomenon is necessary for physiological growth, repair and functioning of our organs. When occurring in a not regulated manner, it concurs to pathological conditions as tumors, eye diseases, chronic degenerative disorders. On the contrary insufficient neovascularization or endothelial disfunction accompanies ischemic and metabolic disorders. In both the cases an inflammatory and oxidative condition exists in supporting angiogenesis deregulation and endothelial dysfunction. The use of nutraceuticals with antioxidant and anti-inflammatory activities can be a therapeutic option to maintain an adequate vascularization and endothelial cell proper functioning or to blunt aberrant angiogenesis. A revision of the updated literature reports on nutraceuticals to guide endothelial cell wellness and to restore physiological tissue vascularization is the objective of this paper. The critical aspects as well as lacking data for human use will be explored from a pharmacological perspective.
Collapse
|
15
|
Jeremic J, Nikolic Turnic T, Zivkovic V, Jeremic N, Milosavljevic I, Srejovic I, Obrenovic R, Jancic S, Rakocevic M, Matic S, Djuric D, Jakovljevic V. Vitamin B complex mitigates cardiac dysfunction in high-methionine diet-induced hyperhomocysteinemia. Clin Exp Pharmacol Physiol 2018; 45:683-693. [PMID: 29509296 DOI: 10.1111/1440-1681.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
Abstract
This research is designed to test the hypothesis that elevated homocysteine (Hcy) levels in vivo, caused by a deficit in vitamin B complex, promote changes in cardiac function and redox status that lead to heart failure. In order to conduct the study, we used adult male Wistar albino rats (n = 30; 4 weeks old; 100 ± 15 g body weight). Hyperhomocysteinaemia (HHcy) in these animals was achieved by dietary manipulation. For 4 weeks, the animals were fed with a standard rodent chow (control, CF), a diet enriched in methionine with no deficiency in B vitamins (i.e., folic acid, B6 and B12) (HMNV) or a diet enriched in methionine and deficient in B vitamins (HMLV). After 28 days of dietary manipulation, all animals were killed. The rat hearts were isolated and retrogradely perfused according to the Langendorff technique at a gradually increasing perfusion pressure. We found a negative correlation between elevated serum Hcy and total body and heart weight. The maximum rate of left ventricular pressure development was significantly increased in the HMNV group compared with in the other groups. Systolic left ventricular pressure was significantly changed in all groups. HHcy induces remodelling of the cardiac tissues, as moderate HHcy is associated with more prominent interstitial and perivascular fibrosis. Our results suggest that a high methionine diet without vitamin B complex causes profound negative effects associated with HHcy.
Collapse
Affiliation(s)
- Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tamara Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Isidora Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Radmila Obrenovic
- Institute for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Snezana Jancic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milena Rakocevic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Stevan Matic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragan Djuric
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Moscow, Russian Federation
| |
Collapse
|
16
|
Zhang JW, Pang B, Zhao Q, Chang Y, Wang YL, Jiang YD, Jing L. Hyperhomocysteinemia induces injury in olfactory bulb neurons by downregulating Hes1 and Hes5 expression. Neural Regen Res 2018; 13:272-279. [PMID: 29557377 PMCID: PMC5879899 DOI: 10.4103/1673-5374.220779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hyperhomocysteinemia has been shown to be associated with neurodegenerative diseases; however, lesions or histological changes and mechanisms underlying homocysteine-induced injury in olfactory bulb neurons remain unclear. In this study, hyperhomocysteinemia was induced in apolipoprotein E-deficient mice with 1.7% methionine. Pathological changes in the olfactory bulb were observed through hematoxylin-eosin and Pischingert staining. Cell apoptosis in the olfactory bulb was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. Transmission electron microscopy revealed an abnormal ultrastructure of neurons. Furthermore, immunoreactivity and expression of the hairy enhancer of the split 1 (Hes1) and Hes5 were measured using immunohistochemistry, immunofluorescence, and western blot assay. Our results revealed no significant structural abnormality in the olfactory bulb of hyperhomocysteinemic mice. However, the number of TUNEL-positive cells increased in the olfactory bulb, lipofuscin and vacuolization were visible in mitochondria, and the expression of Hes1 and Hes5 decreased. These findings confirm that hyperhomocysteinemia induces injury in olfactory bulb neurons by downregulating Hes1 and Hes5 expression.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region; Institute of Immunopathology, Medical School, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bo Pang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qi Zhao
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yue Chang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yi-Li Wang
- Institute of Immunopathology, Medical School, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yi-Deng Jiang
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li Jing
- School of Basic Medical Science, Ningxia Key Laboratory of Cerebrocranial Diseases-Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
17
|
Knezl V, Sotníková R, Brnoliaková Z, Stankovičová T, Bauer V, Bezek Š. Monotherapy of experimental metabolic syndrome: II. Study of cardiovascular effects. Interdiscip Toxicol 2017; 10:86-92. [PMID: 30174531 PMCID: PMC6107648 DOI: 10.1515/intox-2017-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic syndrome belongs to the most important risk factors of cardiovascular diseases. The aim of this study was to investigate changes in cardiovascular system induced by high cholesterol and high fat diet (HCHF) in HTG rats and their influence by a pyridoindole antioxidant - SMe1EC2 (S). The effects of S were compared with those of atorvastatin (A). Male HTG rats were fed HCHF (1% cholesterol + 7.5% lard) for 4 weeks. S and A were administered p.o., 50 mg/kg b.w. Following experimental groups were used: Wistar rats (W), hypertriglyceridemic rats (HTG), HTG rats fed HCHF (CHOL), HTG+S (S-HTG), CHOL+S (S-CHOL), and CHOL+A (A-CHOL). Values of blood pressure (BP) and selected ECG parameters were monitored in conscious animals, functions of the isolated heart and aorta were analyzed ex vivo. At the end of the experiment, systolic (sBP) and diastolic (dBP) blood pressure was increased in HTG and CHOL. S and A decreased BP in all treated groups. Accordingly with BP changes, the aortic endothelial function of CHOL was damaged. Both S and A administration ameliorated the endothelium-dependent relaxation to values of W. PQ and QTc intervals were prolonged in CHOL, while the treatment with S or A improved ECG findings. Prodysrhythmogenic threshold was decreased significantly in CHOL and both treatments returned it to the control values. In conclusion, HCHF increased BP, impaired endothelial relaxation of the aorta and potentiated susceptibility of myocardium to dysrhythmias. The effect of S on the changes induced by HCHF diet was more pronounced than that of A.
Collapse
Affiliation(s)
- Vladimír Knezl
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava, Slovakia
| | - Ružena Sotníková
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliaková
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava, Slovakia
| | - Tatiana Stankovičová
- Department of Pharmacology and Toxicology, Comenius University in Bratislava, Faculty of Pharmacy, Odbojárov 10, 832 32 Bratislava 3, Slovakia
| | - Viktor Bauer
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava, Slovakia
| | - Štefan Bezek
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská 9, 841 04 Bratislava, Slovakia
| |
Collapse
|