1
|
Rodríguez-Martínez CE, Sossa-Briceño MP, Forno E. Composite predictive models for asthma exacerbations or asthma deterioration in pediatric asthmatic patients: A systematic review of the literature. Pediatr Pulmonol 2023; 58:2703-2718. [PMID: 37403820 DOI: 10.1002/ppul.26584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
A variety of factors have shown to be useful in predicting which children are at high risk for future asthma exacerbations, some of them combined into composite predictive models. The objective of the present review was to systematically identify all the available published composite predictive models developed for predicting which children are at high risk for future asthma exacerbations or asthma deterioration. A systematic search of the literature was performed to identify studies in which a composite predictive model developed for predicting which children are at high risk for future asthma exacerbations or asthma deterioration was described. Methodological quality assessment was performed using accepted criteria for prediction rules and prognostic models. A total of 18 articles, describing a total of 17 composite predictive models were identified and included in the review. The number of predictors included in the models ranged from 2-149. Upon analyzing the content of the models, use of healthcare services for asthma and prescribed or dispensed asthma medications were the most frequently used items (in 8/17, 47.0% of the models). Seven (41.2%) models fulfilled all the quality criteria considered in our evaluation. The identified models may help clinicians dealing with asthmatic children to identify which children are at a higher risk for future asthma exacerbations or asthma deterioration, therefore targeting and/or reinforcing specific interventions for these children in an attempt to prevent exacerbations or deterioration of the disease.
Collapse
Affiliation(s)
- Carlos E Rodríguez-Martínez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia
- Department of Pediatric Pulmonology, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Monica P Sossa-Briceño
- Department of Internal Medicine, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, Indiana University School of Medicine and Riley Children's Hospital, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Masoumian Hosseini M, Masoumian Hosseini ST, Qayumi K, Ahmady S, Koohestani HR. The Aspects of Running Artificial Intelligence in Emergency Care; a Scoping Review. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2023; 11:e38. [PMID: 37215232 PMCID: PMC10197918 DOI: 10.22037/aaem.v11i1.1974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Introduction Artificial Inteligence (AI) application in emergency medicine is subject to ethical and legal inconsistencies. The purposes of this study were to map the extent of AI applications in emergency medicine, to identify ethical issues related to the use of AI, and to propose an ethical framework for its use. Methods A comprehensive literature collection was compiled through electronic databases/internet search engines (PubMed, Web of Science Platform, MEDLINE, Scopus, Google Scholar/Academia, and ERIC) and reference lists. We considered studies published between 1 January 2014 and 6 October 2022. Articles that did not self-classify as studies of an AI intervention, those that were not relevant to Emergency Departments (EDs), and articles that did not report outcomes or evaluations were excluded. Descriptive and thematic analyses of data extracted from the included articles were conducted. Results A total of 137 out of the 2175 citations in the original database were eligible for full-text evaluation. Of these articles, 47 were included in the scoping review and considered for theme extraction. This review covers seven main areas of AI techniques in emergency medicine: Machine Learning (ML) Algorithms (10.64%), prehospital emergency management (12.76%), triage, patient acuity and disposition of patients (19.15%), disease and condition prediction (23.40%), emergency department management (17.03%), the future impact of AI on Emergency Medical Services (EMS) (8.51%), and ethical issues (8.51%). Conclusion There has been a rapid increase in AI research in emergency medicine in recent years. Several studies have demonstrated the potential of AI in diverse contexts, particularly when improving patient outcomes through predictive modelling. According to the synthesis of studies in our review, AI-based decision-making lacks transparency. This feature makes AI decision-making opaque.
Collapse
Affiliation(s)
| | | | - Karim Qayumi
- Centre of Excellence for Simulation Education and Innovation, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Soleiman Ahmady
- Department of Medical Education, Virtual School of Medical Education & Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Koohestani
- Department of Nursing, Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| |
Collapse
|
3
|
Khanam UA, Gao Z, Adamko D, Kusalik A, Rennie DC, Goodridge D, Chu L, Lawson JA. A scoping review of asthma and machine learning. J Asthma 2023; 60:213-226. [PMID: 35171725 DOI: 10.1080/02770903.2022.2043364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The objective of this study was to determine the extent of machine learning (ML) application in asthma research and to identify research gaps while mapping the existing literature. DATA SOURCES We conducted a scoping review. PubMed, ProQuest, and Embase Scopus databases were searched with an end date of September 18, 2020. STUDY SELECTION DistillerSR was used for data management. Inclusion criteria were an asthma focus, human participants, ML techniques, and written in English. Exclusion criteria were abstract only, simulation-based, not human based, or were reviews or commentaries. Descriptive statistics were presented. RESULTS A total of 6,317 potential articles were found. After removing duplicates, and reviewing the titles and abstracts, 102 articles were included for the full text analysis. Asthma episode prediction (24.5%), asthma phenotype classification (16.7%), and genetic profiling of asthma (12.7%) were the top three study topics. Cohort (52.9%), cross-sectional (20.6%), and case-control studies (11.8%) were the study designs most frequently used. Regarding the ML techniques, 34.3% of the studies used more than one technique. Neural networks, clustering, and random forests were the most common ML techniques used where they were used in 20.6%, 18.6%, and 17.6% of studies, respectively. Very few studies considered location of residence (i.e. urban or rural status). CONCLUSIONS The use of ML in asthma studies has been increasing with most of this focused on the three major topics (>50%). Future research using ML could focus on gaps such as a broader range of study topics and focus on its use in additional populations (e.g. location of residence). Supplemental data for this article is available online at http://dx.doi.org/ .
Collapse
Affiliation(s)
- Ulfat A Khanam
- Health Sciences Program, College of Medicine, Canadian Centre for Health and Safety in Agriculture, Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zhiwei Gao
- Department of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Darryl Adamko
- Department of Paediatrics, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Donna C Rennie
- College of Nursing and Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, SK, Canada
| | - Donna Goodridge
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Luan Chu
- Provincial Research Data Services, Alberta Health Service, Calgary, AB, Canada
| | - Joshua A Lawson
- Department of Medicine, Canadian Centre for Health and Safety in Agriculture, and Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Ekpo RH, Osamor VC, Azeta AA, Ikeakanam E, Amos BO. Machine learning classification approach for asthma prediction models in children. HEALTH AND TECHNOLOGY 2023. [DOI: 10.1007/s12553-023-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
5
|
Filipow N, Main E, Sebire NJ, Booth J, Taylor AM, Davies G, Stanojevic S. Implementation of prognostic machine learning algorithms in paediatric chronic respiratory conditions: a scoping review. BMJ Open Respir Res 2022; 9:9/1/e001165. [PMID: 35297371 PMCID: PMC8928277 DOI: 10.1136/bmjresp-2021-001165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/06/2022] [Indexed: 11/23/2022] Open
Abstract
Machine learning (ML) holds great potential for predicting clinical outcomes in heterogeneous chronic respiratory diseases (CRD) affecting children, where timely individualised treatments offer opportunities for health optimisation. This paper identifies rate-limiting steps in ML prediction model development that impair clinical translation and discusses regulatory, clinical and ethical considerations for ML implementation. A scoping review of ML prediction models in paediatric CRDs was undertaken using the PRISMA extension scoping review guidelines. From 1209 results, 25 articles published between 2013 and 2021 were evaluated for features of a good clinical prediction model using the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines. Most of the studies were in asthma (80%), with few in cystic fibrosis (12%), bronchiolitis (4%) and childhood wheeze (4%). There were inconsistencies in model reporting and studies were limited by a lack of validation, and absence of equations or code for replication. Clinician involvement during ML model development is essential and diversity, equity and inclusion should be assessed at each step of the ML pipeline to ensure algorithms do not promote or amplify health disparities among marginalised groups. As ML prediction studies become more frequent, it is important that models are rigorously developed using published guidelines and take account of regulatory frameworks which depend on model complexity, patient safety, accountability and liability.
Collapse
Affiliation(s)
- Nicole Filipow
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Eleanor Main
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Neil J Sebire
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,GOSH NIHR BRC, Great Ormond Street Hospital for Children, London, UK
| | - John Booth
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,GOSH NIHR BRC, Great Ormond Street Hospital for Children, London, UK
| | - Andrew M Taylor
- GOSH NIHR BRC, Great Ormond Street Hospital for Children, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Gwyneth Davies
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,GOSH NIHR BRC, Great Ormond Street Hospital for Children, London, UK
| | - Sanja Stanojevic
- Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
AIM in Respiratory Disorders. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Kelly CJ, Brown APY, Taylor JA. Artificial Intelligence in Pediatrics. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
|
9
|
Seeing the Forest for the Trees: Evaluating Population Data in Allergy-Immunology. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:4193-4199. [PMID: 34571199 DOI: 10.1016/j.jaip.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
A population-level study is essential for understanding treatment effects, epidemiologic phenomena, and health care best practices. Evaluating large populations and associated data requires an analytic framework, which is commonly used by statisticians, epidemiologists, and data scientists. This document will serve to provide an overview of these commonly employed methods in allergy and immunology research. We will draw upon recent examples from the allergy-immunology literature to contextualize discrete principles of relevance to population-level analysis that include statistical features of a study population, elements of statistical inference, regression analysis, and an overview of machine learning practices. Our intent is to guide the reader through a practical description of this important quantitative discipline and facilitate greater understanding about data and result display in the medical literature.
Collapse
|
10
|
Luo G, Stone BL, Sheng X, He S, Koebnick C, Nkoy FL. Using Computational Methods to Improve Integrated Disease Management for Asthma and Chronic Obstructive Pulmonary Disease: Protocol for a Secondary Analysis. JMIR Res Protoc 2021; 10:e27065. [PMID: 34003134 PMCID: PMC8170556 DOI: 10.2196/27065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022] Open
Abstract
Background Asthma and chronic obstructive pulmonary disease (COPD) impose a heavy burden on health care. Approximately one-fourth of patients with asthma and patients with COPD are prone to exacerbations, which can be greatly reduced by preventive care via integrated disease management that has a limited service capacity. To do this well, a predictive model for proneness to exacerbation is required, but no such model exists. It would be suboptimal to build such models using the current model building approach for asthma and COPD, which has 2 gaps due to rarely factoring in temporal features showing early health changes and general directions. First, existing models for other asthma and COPD outcomes rarely use more advanced temporal features, such as the slope of the number of days to albuterol refill, and are inaccurate. Second, existing models seldom show the reason a patient is deemed high risk and the potential interventions to reduce the risk, making already occupied clinicians expend more time on chart review and overlook suitable interventions. Regular automatic explanation methods cannot deal with temporal data and address this issue well. Objective To enable more patients with asthma and patients with COPD to obtain suitable and timely care to avoid exacerbations, we aim to implement comprehensible computational methods to accurately predict proneness to exacerbation and recommend customized interventions. Methods We will use temporal features to accurately predict proneness to exacerbation, automatically find modifiable temporal risk factors for every high-risk patient, and assess the impact of actionable warnings on clinicians’ decisions to use integrated disease management to prevent proneness to exacerbation. Results We have obtained most of the clinical and administrative data of patients with asthma from 3 prominent American health care systems. We are retrieving other clinical and administrative data, mostly of patients with COPD, needed for the study. We intend to complete the study in 6 years. Conclusions Our results will help make asthma and COPD care more proactive, effective, and efficient, improving outcomes and saving resources. International Registered Report Identifier (IRRID) PRR1-10.2196/27065
Collapse
Affiliation(s)
- Gang Luo
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, United States
| | - Bryan L Stone
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Xiaoming Sheng
- College of Nursing, University of Utah, Salt Lake City, UT, United States
| | - Shan He
- Care Transformation and Information Systems, Intermountain Healthcare, West Valley City, UT, United States
| | - Corinna Koebnick
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Flory L Nkoy
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Bose S, Kenyon CC, Masino AJ. Personalized prediction of early childhood asthma persistence: A machine learning approach. PLoS One 2021; 16:e0247784. [PMID: 33647071 PMCID: PMC7920380 DOI: 10.1371/journal.pone.0247784] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Early childhood asthma diagnosis is common; however, many children diagnosed before age 5 experience symptom resolution and it remains difficult to identify individuals whose symptoms will persist. Our objective was to develop machine learning models to identify which individuals diagnosed with asthma before age 5 continue to experience asthma-related visits. We curated a retrospective dataset for 9,934 children derived from electronic health record (EHR) data. We trained five machine learning models to differentiate individuals without subsequent asthma-related visits (transient diagnosis) from those with asthma-related visits between ages 5 and 10 (persistent diagnosis) given clinical information up to age 5 years. Based on average NPV-Specificity area (ANSA), all models performed significantly better than random chance, with XGBoost obtaining the best performance (0.43 mean ANSA). Feature importance analysis indicated age of last asthma diagnosis under 5 years, total number of asthma related visits, self-identified black race, allergic rhinitis, and eczema as important features. Although our models appear to perform well, a lack of prior models utilizing a large number of features to predict individual persistence makes direct comparison infeasible. However, feature importance analysis indicates our models are consistent with prior research indicating diagnosis age and prior health service utilization as important predictors of persistent asthma. We therefore find that machine learning models can predict which individuals will experience persistent asthma with good performance and may be useful to guide clinician and parental decisions regarding asthma counselling in early childhood.
Collapse
Affiliation(s)
- Saurav Bose
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Chén C. Kenyon
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aaron J. Masino
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bae WD, Kim S, Park CS, Alkobaisi S, Lee J, Seo W, Park JS, Park S, Lee S, Lee JW. Performance improvement of machine learning techniques predicting the association of exacerbation of peak expiratory flow ratio with short term exposure level to indoor air quality using adult asthmatics clustered data. PLoS One 2021; 16:e0244233. [PMID: 33411771 PMCID: PMC7790419 DOI: 10.1371/journal.pone.0244233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/06/2020] [Indexed: 11/18/2022] Open
Abstract
Large-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools. In this study, we compared the performance of ten machine-learning techniques. Using an advanced method of imbalanced sampling (IS), we improved the performance of nine conventional machine learning techniques predicting the association between exposure level to indoor air quality and change in patients’ peak expiratory flow rate (PEFR). We then proposed a deep learning method of transfer learning (TL) for further improvement in prediction accuracy. Our selected final prediction techniques (TL1_IS or TL2-IS) achieved a balanced accuracy median (interquartile range) of 66(56~76) % for TL1_IS and 68(63~78) % for TL2_IS. Precision levels for TL1_IS and TL2_IS were 68(62~72) % and 66(62~69) % while sensitivity levels were 58(50~67) % and 59(51~80) % from 25 patients which were approximately 1.08 (accuracy, precision) to 1.28 (sensitivity) times increased in terms of performance outcomes, compared to NN_IS. Our results indicate that the transfer machine learning technique with imbalanced sampling is a powerful tool to predict the change in PEFR due to exposure to indoor air including the concentration of particulate matter of 2.5 μm and carbon dioxide. This modeling technique is even applicable with small-sized or imbalanced dataset, which represents a personalized, real-world setting.
Collapse
Affiliation(s)
- Wan D. Bae
- Department of Computer Science, Seattle University, Seattle, Washington, United States of America
| | - Sungroul Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhayang University, Asan, South Korea
- * E-mail:
| | - Choon-Sik Park
- Department of Internal Medicine, Soonchunhyang Bucheon Hospital, Wonmi-gu, Bucheon-si, Gyeonggi-do, South Korea
| | - Shayma Alkobaisi
- College of Information Technology, United Arab Emirates University, Abu Dhabi, UAE
| | - Jongwon Lee
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Wonseok Seo
- Department of Computer Science, Seattle University, Seattle, Washington, United States of America
| | - Jong Sook Park
- Department of Internal Medicine, Soonchunhyang Bucheon Hospital, Wonmi-gu, Bucheon-si, Gyeonggi-do, South Korea
| | - Sujung Park
- Department of ICT Environmental Health System, Graduate School, Soonchunhayang University, Asan, South Korea
| | - Sangwoon Lee
- Department of ICT Environmental Health System, Graduate School, Soonchunhayang University, Asan, South Korea
| | - Jong Wook Lee
- Department of Internal Medicine, Soonchunhyang Bucheon Hospital, Wonmi-gu, Bucheon-si, Gyeonggi-do, South Korea
| |
Collapse
|
13
|
Das N, Topalovic M, Janssens W. AIM in Respiratory Disorders. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Artificial Intelligence in Pediatrics. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Gonem S, Janssens W, Das N, Topalovic M. Applications of artificial intelligence and machine learning in respiratory medicine. Thorax 2020; 75:695-701. [PMID: 32409611 DOI: 10.1136/thoraxjnl-2020-214556] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
The past 5 years have seen an explosion of interest in the use of artificial intelligence (AI) and machine learning techniques in medicine. This has been driven by the development of deep neural networks (DNNs)-complex networks residing in silico but loosely modelled on the human brain-that can process complex input data such as a chest radiograph image and output a classification such as 'normal' or 'abnormal'. DNNs are 'trained' using large banks of images or other input data that have been assigned the correct labels. DNNs have shown the potential to equal or even surpass the accuracy of human experts in pattern recognition tasks such as interpreting medical images or biosignals. Within respiratory medicine, the main applications of AI and machine learning thus far have been the interpretation of thoracic imaging, lung pathology slides and physiological data such as pulmonary function tests. This article surveys progress in this area over the past 5 years, as well as highlighting the current limitations of AI and machine learning and the potential for future developments.
Collapse
Affiliation(s)
- Sherif Gonem
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK .,Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Wim Janssens
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Nilakash Das
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Marko Topalovic
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,ArtiQ NV, Leuven, Belgium
| |
Collapse
|
16
|
Taylor L, Ding X, Clifton D, Lu H. Wearable Vital Signs Monitoring for Patients With Asthma: A Review. IEEE SENSORS JOURNAL 2020; 23:1734-1751. [PMID: 37655115 PMCID: PMC7615004 DOI: 10.1109/jsen.2022.3224411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Worldwide,an estimated 461 000 people die from asthma attacks each year. While there remain treatments to alleviate asthma symptoms and reduce deaths, patient deterioration needs to be identified in sufficient time. To prevent asthma deterioration, patients need to be aware of personal and environmental triggers and monitor their asthma symptoms. The aim of this article is to provide a comprehensive review of the current state-of-the-art wearable sensors and devices that use vital signs for asthma patient monitoring and management. Among all vital signs, breathing rate and airflow sound are key indicators of asthmatic patients' health that can be measured directly using wearable sensors to provide continuous and constant patient monitoring or indirectly by estimations based on proven algorithms using electrocardiogram (ECG), photoplethysmogram (PPG), and chest movements. ECG and PPG signals are widely used in smart watches and chest bands, enabling easy integration of a more extensive body sensor framework for asthmatic exacerbation prediction. Other vital signs used in asthma patient monitoring include blood oxygen saturation, temperature, blood pressure, verbal sound, and pain responses. The use of wearable vital signs enabled a broad range of wearable sensor application scenarios for asthma monitoring and management.
Collapse
Affiliation(s)
- Lucy Taylor
- Somerville College and the Department of Engineering Science, University of Oxford, OX2 6HD Oxford, U.K
| | - Xiaorong Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - David Clifton
- Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, U.K., and also with the Oxford Suzhou Centre for Advanced Research, Suzhou 215000, China
| | - Huiqi Lu
- Somerville College and the Department of Engineering Science, University of Oxford, OX2 6HD Oxford, U.K
| |
Collapse
|
17
|
Messinger AI, Deterding RR, Szefler SJ. Bringing Technology to Day-to-Day Asthma Management. Am J Respir Crit Care Med 2019; 198:291-292. [PMID: 29847147 DOI: 10.1164/rccm.201805-0845ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Amanda I Messinger
- 1 Department of Pediatrics University of Colorado School of Medicine and Children's Hospital Colorado Aurora, Colorado
| | - Robin R Deterding
- 1 Department of Pediatrics University of Colorado School of Medicine and Children's Hospital Colorado Aurora, Colorado
| | - Stanley J Szefler
- 1 Department of Pediatrics University of Colorado School of Medicine and Children's Hospital Colorado Aurora, Colorado
| |
Collapse
|
18
|
Messinger AI, Bui N, Wagner BD, Szefler SJ, Vu T, Deterding RR. Novel pediatric-automated respiratory score using physiologic data and machine learning in asthma. Pediatr Pulmonol 2019; 54:1149-1155. [PMID: 31006993 PMCID: PMC6641986 DOI: 10.1002/ppul.24342] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/13/2019] [Accepted: 03/30/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Manual clinical scoring systems are the current standard used for acute asthma clinical care pathways. No automated system exists that assesses disease severity, time course, and treatment impact in pediatric acute severe asthma exacerbations. WORKING HYPOTHESIS machine learning applied to continuous vital sign data could provide a novel pediatric-automated asthma respiratory score (pARS) by using the manual pediatric asthma score (PAS) as the clinical care standard. METHODS Continuous vital sign monitoring data (heart rate, respiratory rate, and pulse oximetry) were merged with the health record data including a provider-determined PAS in children between 2 and 18 years of age admitted to the pediatric intensive care unit (PICU) for status asthmaticus. A cascaded artificial neural network (ANN) was applied to create an automated respiratory score and validated by two approaches. The ANN was compared with the Normal and Poisson regression models. RESULTS Out of an initial group of 186 patients, 128 patients met inclusion criteria. Merging physiologic data with clinical data yielded >37 000 data points for model training. The pARS score had good predictive accuracy, with 80% of the pARS values within ±2 points of the provider-determined PAS, especially over the mid-range of PASs (6-9). The Poisson and Normal distribution regressions yielded a smaller overall median absolute error. CONCLUSIONS The pARS reproduced the manually recorded PAS. Once validated and studied prospectively as a tool for research and for physician decision support, this methodology can be implemented in the PICU to objectively guide treatment decisions.
Collapse
Affiliation(s)
- Amanda I Messinger
- Department of Pediatrics, Colorado School of Medicine, The Breathing Institute, University of Colorado, Children's Hospital Colorado, Aurora, Colorado
| | - Nam Bui
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colorado
| | - Stanley J Szefler
- Department of Pediatrics, Colorado School of Medicine, The Breathing Institute, University of Colorado, Children's Hospital Colorado, Aurora, Colorado
| | - Tam Vu
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado
| | - Robin R Deterding
- Department of Pediatrics, Colorado School of Medicine, The Breathing Institute, University of Colorado, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
19
|
Luo G, Stone BL, Koebnick C, He S, Au DH, Sheng X, Murtaugh MA, Sward KA, Schatz M, Zeiger RS, Davidson GH, Nkoy FL. Using Temporal Features to Provide Data-Driven Clinical Early Warnings for Chronic Obstructive Pulmonary Disease and Asthma Care Management: Protocol for a Secondary Analysis. JMIR Res Protoc 2019; 8:e13783. [PMID: 31199308 PMCID: PMC6592592 DOI: 10.2196/13783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023] Open
Abstract
Background Both chronic obstructive pulmonary disease (COPD) and asthma incur heavy health care burdens. To support tailored preventive care for these 2 diseases, predictive modeling is widely used to give warnings and to identify patients for care management. However, 3 gaps exist in current modeling methods owing to rarely factoring in temporal aspects showing trends and early health change: (1) existing models seldom use temporal features and often give late warnings, making care reactive. A health risk is often found at a relatively late stage of declining health, when the risk of a poor outcome is high and resolving the issue is difficult and costly. A typical model predicts patient outcomes in the next 12 months. This often does not warn early enough. If a patient will actually be hospitalized for COPD next week, intervening now could be too late to avoid the hospitalization. If temporal features were used, this patient could potentially be identified a few weeks earlier to institute preventive therapy; (2) existing models often miss many temporal features with high predictive power and have low accuracy. This makes care management enroll many patients not needing it and overlook over half of the patients needing it the most; (3) existing models often give no information on why a patient is at high risk nor about possible interventions to mitigate risk, causing busy care managers to spend more time reviewing charts and to miss suited interventions. Typical automatic explanation methods cannot handle longitudinal attributes and fully address these issues. Objective To fill these gaps so that more COPD and asthma patients will receive more appropriate and timely care, we will develop comprehensible data-driven methods to provide accurate early warnings of poor outcomes and to suggest tailored interventions, making care more proactive, efficient, and effective. Methods By conducting a secondary data analysis and surveys, the study will: (1) use temporal features to provide accurate early warnings of poor outcomes and assess the potential impact on prediction accuracy, risk warning timeliness, and outcomes; (2) automatically identify actionable temporal risk factors for each patient at high risk for future hospital use and assess the impact on prediction accuracy and outcomes; and (3) assess the impact of actionable information on clinicians’ acceptance of early warnings and on perceived care plan quality. Results We are obtaining clinical and administrative datasets from 3 leading health care systems’ enterprise data warehouses. We plan to start data analysis in 2020 and finish our study in 2025. Conclusions Techniques to be developed in this study can boost risk warning timeliness, model accuracy, and generalizability; improve patient finding for preventive care; help form tailored care plans; advance machine learning for many clinical applications; and be generalized for many other chronic diseases. International Registered Report Identifier (IRRID) PRR1-10.2196/13783
Collapse
Affiliation(s)
- Gang Luo
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, United States
| | - Bryan L Stone
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Corinna Koebnick
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Shan He
- Care Transformation, Intermountain Healthcare, Salt Lake City, UT, United States
| | - David H Au
- Center of Innovation for Veteran-Centered & Value-Driven Care, VA Puget Sound Health Care System, Seattle, WA, United States.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Xiaoming Sheng
- College of Nursing, University of Utah, Salt Lake City, UT, United States
| | - Maureen A Murtaugh
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, United States
| | - Katherine A Sward
- College of Nursing, University of Utah, Salt Lake City, UT, United States
| | - Michael Schatz
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States.,Department of Allergy, Kaiser Permanente Southern California, San Diego, CA, United States
| | - Robert S Zeiger
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States.,Department of Allergy, Kaiser Permanente Southern California, San Diego, CA, United States
| | - Giana H Davidson
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Flory L Nkoy
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
20
|
Discovering Pediatric Asthma Phenotypes on the Basis of Response to Controller Medication Using Machine Learning. Ann Am Thorac Soc 2019; 15:49-58. [PMID: 29048949 DOI: 10.1513/annalsats.201702-101oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Pediatric asthma has variable underlying inflammation and symptom control. Approaches to addressing this heterogeneity, such as clustering methods to find phenotypes and predict outcomes, have been investigated. However, clustering based on the relationship between treatment and clinical outcome has not been performed, and machine learning approaches for long-term outcome prediction in pediatric asthma have not been studied in depth. OBJECTIVES Our objectives were to use our novel machine learning algorithm, predictor pursuit (PP), to discover pediatric asthma phenotypes on the basis of asthma control in response to controller medications, to predict longitudinal asthma control among children with asthma, and to identify features associated with asthma control within each discovered pediatric phenotype. METHODS We applied PP to the Childhood Asthma Management Program study data (n = 1,019) to discover phenotypes on the basis of asthma control between assigned controller therapy groups (budesonide vs. nedocromil). We confirmed PP's ability to discover phenotypes using the Asthma Clinical Research Network/Childhood Asthma Research and Education network data. We next predicted children's asthma control over time and compared PP's performance with that of traditional prediction methods. Last, we identified clinical features most correlated with asthma control in the discovered phenotypes. RESULTS Four phenotypes were discovered in both datasets: allergic not obese (A+/O-), obese not allergic (A-/O+), allergic and obese (A+/O+), and not allergic not obese (A-/O-). Of the children with well-controlled asthma in the Childhood Asthma Management Program dataset, we found more nonobese children treated with budesonide than with nedocromil (P = 0.015) and more obese children treated with nedocromil than with budesonide (P = 0.008). Within the obese group, more A+/O+ children's asthma was well controlled with nedocromil than with budesonide (P = 0.022) or with placebo (P = 0.011). The PP algorithm performed significantly better (P < 0.001) than traditional machine learning algorithms for both short- and long-term asthma control prediction. Asthma control and bronchodilator response were the features most predictive of short-term asthma control, regardless of type of controller medication or phenotype. Bronchodilator response and serum eosinophils were the most predictive features of asthma control, regardless of type of controller medication or phenotype. CONCLUSIONS Advanced statistical machine learning approaches can be powerful tools for discovery of phenotypes based on treatment response and can aid in asthma control prediction in complex medical conditions such as asthma.
Collapse
|
21
|
Khasha R, Sepehri MM, Mahdaviani SA. An ensemble learning method for asthma control level detection with leveraging medical knowledge-based classifier and supervised learning. J Med Syst 2019; 43:158. [PMID: 31028489 DOI: 10.1007/s10916-019-1259-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/27/2019] [Indexed: 12/25/2022]
Abstract
Approximately 300 million people are afflicted with asthma around the world, with the estimated death rate of 250,000 cases, indicating the significance of this disease. If not treated, it can turn into a serious public health problem. The best method to treat asthma is to control it. Physicians recommend continuous monitoring on asthma symptoms and offering treatment preventive plans based on the patient's control level. Therefore, successful detection of the disease control level plays a critical role in presenting treatment plans. In view of this objective, we collected the data of 96 asthma patients within a 9-month period from a specialized hospital for pulmonary diseases in Tehran. A new ensemble learning algorithm with combining physicians' knowledge in the form of a rule-based classifier and supervised learning algorithms is proposed to detect asthma control level in a multivariate dataset with multiclass response variable. The model outcome resulting from the balancing operations and feature selection on data yielded the accuracy of 91.66%. Our proposed model combines medical knowledge with machine learning algorithms to classify asthma control level more accurately. This model can be applied in electronic self-care systems to support the real-time decision and personalized warnings on possible deterioration of asthma control level. Such tools can centralize asthma treatment from the current reactive care models into a preventive approach in which the physician's therapeutic actions would be based on control level.
Collapse
Affiliation(s)
- Roghaye Khasha
- Group of Information Technology, Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, 1411713116, Iran
| | - Mohammad Mehdi Sepehri
- Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, 1411713116, Iran.
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Spyroglou II, Spöck G, Rigas AG, Paraskakis EN. Evaluation of Bayesian classifiers in asthma exacerbation prediction after medication discontinuation. BMC Res Notes 2018; 11:522. [PMID: 30064478 PMCID: PMC6069881 DOI: 10.1186/s13104-018-3621-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Objective The achievement of the optimal control of the disease is of cardinal importance in asthma treatment. As the control of the disease is sustained the medication should be gradually reduced and then stopped. Nevertheless, the discontinuation of asthma medication may lead to loss of disease control and eventually to an exacerbation of the disease. The goal of this paper is to examine the performance of Bayesian network classifiers in predicting asthma exacerbation based on several patient’s parameters such as objective measurements and medical history data. Results In this study several Bayesian network classifiers are presented and evaluated. It is shown that the proposed semi-naive network classifier with the use of Backward Sequential Elimination and Joining algorithm is able to predict if a patient will have an exacerbation of the disease after his last assessment with 93.84% accuracy and 90.9% sensitivity. In addition, the resulting structure and the conditional probability tables give a clear view of the probabilistic relationships between the used factors. This network may help the clinicians to identify the patients who are at high risk of having an exacerbation after stopping the medication and to confirm which factors are the most important. Electronic supplementary material The online version of this article (10.1186/s13104-018-3621-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioannis I Spyroglou
- Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100, Xanthi, Greece.
| | - Gunter Spöck
- Department of Statistics, Alpen-Adria Universität, 9020, Klagenfurt, Austria
| | - Alexandros G Rigas
- Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100, Xanthi, Greece
| | - E N Paraskakis
- Paediatric Respiratory Unit, Department of Paediatrics, Medical School, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
23
|
Stewart J, Sprivulis P, Dwivedi G. Artificial intelligence and machine learning in emergency medicine. Emerg Med Australas 2018; 30:870-874. [PMID: 30014578 DOI: 10.1111/1742-6723.13145] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
Interest in artificial intelligence (AI) research has grown rapidly over the past few years, in part thanks to the numerous successes of modern machine learning techniques such as deep learning, the availability of large datasets and improvements in computing power. AI is proving to be increasingly applicable to healthcare and there is a growing list of tasks where algorithms have matched or surpassed physician performance. Despite the successes there remain significant concerns and challenges surrounding algorithm opacity, trust and patient data security. Notwithstanding these challenges, AI technologies will likely become increasingly integrated into emergency medicine in the coming years. This perspective presents an overview of current AI research relevant to emergency medicine.
Collapse
Affiliation(s)
| | | | - Girish Dwivedi
- Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
24
|
Boursalie O, Samavi R, Doyle TE. Machine Learning and Mobile Health Monitoring Platforms: A Case Study on Research and Implementation Challenges. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2018; 2:179-203. [PMID: 35415406 PMCID: PMC8982705 DOI: 10.1007/s41666-018-0021-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 11/24/2022]
Abstract
Machine learning-based patient monitoring systems are generally deployed on remote servers for analyzing heterogeneous data. While recent advances in mobile technology provide new opportunities to deploy such systems directly on mobile devices, the development and deployment challenges are not being extensively studied by the research community. In this paper, we systematically investigate challenges associated with each stage of the development and deployment of a machine learning-based patient monitoring system on a mobile device. For each class of challenges, we provide a number of recommendations that can be used by the researchers, system designers, and developers working on mobile-based predictive and monitoring systems. The results of our investigation show that when developers are dealing with mobile platforms, they must evaluate the predictive systems based on its classification and computational performance. Accordingly, we propose a new machine learning training and deployment methodology specifically tailored for mobile platforms that incorporates metrics beyond traditional classifier performance.
Collapse
Affiliation(s)
- Omar Boursalie
- School of Biomedical Engineering, McMaster University, Hamilton, ON Canada
| | - Reza Samavi
- Department of Computing and Software, McMaster University, Hamilton, ON Canada
- eHealth Graduate Program, McMaster University, Hamilton, ON Canada
| | - Thomas E. Doyle
- School of Biomedical Engineering, McMaster University, Hamilton, ON Canada
- eHealth Graduate Program, McMaster University, Hamilton, ON Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON Canada
| |
Collapse
|
25
|
Finkelstein J, Jeong IC. Machine learning approaches to personalize early prediction of asthma exacerbations. Ann N Y Acad Sci 2016; 1387:153-165. [PMID: 27627195 DOI: 10.1111/nyas.13218] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022]
Abstract
Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to explore the utility of telemonitoring data for building machine learning algorithms that predict asthma exacerbations before they occur. The study dataset comprised daily self-monitoring reports consisting of 7001 records submitted by adult asthma patients during home telemonitoring. Predictive modeling included preparation of stratified training datasets, predictive feature selection, and evaluation of resulting classifiers. Using a 7-day window, a naive Bayesian classifier, adaptive Bayesian network, and support vector machines were able to predict asthma exacerbation occurring on day 8, with sensitivity of 0.80, 1.00, and 0.84; specificity of 0.77, 1.00, and 0.80; and accuracy of 0.77, 1.00, and 0.80, respectively. Our study demonstrated that machine learning techniques have significant potential in developing personalized decision support for chronic disease telemonitoring systems. Future studies may benefit from a comprehensive predictive framework that combines telemonitoring data with other factors affecting the likelihood of developing acute exacerbation. Approaches implemented for advanced asthma exacerbation prediction may be extended to prediction of exacerbations in patients with other chronic health conditions.
Collapse
Affiliation(s)
- Joseph Finkelstein
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - In Cheol Jeong
- Chronic Disease Informatics Program, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|