1
|
Xie X, Lin M, Xiao G, Liu H, Wang F, Liu D, Ma L, Wang Q, Li Z. Phenolic amides (avenanthramides) in oats - an update review. Bioengineered 2024; 15:2305029. [PMID: 38258524 PMCID: PMC10807472 DOI: 10.1080/21655979.2024.2305029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Oats (Avena sativa L.) are one of the worldwide cereal crops. Avenanthramides (AVNs), the unique plant alkaloids of secondary metabolites found in oats, are nutritionally important for humans and animals. Numerous bioactivities of AVNs have been investigated and demonstrated in vivo and in vitro. Despite all these, researchers from all over the world are taking efforts to learn more knowledge about AVNs. In this work, we highlighted the recent updated findings that have increased our understanding of AVNs bioactivity, distribution, and especially the AVNs biosynthesis. Since the limits content of AVNs in oats strictly hinders the demand, understanding the mechanisms underlying AVN biosynthesis is important not only for developing a renewable, sustainable, and environmentally friendly source in both plants and microorganisms but also for designing effective strategies for enhancing their production via induction and metabolic engineering. Future directions for improving AVN production in native producers and heterologous systems for food and feed use are also discussed. This summary will provide a broad view of these specific natural products from oats.
Collapse
Affiliation(s)
- Xi Xie
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Miaoyan Lin
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Feng Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Dongjie Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Elnour AA, Abdurahman NH. Current and potential future biological uses of Saussurea costus (Falc.) Lipsch: A comprehensive review. Heliyon 2024; 10:e37790. [PMID: 39323795 PMCID: PMC11422592 DOI: 10.1016/j.heliyon.2024.e37790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
Background Saussurea costus (S. costus) is a critically endangered medicinal plant that has been extensively studied for its chemical composition, significance, and therapeutic potential as traditional phytomedicine. This comprehensive review aims to provide a thorough understanding of S. costus, including its biological activities, chemical makeup, and potential therapeutic uses in biotechnology. Objectives This study investigated the pharmacological properties of S. costus, including its antimicrobial, antioxidant, and antifungal properties, and its usefulness in treating conditions such as thyroid disorders and liver injury. This study also aimed to assess and improve the techniques used to extract bioactive compounds and to develop effective methods for harvesting these compounds from medicinal plants. Methods This review analyzed the available literature on the phytochemical makeup and bioactivity of S. costus extract using techniques such as molecular docking against SARS-CoV-2 protease, green extraction methods, and phytochemical analysis. Results This review revealed that S. costus possesses various pharmacological properties, including antimicrobial, antiviral, anti-inflammatory, and anticancer activities. It is effective in combating fungal infections, reducing inflammation, treating cancer, and inhibiting viral replication, and has the potential to control Candida species. Moreover, S. costus has been explored for its capacity to synthesize nanoparticles with antimicrobial properties and for its potential in treating thyroid disorders and liver injury. Recommendations Despite promising results, additional research is necessary to fully comprehend the benefits of S. costus and validate its effectiveness in clinical settings. Future research should focus on standardized methodologies and rigorous clinical trials to confirm the safety and effectiveness of S. costus in various medical fields as well as further investigate its biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Ahmed A.M. Elnour
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Malaysia
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), University Malaysia, Pahang, Gambang, Malaysia
| | - Nour Hamid Abdurahman
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Malaysia
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), University Malaysia, Pahang, Gambang, Malaysia
| |
Collapse
|
3
|
Saim MA, Bhuia MS, Eity TA, Chowdhury R, Ahammed NT, Ansari SA, Hossain KN, Luna AA, Munshi MH, Islam MT. Assessment of antiemetic activity of dihydrocoumarin: In vivo and in silico approaches on receptor binding affinity and modulatory effects. J Pharmacol Toxicol Methods 2024; 130:107561. [PMID: 39326519 DOI: 10.1016/j.vascn.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Dihydrocoumarin (DCN) is a natural compound widely used in the flavor industry and has antioxidant and anti-inflammatory properties. However, its potential antiemetic effects on gastrointestinal disturbances remain untested. This study emphasizes assessing the antiemetic properties of the natural aromatic compound DCN using copper sulfate (CuSO4.5H2O)-induced emetic model on chicks, and an in silico approach was also adopted to estimate the possible underlying mechanisms. Two doses (25 and 50 mg/kg b.w.) of DCN and several referral drugs considered positive controls (PCs), including domperidone (6 mg/kg), hyoscine (21 mg/kg), aprepitant (16 mg/kg), diphenhydramine (10 mg/kg), and ondansetron (5 mg/kg), were orally administered to chicks. The vehicle was provided as the control group. Co-treatments of DCN with referral drugs were also provided to chicks to evaluate the modulatory action of the test compound. According to the results, DCN delayed the emetic onset and decreased the frequency of retches in a dose-dependent manner compared to the vehicle group. DCN (50 mg/kg) represented a notable delayed latency period (61.17 ± 4.12 s) and a diminished number of retchings (17.67 ± 1.82 times) compared to the control group. Further, in the co-treatments, DCN increased the latency period and reduced the number of retches, except for domperidone. In the in silico investigation, DCN showed notable binding affinity toward the D2 (-7 kcal/mol), H1 (-7.5 kcal/mol), and M5 (-7 kcal/mol) receptors in the same binding site as the referral ligand. Our research indicates that DCN has mild antiemetic properties by interacting with the D2, H1, and M5 receptors. Therefore, several pre-clinical and clinical studies are necessary to assess the effectiveness and safety profile of this food ingredient.
Collapse
Affiliation(s)
- Md Abu Saim
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| | - Tanzila Akter Eity
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Nowreen Tabassum Ahammed
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Department of Biology, Touro University, New York City, NY, United States
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Kazi Nadim Hossain
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Afroza Akter Luna
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Hanif Munshi
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Department of Textile Engineering, Uttara University, Dhaka, Bangladesh
| | - Muhammad Torequl Islam
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh.
| |
Collapse
|
4
|
Mahmood MA, Abd AH, Kadhim EJ. Assessing the cytotoxicity of phenolic and terpene fractions extracted from Iraqi Prunus arabica against AMJ13 and SK-GT-4 human cancer cell lines. F1000Res 2024; 12:433. [PMID: 39416710 PMCID: PMC11480737 DOI: 10.12688/f1000research.131336.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Background: Breast and esophageal cancer are the most aggressive and prominent causes of death worldwide. In addition, these cancers showed resistance to current chemotherapy regimens with limited success rates and fatal outcomes. Recently many studies reported the significant cytotoxic effects of phenolic and terpene fractions extracted from various Prunus species against different cancer cell lines. As a result, it has a good chance to be tested as a complement or replacement for standard chemotherapies. Methods: The study aimed to evaluate the cytotoxicity of phenolic and terpene fractions extracted from Iraqi Prunus arabica on breast (AMJ13) and esophageal (SK-GT-4) cancer cell lines by using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide). Analysis using the Chou-Talalay method was performed to assess the synergistic effect between the extracted fractions and chemotherapeutic agent (docetaxel). Moreover, high-performance liquid chromatography (HPLC) analysis was conducted for the quantitative determination of different bioactive molecules of both phenolic and terpene fractions in the extract. Results: According to the findings, the treatment modalities significantly decreased cancer cell viability of AMJ13 and SK-GT-4 and had insignificant cytotoxicity on the normal cells (normal human fibroblast cell line) (all less than 50% cytotoxicity). Analysis with Chou-Talalay showed a strong synergism with docetaxel on both cancer cell lines (higher cytotoxicity even in low concentrations) and failed to induce cytotoxicity on the normal cells. Important flavonoid glycosides and terpenoids were detected by HPLC, in particularly, ferulic acid, catechin, chlorogenic acid, β-sitosterol, and campesterol. Conclusions: In conclusion, the extracted fractions selectively inhibited the proliferation of both cancer cell lines and showed minimal cytotoxicity on normal cells. These fractions could be naturally derived drugs for treating breast and esophageal cancers.
Collapse
Affiliation(s)
- Matin Adil Mahmood
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Kadhimiya, Baghdad, Iraq
- Department of Pharmacology, College of Pharmacy, Al-Kitab University, Altun Kopre, Kirkuk, Iraq
| | - Abdulkareem Hameed Abd
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Kadhimiya, Baghdad, Iraq
| | - Enas Jawad Kadhim
- Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
5
|
Masood M, Albayouk T, Saleh N, El-Shazly M, El-Nashar HAS. Carbon nanotubes: a novel innovation as food supplements and biosensing for food safety. Front Nutr 2024; 11:1381179. [PMID: 38803447 PMCID: PMC11128632 DOI: 10.3389/fnut.2024.1381179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Recently, nanotechnology has emerged as an extensively growing field. Several important fabricated products including Carbon nanotubes (CNTs) are of great importance and hold significance in several industrial sectors, mainly food industry. Recent developments have come up with methodologies for the prevention of health complications like lack of adequate nutrition in our diet. This review delves deeper into the details of the food supplementation techniques and how CNTs function in this regard. This review includes the challenges in using CNTs for food applications and their future prospects in the industry. Food shortage has become a global issue and limiting food resources put an additional burden on the farmers for growing crops. Apart from quantity, quality should also be taken into consideration and new ways should be developed for increasing nutritional value of food items. Food supplementation has several complications due to the biologically active compounds and reaction in the in vivo environment, CNTs can play a crucial role in countering this problem through the supplementation of food by various processes including; nanoencapsulation and nanobiofortification thus stimulating crop growth and seed germination rates. CNTs also hold a key position in biosensing and diagnostic application for either the quality control of the food supplements or the detection of contagions like toxins, chemicals, dyes, pesticides, pathogens, additives, and preservatives. Detection such pathogens can help in attaining global food security goal and better production and provision of food resources. The data used in the current review was collected up to date as of March 31, 2024 and contains the best of our knowledge. Data collection was performed from various reliable and authentic literatures comprising PubMed database, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. Research related to commercially available CNTs has been added for the readers seeking additional information on the use of CNTs in various economic sectors.
Collapse
Affiliation(s)
- Maazallah Masood
- Department of Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Tala Albayouk
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
6
|
Bappi MH, Mia MN, Ansari SA, Ansari IA, Prottay AAS, Akbor MS, El-Nashar HAS, El-Shazly M, Mubarak MS, Torequl Islam M. Quercetin increases the antidepressant-like effects of sclareol and antagonizes diazepam in thiopental sodium-induced sleeping mice: A possible GABAergic transmission intervention. Phytother Res 2024; 38:2198-2214. [PMID: 38414297 DOI: 10.1002/ptr.8139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Quercetin is the most common polyphenolic flavonoid present in fruits and vegetables demonstrating versatile health-promoting effects. This study aimed to examine the effects of quercetin (QR) and sclareol (SCL) on the thiopental sodium (TS)-induced sleeping and forced swimming test (FST) mouse models. SCL (1, 5, and 10 mg/kg, p.o.) or QR (50 mg/kg, p.o.) and/or diazepam (DZP) (3 mg/kg, i.p.) were employed. After 30 min of TS induction, individual or combined effects on the animals were checked. In the FST test, the animals were subjected to forced swimming after 30 min of administration of the test and/or controls for 5 min. In this case, immobility time was measured. In silico studies were conducted to evaluate the involvement of GABA receptors. SCL (5 and 10 mg/kg) significantly increased the latency and decreased sleeping time compared to the control in the TS-induced sleeping time study. DZP (3 mg/kg) showed a sedative-like effect in animals in both sleeping and FST studies. QR (50 mg/kg) exhibited a similar pattern of activity as SCL. However, its effects were more prominent than those of SCL groups. SCL (10 mg/kg) altered the DZP-3-mediated effects. SCL-10 co-treated with QR-50 significantly (p < 0.05) increased the latency and decreased sleep time and immobility time, suggesting possible synergistic antidepressant-like effects. In silico studies revealed that SCL and QR demonstrated better binding affinities with GABAA receptor, especially α2, α3, and α5 subunits. Both compounds also exhibited good ADMET and drug-like properties. In animal studies, the both compounds worked synergistically to provide antidepressant-like effects in a slightly different fashion. As a conclusion, the combined administration of SCL and QR may be used in upcoming neurological clinical trials, according to in vivo and in silico findings. However, additional investigation is necessary to verify this behavior and clarify the potential mechanism of action.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Nayem Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| |
Collapse
|
7
|
Alves Nobre T, de Sousa AA, Pereira IC, Carvalho Pedrosa-Santos ÁM, Lopes LDO, Debia N, El-Nashar HAS, El-Shazly M, Islam MT, Castro E Sousa JMD, Torres-Leal FL. Bromelain as a natural anti-inflammatory drug: a systematic review. Nat Prod Res 2024:1-14. [PMID: 38676413 DOI: 10.1080/14786419.2024.2342553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Inflammation is a complex and necessary mechanism of an organ's response to biological, chemical and/or physical stimuli. In recent years, investigations on natural compounds with therapeutic actions for the treatment of different diseases have increased. Among these compounds, bromelain is highlighted, as a cysteine protease isolated from the Ananas comosus (pineapple) stem. This review aimed to evaluate the anti-inflammatory activity of bromelain, as well as its pathways on inflammatory mediators, through a systematic review with in vitro studies on different cell lines. The search was performed in PubMed, Science Direct, Scopus, Cochrane Library and Web of Science databases. Bromelain reduced IL-1β, IL-6 and TNF-α secretion when immune cells were already stimulated in an overproduction condition by proinflammatory cytokines, generating a modulation in the inflammatory response through prostaglandins reduction and activation of a cascade reactions that trigger neutrophils and macrophages, in addition to accelerating the healing process.
Collapse
Affiliation(s)
- Taline Alves Nobre
- Toxicological Genetics Research Laboratory (LAPGENIC), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Athanara Alves de Sousa
- Toxicological Genetics Research Laboratory (LAPGENIC), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Irislene Costa Pereira
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Álina Mara Carvalho Pedrosa-Santos
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Luana de Oliveira Lopes
- Toxicological Genetics Research Laboratory (LAPGENIC), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Nicole Debia
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| | - João Marcelo de Castro E Sousa
- Toxicological Genetics Research Laboratory (LAPGENIC), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Francisco Leonardo Torres-Leal
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|