1
|
He Y, Wang Y, Zhang A, Tan M, Wang R, Yan S, Jiang D. The Pb tolerance initiated by LdZIP8 in Lymantria dispar larvae: An effective defense against heavy metal stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137025. [PMID: 39740550 DOI: 10.1016/j.jhazmat.2024.137025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Pb is a prevalent heavy metal contaminant in the habitats of herbivorous insects. This study investigated the tolerance level of Lymantria dispar larvae to Pb and its corresponding mechanism focusing on the role of ZIP genes. The detrimental impacts of Pb on larval growth and survival exhibited a dose-dependent relationship, with a survival rate of 48 % even at the extreme concentration of 3424 mg/kg. Among the 11 ZIP family genes analyzed, only LdZIP8 showed a significant up-regulation in response to Pb treatment. Localization studies revealed that LdZIP8 was situated on the cell membrane in Sf9 cells. Under Pb stress, silencing LdZIP8 led to a marked reduction in larval body weight and extended developmental duration. This gene silencing exacerbated Pb-induced activation of mitochondrial apoptosis pathways, evidenced by elevated expression of apoptotic genes and increased disorder of mitochondrial pathway compared to non-silenced controls. At the cellular level, LdZIP8 overexpression in Sf9 cells mitigated the adverse effects of Pb on cell viability, apoptosis, mitochondrial membrane potential, mitochondrial permeability transition pore opening, reactive oxygen species levels, and calcium ion homeostasis. Taken together, L. dispar larvae exhibit considerable Pb tolerance, with LdZIP8 identified as a critical regulator of this resilience.
Collapse
Affiliation(s)
- Yubin He
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Ying Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Ruiqi Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
2
|
Jin L, Tian X, Ji X, Xiao G. The expression of Catsup in the hindgut is essential for zinc homeostasis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:601-612. [PMID: 38664880 DOI: 10.1111/imb.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 11/06/2024]
Abstract
Zinc excretion is crucial for zinc homeostasis. However, the mechanism of zinc excretion has not been well characterized. Zinc homeostasis in Drosophila seems well conserved to mammals. In this study, we screened all members of the zinc transporters ZnT (SLC30) and Zip (SLC39) for their potential roles in Drosophila hindgut, an insect organ that belongs to the excretory system. The results indicated that Catecholamines up (Catsup, CG10449), a ZIP member localized to the Golgi, is responsible for zinc homeostasis in the hindgut of Drosophila hindgut-specific knockdown of Catsup leads to a developmental arrest in the larval stage, which could be rescued well by human ZIP7. Further study suggested that Catsup RNAi in the hindgut reduced zinc levels in the excretory system (containing the Malpighian tubule and hindgut) but exhibited systemic zinc overload. Besides, more calculi were observed in the Malpighian tubules of Catsup RNAi flies. The developmental arrest and calculi in the Malpighian tubules of hindgut-specific Catsup RNAi flies could be rescued by dietary zinc restriction but hypersensitivity to zinc. These results will help us understand the fundamental process of zinc excretion in higher eukaryotes.
Collapse
Affiliation(s)
- Li Jin
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Xueke Tian
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
3
|
Sanusi KO, Abubakar MB, Ibrahim KG, Imam MU. Transgenerational Effects of Maternal Zinc Deficiency on Zinc Transporters in Drosophila melanogaster. Biol Trace Elem Res 2024; 202:5276-5287. [PMID: 38277121 DOI: 10.1007/s12011-024-04071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Maternal nutrition, including the availability of micronutrients such as zinc, influences the health of the offspring. Using Drosophila melanogaster, we studied the impact of zinc deficiency on development and reproduction, as well as the effects of maternal zinc status on the offspring's expression of zinc transporters across F1 to F3 generations. Zinc deficiency was induced by adding N,N,N',N'-Tetrakis (2-pyridylmethyl)-ethylenediamine (TPEN) to the diet on which the eggs representing the F0 generation flies were laid. Then, virgin F0 females were mated with control males to produce F1, and subsequently thereafter to generate F2 and F3. Offspring from F1 to F3 were analyzed for body zinc status and zinc transporter mRNA levels. We found that zinc deficiency significantly (p < 0.05) impaired the development of flies, as evidenced by a reduced eclosion rate of zinc-deficient flies. Similarly, zinc deficiency significantly (p < 0.05) reduced the egg-laying rate in F0 flies, highlighting its impact on reproductive functions. Also, zinc levels were consistently lower in the F0 and persisted in subsequent generations for both male and female offspring, indicating transgenerational alterations in zinc status. Furthermore, gene expression analysis revealed significant (p < 0.05) variations in the mRNA levels of dZip42C.1, dZnT63C, dZip71B, and dZnT35C genes across different generations and between male and female offspring. These findings indicate gender-specific dynamics of gene expression in response to zinc deficiency, suggesting potential regulatory mechanisms involved in maintaining zinc homeostasis. Our study emphasizes the detrimental effects of zinc deficiency on development and reproduction in Drosophila and highlights potential implications for offspring and human health.
Collapse
Affiliation(s)
- Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria
- Department of Basic Medical and Dental Sciences, Zarqa University, Zarqa, 13110, Jordan
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, Republic of South Africa
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria.
- Department of Medical Biochemistry, Usmanu Danfodiyo University, Sokoto, P.M.B. 2346, Nigeria.
| |
Collapse
|
4
|
Song C, Zhong R, Zeng S, Chen Z, Tan M, Zheng H, Gao J, Lin H, Zhu G, Cao W. Effect of baking on the structure and bioavailability of protein-binding zinc from oyster (Crassoetrea hongkongensis). Food Chem 2024; 451:139471. [PMID: 38692241 DOI: 10.1016/j.foodchem.2024.139471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
To compare the bioavailability of protein-binding zinc, we investigated the impact of baking on the structure of zinc-binding proteins. The results showed that zinc-binding proteins enriched in zinc with relative molecular weights distributed at 6 kDa and 3 kDa. Protein-binding zinc is predisposed to separate from proteins' interiors and converge on proteins' surface after being baked, and its structure tends to be crystalline. Especially -COO, -C-O, and -C-N played vital roles in the sites of zinc-binding proteins. However, baking did not affect protein-binding zinc's bioavailability which was superior to that of ZnSO4 and C12H22O14Zn. They were digested in the intestine, zinc-binding complexes that were easily transported and uptaken by Caco-2 cells, with transport and uptake rates as high as 62.15% and 15.85%. Consequently, baking can alter the conformation of zinc-binding proteins without any impact on protein-binding zinc's bioavailability which is superior to that of ZnSO4 and C12H22O14Zn.
Collapse
Affiliation(s)
- Chunyong Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Runfang Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shan Zeng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Mingtang Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Guoping Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China..
| |
Collapse
|
5
|
Sanusi KO, Ibrahim KG, Abubakar MB, Shinkafi TS, Ishaka A, Imam MU. Intergenerational Impact of Parental Zinc Deficiency on Metabolic and Redox Outcomes in Drosophila melanogaster. BIOLOGY 2024; 13:401. [PMID: 38927281 PMCID: PMC11201253 DOI: 10.3390/biology13060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 06/28/2024]
Abstract
Zinc deficiency is a common nutritional disorder with detrimental health consequences. Whether parental zinc deficiency induces intergenerational effects remains largely unknown. We investigated the effects of a combined maternal and paternal zinc deficiency on offspring's metabolic outcomes and gene expression changes in Drosophila melanogaster. The parent flies were raised on zinc-deficient diets throughout development, and their progeny were assessed. Offspring from zinc-deprived parents exhibited a significant (p < 0.05) increase in body weight and whole-body zinc levels. They also displayed disrupted glucose metabolism, altered lipid homeostasis, and diminished activity of antioxidant enzymes. Gene expression analysis revealed significant (p < 0.05) alterations in zinc transport genes, with increases in mRNA levels of dZIP1 and dZnT1 for female and male offspring, respectively. Both sexes exhibited reduced dZnT35C mRNA levels and significant (p < 0.05) increases in the mRNA levels of DILP2 and proinflammatory markers, Eiger and UPD2. Overall, female offspring showed higher sensitivity to parental zinc deficiency. Our findings underscore zinc's crucial role in maintaining health and the gender-specific responses to zinc deficiency. There is the need for further exploration of the underlying mechanisms behind these intergenerational effects.
Collapse
Affiliation(s)
- Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria;
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria
- Department of Human Physiology, Faculty of Health Sciences, Al-Hikmah University, Ilorin P.M.B. 1601, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan;
| | - Murtala Bello Abubakar
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| | - Tijjani Salihu Shinkafi
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria;
- Department of Biochemistry, Kampala International University, Western Campus, Bushenyi P.O. Box 71, Uganda
| | - Aminu Ishaka
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria;
- Department of Medical Biochemistry, Faculty of Basic Medial Sciences, College of Health Sciences, Nile University of Nigeria, Abuja F.C.T. 900108, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria;
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B. 2346, Nigeria;
| |
Collapse
|
6
|
Mendoza AD, Dietrich N, Tan CH, Herrera D, Kasiah J, Payne Z, Cubillas C, Schneider DL, Kornfeld K. Lysosome-related organelles contain an expansion compartment that mediates delivery of zinc transporters to promote homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2307143121. [PMID: 38330011 PMCID: PMC10873617 DOI: 10.1073/pnas.2307143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
Zinc is an essential nutrient-it is stored during periods of excess to promote detoxification and released during periods of deficiency to sustain function. Lysosome-related organelles (LROs) are an evolutionarily conserved site of zinc storage, but mechanisms that control the directional zinc flow necessary for homeostasis are not well understood. In Caenorhabditis elegans intestinal cells, the CDF-2 transporter stores zinc in LROs during excess. Here, we identify ZIPT-2.3 as the transporter that releases zinc during deficiency; ZIPT-2.3 transports zinc, localizes to the membrane of LROs in intestinal cells, and is necessary for zinc release from LROs and survival during zinc deficiency. In zinc excess and deficiency, the expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated at the level of mRNA and protein, establishing a fundamental mechanism for directional flow to promote homeostasis. To elucidate how the ratio of CDF-2 and ZIPT-2.3 is altered, we used super-resolution microscopy to demonstrate that LROs are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment increases in volume during zinc excess and deficiency. These results identify the expansion compartment as an unexpected structural feature of LROs that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis, likely minimizing the disturbance to the acidified compartment.
Collapse
Affiliation(s)
- Adelita D. Mendoza
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Herrera
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Zachary Payne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Ciro Cubillas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
7
|
Ghosn ZA, Sparks KM, Spaulding JL, Vutukuri S, Ahmed MJJ, VanBerkum MFA. Divalent metal content in diet affects severity of manganese toxicity in Drosophila. Biol Open 2024; 13:bio060204. [PMID: 38117005 PMCID: PMC10810561 DOI: 10.1242/bio.060204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Dysregulation of manganese (Mn) homeostasis is a contributing factor in many neuro-degenerative diseases. Adult Drosophila are sensitive to excessive levels of dietary Mn, dying relatively early, and exhibiting biochemical and mobility changes reminiscent of Parkinsonian conditions. To further study Mn homeostasis in Drosophila, we sought to test lower levels of dietary Mn (5 mM) and noted a striking difference in Canton-S adult survivorship on different food. On a cornmeal diet, Mn-treated flies live only about half as long as untreated siblings. Yet, with the same Mn concentration in a molasses diet, adults survive about 80% as long as untreated siblings, and adults raised on a sucrose-yeast diet are completely insensitive to this low dose of dietary Mn. By manipulating metal ion content in the cornmeal diet, and measuring the metal content in each diet, we traced the difference in lifespan to the levels of calcium and magnesium in the food, suggesting that these ions are involved in Mn uptake and/or use. Based on these findings, it is recommended that the total dietary load of metal ions be considered when assessing Mn toxicity.
Collapse
Affiliation(s)
- Zahraa A. Ghosn
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Kailynn M. Sparks
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Jacob L. Spaulding
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Sanjana Vutukuri
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Mirza J. J. Ahmed
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Mark F. A. VanBerkum
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
8
|
Sanusi KO, Abubakar MB, Ibrahim KG, Imam MU. Paternal Zinc Deficiency and Its Transgenerational Effects on Zinc Transporters in Drosophila. J Nutr Sci Vitaminol (Tokyo) 2024; 70:462-469. [PMID: 39756966 DOI: 10.3177/jnsv.70.462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The nutritional status of fathers plays a significant role in influencing the growth, metabolism, and susceptibility to diseases in their offspring. Paternal zinc deficiency can lead to developmental programming effects on the offspring's zinc homeostasis. This study investigated the effects of paternal zinc deficiency on the zinc homeostasis of offspring in a Drosophila melanogaster (fruit fly) model. Male flies were reared on a diet supplemented with a zinc-chelator, N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), from the egg stage until adulthood, and their offspring were subsequently reared on a normal diet for 7 d. Body zinc status and zinc transporters were assessed afterwards. The results indicated that the prenatal zinc deficiency significantly lowered total body zinc levels (p<0.05) compared to the controls. Additionally, the mRNA levels of zinc transporters, dZip42C.1, dZnT63C, and dZnT35C, were lower in the zinc-deficient male parents (p<0.05) and their male offspring (p<0.05). These findings suggested that paternal zinc deficiency can alter offspring zinc homeostasis, even when the offspring was fed a zinc-sufficient diet. This is an important finding, as zinc is an essential nutrient that is required for a variety of bodily functions. Further research is needed to better understand the mechanisms by which zinc deficiency in the male parent affects the health of the offspring and to develop strategies to prevent this from happening.
Collapse
Affiliation(s)
- Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University
- Department of Physiology, Usmanu Danfodiyo University
- Department of Human Physiology, Al-Hikmah University
| | - Murtala Bello Abubakar
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Zarqa University
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University
- Department of Medical Biochemistry, Usmanu Danfodiyo University
| |
Collapse
|
9
|
Liu L, Zhao D, Wang G, He Q, Song Y, Jiang Y, Xia Q, Zhao P. Adaptive Changes in Detoxification Metabolism and Transmembrane Transport of Bombyx mori Malpighian Tubules to Artificial Diet. Int J Mol Sci 2023; 24:9949. [PMID: 37373097 DOI: 10.3390/ijms24129949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The high adaptability of insects to food sources has contributed to their ranking among the most abundant and diverse species on Earth. However, the molecular mechanisms underlying the rapid adaptation of insects to different foods remain unclear. We explored the changes in gene expression and metabolic composition of the Malpighian tubules as an important metabolic excretion and detoxification organ in silkworms (Bombyx mori) fed mulberry leaf and artificial diets. A total of 2436 differentially expressed genes (DEGs) and 245 differential metabolites were identified between groups, with the majority of DEGs associated with metabolic detoxification, transmembrane transport, and mitochondrial function. Detoxification enzymes, such as cytochrome P450 (CYP), glutathione-S-transferase (GST), and UDP-glycosyltransferase, and ABC and SLC transporters of endogenous and exogenous solutes were more abundant in the artificial diet group. Enzyme activity assays confirmed increased CYP and GST activity in the Malpighian tubules of the artificial diet-fed group. Metabolome analysis showed increased contents of secondary metabolites, terpenoids, flavonoids, alkaloids, organic acids, lipids, and food additives in the artificial diet group. Our findings highlight the important role of the Malpighian tubules in adaptation to different foods and provide guidance for further optimization of artificial diets to improve silkworm breeding.
Collapse
Affiliation(s)
- Lijing Liu
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Dongchao Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Genhong Wang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Qingxiu He
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Yuwei Song
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Yulu Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| |
Collapse
|
10
|
Naccarato A, Vommaro ML, Amico D, Sprovieri F, Pirrone N, Tagarelli A, Giglio A. Triazine Herbicide and NPK Fertilizer Exposure: Accumulation of Heavy Metals and Rare Earth Elements, Effects on Cuticle Melanization, and Immunocompetence in the Model Species Tenebrio molitor. TOXICS 2023; 11:499. [PMID: 37368599 DOI: 10.3390/toxics11060499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The increasing use of agrochemicals, including fertilizers and herbicides, has led to worrying metal contamination of soils and waters and raises serious questions about the effects of their transfer to different levels of the trophic web. Accumulation and biomagnification of essential (K, Na, Mg, Zn, Ca), nonessential (Sr, Hg, Rb, Ba, Se, Cd, Cr, Pb, As), and rare earth elements (REEs) were investigated in newly emerged adults of Tenebrio molitor exposed to field-admitted concentrations of a metribuzin-based herbicide and an NPK blend fertilizer. Chemical analyses were performed using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) supported by unsupervised pattern recognition techniques. Physiological parameters such as cuticle melanization, cellular (circulating hemocytes), and humoral (phenoloxidase enzyme activity) immune responses and mass loss were tested as exposure markers in both sexes. The results showed that NPK fertilizer application is the main cause of REE accumulation in beetles over time, besides toxic elements (Sr, Hg, Cr, Rb, Ba, Ni, Al, V, U) also present in the herbicide-treated beetles. The biomagnification of Cu and Zn suggested a high potential for food web transfer in agroecosystems. Gender differences in element concentrations suggested that males and females differ in element uptake and excretion. Differences in phenotypic traits show that exposure affects metabolic pathways involving sequestration and detoxification during the transition phase from immature-to-mature beetles, triggering a redistribution of resources between sexual maturation and immune responses. Our findings highlight the importance of setting limits for metals and REEs in herbicides and fertilizers to avoid adverse effects on species that provide ecosystem services and contribute to soil health in agroecosystems.
Collapse
Affiliation(s)
- Attilio Naccarato
- Department of Chemistry and Chemical Technologies, University of Calabria,87036 Rende, Italy
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| | - Domenico Amico
- CNR-Institute of Atmospheric Pollution Research, 87036 Rende, Italy
| | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, 87036 Rende, Italy
| | - Antonio Tagarelli
- Department of Chemistry and Chemical Technologies, University of Calabria,87036 Rende, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
11
|
Ji X, Gao J, Wei T, Jin L, Xiao G. Fear-of-intimacy-mediated zinc transport is required for Drosophila fat body endoreplication. BMC Biol 2023; 21:88. [PMID: 37069617 PMCID: PMC10111752 DOI: 10.1186/s12915-023-01588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Endoreplication is involved in the development and function of many organs, the pathologic process of several diseases. However, the metabolic underpinnings and regulation of endoreplication have yet to be well clarified. RESULTS Here, we showed that a zinc transporter fear-of-intimacy (foi) is necessary for Drosophila fat body endoreplication. foi knockdown in the fat body led to fat body cell nuclei failure to attain standard size, decreased fat body size and pupal lethality. These phenotypes could be modulated by either altered expression of genes involved in zinc metabolism or intervention of dietary zinc levels. Further studies indicated that the intracellular depletion of zinc caused by foi knockdown results in oxidative stress, which activates the ROS-JNK signaling pathway, and then inhibits the expression of Myc, which is required for tissue endoreplication and larval growth in Drosophila. CONCLUSIONS Our results indicated that FOI is critical in coordinating fat body endoreplication and larval growth in Drosophila. Our study provides a novel insight into the relationship between zinc and endoreplication in insects and may provide a reference for relevant mammalian studies.
Collapse
Affiliation(s)
- Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiajia Gao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tian Wei
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Li Jin
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China.
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
12
|
Roles of ZnT86D in Neurodevelopment and Pathogenesis of Alzheimer Disease in a Drosophila melanogaster Model. Int J Mol Sci 2022; 23:ijms231911832. [PMID: 36233134 PMCID: PMC9569493 DOI: 10.3390/ijms231911832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Zinc is a fundamental trace element essential for numerous biological processes, and zinc homeostasis is regulated by the Zrt-/Irt-like protein (ZIP) and zinc transporter (ZnT) families. ZnT7 is mainly localized in the Golgi apparatus and endoplasmic reticulum (ER) and transports zinc into these organelles. Although previous studies have reported the role of zinc in animal physiology, little is known about the importance of zinc in the Golgi apparatus and ER in animal development and neurodegenerative diseases. In this study, we demonstrated that ZnT86D, a Drosophila ortholog of ZnT7, plays a pivotal role in the neurodevelopment and pathogenesis of Alzheimer disease (AD). When ZnT86D was silenced in neurons, the embryo-to-adult survival rate, locomotor activity, and lifespan were dramatically reduced. The toxic phenotypes were accompanied by abnormal neurogenesis and neuronal cell death. Furthermore, knockdown of ZnT86D in the neurons of a Drosophila AD model increased apoptosis and exacerbated neurodegeneration without significant changes in the deposition of amyloid beta plaques and susceptibility to oxidative stress. Taken together, our results suggest that an appropriate distribution of zinc in the Golgi apparatus and ER is important for neuronal development and neuroprotection and that ZnT7 is a potential protective factor against AD.
Collapse
|
13
|
Zabihihesari A, Parand S, Coulthard AB, Molnar A, Hilliker AJ, Rezai P. An in-vivo microfluidic assay reveals cardiac toxicity of heavy metals and the protective effect of metal responsive transcription factor (MTF-1) in Drosophila model. 3 Biotech 2022; 12:279. [PMID: 36275358 PMCID: PMC9478020 DOI: 10.1007/s13205-022-03336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Previous toxicity assessments of heavy metals on Drosophila are limited to investigating the survival, development rate, and climbing behaviour by oral administration while cardiac toxicity of these elements have not been investigated. We utilized a microfluidic device to inject known dosages of zinc (Zn) or cadmium (Cd) into the larvae's hemolymph to expose their heart directly and study their heart rate and arrhythmicity. The effect of heart-specific overexpression of metal responsive transcription factor (MTF-1) on different heartbeat parameters and survival of Drosophila larvae was investigated. The heart rate of wild-type larvae decreased by 24.8% or increased by 11.9%, 15 min after injection of 40 nL of 100 mM Zn or 10 mM Cd solution, respectively. The arrhythmicity index of wild-type larvae increased by 58.2% or 76.8%, after injection of Zn or Cd, respectively. MTF-1 heart overexpression ameliorated these effects completely. Moreover, it increased larvae's survival to pupal and adulthood stages and prolonged the longevity of flies injected with Zn and Cd. Our microfluidic-based cardiac toxicity assay illustrated that heart is an acute target of heavy metals toxicity, and MTF-1 overexpression in this tissue can ameliorate cardiac toxicity of Zn and Cd. The method can be used for cardiotoxicity assays with other pollutants in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03336-7.
Collapse
Affiliation(s)
- Alireza Zabihihesari
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St, Toronto, ON M3J 1P3 Canada
| | - Shahrzad Parand
- Department of Psychology, Faculty of Health, York University, Toronto, ON Canada
| | | | | | | | - Pouya Rezai
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St, Toronto, ON M3J 1P3 Canada
| |
Collapse
|
14
|
Liu T, Zou L, Ji X, Xiao G. Chicken skin-derived collagen peptides chelated zinc promotes zinc absorption and represses tumor growth and invasion in vivo by suppressing autophagy. Front Nutr 2022; 9:960926. [PMID: 35990359 PMCID: PMC9381994 DOI: 10.3389/fnut.2022.960926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
To improve the utilization value of chicken by-products, we utilized the method of step-by-step hydrolysis with bromelain and flavourzyme to prepare low molecular weight chicken skin collagen peptides (CCP) (<5 kDa) and characterized the amino acids composition of the CCP. Then, we prepared novel CCP-chelated zinc (CCP–Zn) by chelating the CCP with ZnSO4. We found that the bioavailability of CCP–Zn is higher than ZnSO4. Besides, CCP, ZnSO4, or CCP–Zn effectively repressed the tumor growth, invasion, and migration in a Drosophila malignant tumor model. Moreover, the anti-tumor activity of CCP–Zn is higher than CCP or ZnSO4. Furthermore, the functional mechanism studies indicated that CCP, ZnSO4, or CCP–Zn inhibits tumor progression by reducing the autonomous and non-autonomous autophagy in tumor cells and the microenvironment. Therefore, this research provides in vivo evidence for utilizing chicken skin in the development of zinc supplements and cancer treatment in the future.
Collapse
Affiliation(s)
- Tengfei Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
15
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
16
|
Xiao G. Molecular physiology of zinc in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100899. [PMID: 35276390 DOI: 10.1016/j.cois.2022.100899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
New research in Drosophila melanogaster has revealed the molecular mechanisms of zinc involvement in many biological processes. A newly discovered Metallothionein is predicted to have a higher zinc specificity than the other isoforms. Zinc negatively regulates tyrosine hydroxylase activity by antagonizing iron binding, thus rendering the enzyme ineffective or non-functional. The identification of a new chaperone of the protein disulfide isomerase family provided mechanistic insight into the protein trafficking defects caused by zinc dyshomeostasis in the secretory pathway. Insect models of tumor pathogenesis indicate that zinc regulates the structural stabilization of cells by transcriptionally regulating matrix metalloproteinases while zinc dyshomeostasis in the secretory pathway modulates cell signaling through endoplastic recticulum stress.
Collapse
Affiliation(s)
- Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
17
|
Abstract
SignificanceZinc deficiency in the human population, a major public health concern, can also be a consequence of nutritional deficiency in protein uptake. The discovery that tryptophan metabolites 3-hydroxykynurenine and xanthurenic acid are major zinc-binding ligands in insect cells establishes the kynurenine pathway as a regulator of systemic zinc homeostasis. Many biological processes influenced by zinc and the kynurenine pathway, including the regulation of innate and acquired immune responses to viral infections, have not been studied in light of the direct molecular links revealed in this study.
Collapse
|
18
|
Fedele G, Loh SHY, Celardo I, Leal NS, Lehmann S, Costa AC, Martins LM. Suppression of intestinal dysfunction in a Drosophila model of Parkinson's disease is neuroprotective. NATURE AGING 2022; 2:317-331. [PMID: 37117744 DOI: 10.1038/s43587-022-00194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/16/2022] [Indexed: 04/30/2023]
Abstract
The innate immune response mounts a defense against foreign invaders and declines with age. An inappropriate induction of this response can cause diseases. Previous studies showed that mitochondria can be repurposed to promote inflammatory signaling. Damaged mitochondria can also trigger inflammation and promote diseases. Mutations in pink1, a gene required for mitochondrial health, cause Parkinson's disease, and Drosophila melanogaster pink1 mutants accumulate damaged mitochondria. Here, we show that defective mitochondria in pink1 mutants activate Relish targets and demonstrate that inflammatory signaling causes age-dependent intestinal dysfunction in pink1-mutant flies. These effects result in the death of intestinal cells, metabolic reprogramming and neurotoxicity. We found that Relish signaling is activated downstream of a pathway stimulated by cytosolic DNA. Suppression of Relish in the intestinal midgut of pink1-mutant flies restores mitochondrial function and is neuroprotective. We thus conclude that gut-brain communication modulates neurotoxicity in a fly model of Parkinson's disease through a mechanism involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giorgio Fedele
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Susann Lehmann
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Ana C Costa
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
19
|
Wang S, Ju Y, Gao L, Miao Y, Qiao H, Wang Y. The fruit fly kidney stone models and their application in drug development. Heliyon 2022; 8:e09232. [PMID: 35399385 PMCID: PMC8987614 DOI: 10.1016/j.heliyon.2022.e09232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 01/11/2023] Open
Abstract
Kidney stone disease is a global problem affecting about 12% of the world population. Novel treatments to control this disease have a huge demand. Here we argue that the fruit fly, as an emerging kidney stone model, can provide a platform for the discovery of new drugs. The renal system of fruit fly (Malpighian tubules) is similar to the mammalian renal tubules in both function and structure. Different fruit fly models for different types of kidney stones including calcium oxalate (CaOx) stones, xanthine stones, uric acid stone, and calcium phosphate (CaP) stones have been successfully established through dietary or genetic approaches in the last ten years, notably improved our understanding of the formation mechanisms of kidney stone diseases. The fruit fly CaOx stones model, which is mediated by treatment with dietary lithogenic agents, is also one of the most potential models for drug development. Various potential antilithogenic agents have been identified using this model, including new chemical compounds and medicinal plants. The fruit fly kidney stone models also afford opportunities to study the therapeutic mechanism of these drugs in deeper.
Collapse
Affiliation(s)
- Shiyao Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yingjie Ju
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Lujuan Gao
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Huanhuan Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yiwen Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| |
Collapse
|
20
|
Ceder MM, Fredriksson R. A phylogenetic analysis between humans and D. melanogaster: A repertoire of solute carriers in humans and flies. Gene 2022; 809:146033. [PMID: 34673204 DOI: 10.1016/j.gene.2021.146033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/04/2022]
Abstract
The solute carrier (SLC) superfamily is the largest group of transporters in humans, with the role to transport solutes across plasma membranes. The SLCs are currently divided into 65 families with 430 members. Here, we performed a detailed mining of the SLC superfamily and the recent annotated family of "atypical" SLCs in human and D. melanogaster using Hidden Markov Models and PSI-BLAST. Our analyses identified 381 protein sequences in D. melanogaster and of those, 55 proteins have not been previously identified in flies. In total, 11 of the 65 human SLC families were found to not be conserved in flies, while a few families are highly conserved, which perhaps reflects the families' functions and roles in cellular pathways. This study provides the first collection of all SLC sequences in D. melanogaster and can serve as a SLC database to be used for classification of SLCs in other phyla.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden; Sensory Circuits, Department of Neuroscience, Uppsala University, Uppsala, Sweden, Mikaela.
| | - Robert Fredriksson
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Demir E. The potential use of Drosophila as an in vivo model organism for COVID-19-related research: a review. Turk J Biol 2021; 45:559-569. [PMID: 34803454 PMCID: PMC8573831 DOI: 10.3906/biy-2104-26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
The world urgently needs effective antiviral approaches against emerging viruses, as shown by the coronavirus disease 2019 (COVID-19) pandemic, which has become an exponentially growing health crisis. Scientists from diverse backgrounds have directed their efforts towards identifying key features of SARS-CoV-2 and clinical manifestations of COVID-19 infection. Reports of more transmissible variants of SARS-CoV-2 also raise concerns over the possibility of an explosive trajectory of the pandemic, so scientific attention should focus on developing new weapons to help win the fight against coronaviruses that may undergo further mutations in the future. Drosophila melanogaster offers a powerful and potential in vivo model that can significantly increase the efficiency of drug screening for viral and bacterial infections. Thanks to its genes with functional human homologs, Drosophila could play a significant role in such gene-editing studies geared towards designing vaccines and antiviral drugs for COVID-19. It can also help rectify current drawbacks of CRISPR-based therapeutics like off-target effects and delivery issues, representing another momentous step forward in healthcare. Here I present an overview of recent literature and the current state of knowledge, explaining how it can open up new avenues for Drosophila in our battle against infectious diseases.
Collapse
Affiliation(s)
- Eşref Demir
- Medical Laboratory Techniques Program, Department of Medical Services and Techniques, Vocational School of Health Services, Antalya Bilim University, Antalya Turkey
| |
Collapse
|
22
|
Slobodian MR, Petahtegoose JD, Wallis AL, Levesque DC, Merritt TJS. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. TOXICS 2021; 9:269. [PMID: 34678965 PMCID: PMC8540122 DOI: 10.3390/toxics9100269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
The biological effects of environmental metal contamination are important issues in an industrialized, resource-dependent world. Different metals have different roles in biology and can be classified as essential if they are required by a living organism (e.g., as cofactors), or as non-essential metals if they are not. While essential metal ions have been well studied in many eukaryotic species, less is known about the effects of non-essential metals, even though essential and non-essential metals are often chemically similar and can bind to the same biological ligands. Insects are often exposed to a variety of contaminated environments and associated essential and non-essential metal toxicity, but many questions regarding their response to toxicity remain unanswered. Drosophila melanogaster is an excellent insect model species in which to study the effects of toxic metal due to the extensive experimental and genetic resources available for this species. Here, we review the current understanding of the impact of a suite of essential and non-essential metals (Cu, Fe, Zn, Hg, Pb, Cd, and Ni) on the D. melanogaster metal response system, highlighting the knowledge gaps between essential and non-essential metals in D. melanogaster. This review emphasizes the need to use multiple metals, multiple genetic backgrounds, and both sexes in future studies to help guide future research towards better understanding the effects of metal contamination in general.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. S. Merritt
- Faculty of Science and Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada; (M.R.S.); (J.D.P.); (A.L.W.); (D.C.L.)
| |
Collapse
|
23
|
Tibbett M, Green I, Rate A, De Oliveira VH, Whitaker J. The transfer of trace metals in the soil-plant-arthropod system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146260. [PMID: 33744587 DOI: 10.1016/j.scitotenv.2021.146260] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Essential and non-essential trace metals are capable of causing toxicity to organisms above a threshold concentration. Extensive research has assessed the behaviour of trace metals in biological and ecological systems, but has typically focused on single organisms within a trophic level and not on multi-trophic transfer through terrestrial food chains. This reinforces the notion of metal toxicity as a closed system, failing to consider one trophic level as a pollution source to another; therefore, obscuring the full extent of ecosystem effects. Given the relatively few studies on trophic transfer of metals, this review has taken a compartment-based approach, where transfer of metals through trophic pathways is considered as a series of linked compartments (soil-plant-arthropod herbivore-arthropod predator). In particular, we consider the mechanisms by which trace metals are taken up by organisms, the forms and transformations that can occur within the organism and the consequences for trace metal availability to the next trophic level. The review focuses on four of the most prevalent metal cations in soil which are labile in terrestrial food chains: Cd, Cu, Zn and Ni. Current knowledge of the processes and mechanisms by which these metals are transformed and moved within and between trophic levels in the soil-plant-arthropod system are evaluated. We demonstrate that the key factors controlling the transfer of trace metals through the soil-plant-arthropod system are the form and location in which the metal occurs in the lower trophic level and the physiological mechanisms of each organism in regulating uptake, transformation, detoxification and transfer. The magnitude of transfer varies considerably depending on the trace metal concerned, as does its toxicity, and we conclude that biomagnification is not a general property of plant-arthropod and arthropod-arthropod systems. To deliver a more holistic assessment of ecosystem toxicity, integrated studies across ecosystem compartments are needed to identify critical pathways that can result in secondary toxicity across terrestrial food-chains.
Collapse
Affiliation(s)
- Mark Tibbett
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Whiteknights, RG6 6AR, UK.
| | - Iain Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset BH12 5BB, UK
| | - Andrew Rate
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Vinícius H De Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Jeanette Whitaker
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Lancaster LA1 4AP, UK
| |
Collapse
|
24
|
Everman ER, Cloud-Richardson KM, Macdonald SJ. Characterizing the genetic basis of copper toxicity in Drosophila reveals a complex pattern of allelic, regulatory, and behavioral variation. Genetics 2021; 217:1-20. [PMID: 33683361 PMCID: PMC8045719 DOI: 10.1093/genetics/iyaa020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
A range of heavy metals are required for normal cell function and homeostasis. However, the anthropogenic release of metal compounds into soil and water sources presents a pervasive health threat. Copper is one of many heavy metals that negatively impacts diverse organisms at a global scale. Using a combination of quantitative trait locus (QTL) mapping and RNA sequencing in the Drosophila Synthetic Population Resource, we demonstrate that resistance to the toxic effects of ingested copper in D. melanogaster is genetically complex and influenced by allelic and expression variation at multiple loci. QTL mapping identified several QTL that account for a substantial fraction of heritability. Additionally, we find that copper resistance is impacted by variation in behavioral avoidance of copper and may be subject to life-stage specific regulation. Gene expression analysis further demonstrated that resistant and sensitive strains are characterized by unique expression patterns. Several of the candidate genes identified via QTL mapping and RNAseq have known copper-specific functions (e.g., Ccs, Sod3, CG11825), and others are involved in the regulation of other heavy metals (e.g., Catsup, whd). We validated several of these candidate genes with RNAi suggesting they contribute to variation in adult copper resistance. Our study illuminates the interconnected roles that allelic and expression variation, organism life stage, and behavior play in copper resistance, allowing a deeper understanding of the diverse mechanisms through which metal pollution can negatively impact organisms.
Collapse
Affiliation(s)
- Elizabeth R Everman
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | - Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
- Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
25
|
Wang Z, Li X, Zhou B. Drosophila ZnT1 is essential in the intestine for dietary zinc absorption. Biochem Biophys Res Commun 2020; 533:1004-1011. [PMID: 33012507 DOI: 10.1016/j.bbrc.2020.09.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Zinc is an essential trace element and participates in a variety of biological processes. ZnT (SLC30) family members are generally responsible for zinc efflux across the membrane regulating zinc homeostasis. In mammals, the only predominantly plasma membrane resident ZnT has been reported to be ZnT1, and ZnT1-/ZnT1- mice die at the embryonic stage. In Drosophila, knock down of ZnT1 homologue (dZnT1//ZnT63C/CG17723) results in growth arrest under zinc-limiting conditions. To investigate the essentiality of dZnT1 for zinc homeostasis, as well as its role in dietary zinc uptake especially under normal physiological conditions, we generated dZnT1 mutants by the CRISPER/Cas9 method. Homozygous mutant dZnT1 is lethal, with substantial zinc accumulation in the iron cell region, posterior midgut as well as gastric caeca. Expression of human ZnT1 (hZnT1), in the whole body or in the entire midgut, fully rescued the dZnT1 mutant lethality, whereas tissue-specific expression of hZnT1 in the iron cell region and posterior midgut partially rescued the developmental defect of the dZnT1 mutant. Supplementation of zinc together with clioquinol or hinokitiol conferred a limited but observable rescue upon dZnT1 loss. Our work demonstrated the absolute requirement of dZnT1 in Drosophila survival and indicated that the most essential role of dZnT1 is in the gut.
Collapse
Affiliation(s)
- Zhiqing Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xinxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
26
|
Philipsen MH, Gu C, Ewing AG. Zinc Deficiency Leads to Lipid Changes in Drosophila Brain Similar to Cognitive-Impairing Drugs: An Imaging Mass Spectrometry Study. Chembiochem 2020; 21:2755-2758. [PMID: 32402134 PMCID: PMC7586942 DOI: 10.1002/cbic.202000197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/09/2020] [Indexed: 12/21/2022]
Abstract
Several diseases and disorders have been suggested to be associated with zinc deficiency, especially learning and memory impairment. To have better understanding about the connection between lipid changes and cognitive impairments, we investigated the effects of a zinc-chelated diet on certain brain lipids of Drosophila melanogaster by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The data revealed that there are increases in the levels of phosphatidylcholine and phosphatidylinositol in the central brains of the zinc-deficient flies compared to the control flies. In contrast, the abundance of phosphatidylethanolamine in the brains of the zinc-deficient flies is lower. These data are consistent with that of cognitive-diminishing drugs, thus providing insight into the biological and molecular effects of zinc deficiency on the major brain lipids and opening a new treatment target for cognitive deficit in zinc deficiency.
Collapse
Affiliation(s)
- Mai H. Philipsen
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4412 96GöteborgSweden
| | - Chaoyi Gu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 4412 96GöteborgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 4412 96GöteborgSweden
| |
Collapse
|
27
|
The involvement of zinc transporters in the zinc accumulation in the Pacific oyster Crassostrea gigas. Gene 2020; 750:144759. [DOI: 10.1016/j.gene.2020.144759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
|
28
|
Lithium Content of 160 Beverages and Its Impact on Lithium Status in Drosophila melanogaster. Foods 2020; 9:foods9060795. [PMID: 32560287 PMCID: PMC7353479 DOI: 10.3390/foods9060795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022] Open
Abstract
Lithium (Li) is an important micronutrient in human nutrition, although its exact molecular function as a potential essential trace element has not yet been fully elucidated. It has been previously shown that several mineral waters are rich and highly bioavailable sources of Li for human consumption. Nevertheless, little is known about the extent in which other beverages contribute to the dietary Li supply. To this end, the Li content of 160 different beverages comprising wine and beer, soft and energy drinks and tea and coffee infusions was analysed by inductively coupled plasma mass spectrometry (ICP-MS). Furthermore, a feeding study in Drosophila melanogaster was conducted to test whether Li derived from selected beverages changes Li status in flies. In comparison to the average Li concentration in mineral waters (108 µg/L; reference value), the Li concentration in wine (11.6 ± 1.97 µg/L) and beer (8.5 ± 0.77 µg/L), soft and energy drinks (10.2 ± 2.95 µg/L), tea (2.8 ± 0.65 µg/L) and coffee (0.1 ± 0.02 µg/L) infusions was considerably lower. Only Li-rich mineral water (~1600 µg/L) significantly increased Li concentrations in male and female flies. Unlike mineral water, most wine and beer, soft and energy drink and tea and coffee samples were rather Li-poor food items and thus may only contribute to a moderate extent to the dietary Li supply. A novelty of this study is that it relates analytical Li concentrations in beverages to Li whole body retention in Drosophila melanogaster.
Collapse
|
29
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
30
|
George J, Tuomela T, Kemppainen E, Nurminen A, Braun S, Yalgin C, Jacobs HT. Mitochondrial dysfunction generates a growth-restraining signal linked to pyruvate in Drosophila larvae. Fly (Austin) 2019; 13:12-28. [PMID: 31526131 PMCID: PMC6988875 DOI: 10.1080/19336934.2019.1662266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila bang-sensitive mutant tko25t, manifesting a global deficiency in oxidative phosphorylation due to a mitochondrial protein synthesis defect, exhibits a pronounced delay in larval development. We previously identified a number of metabolic abnormalities in tko25t larvae, including elevated pyruvate and lactate, and found the larval gut to be a crucial tissue for the regulation of larval growth in the mutant. Here we established that expression of wild-type tko in any of several other tissues of tko25t also partially alleviates developmental delay. The effects appeared to be additive, whilst knockdown of tko in a variety of specific tissues phenocopied tko25t, producing developmental delay and bang-sensitivity. These findings imply the existence of a systemic signal regulating growth in response to mitochondrial dysfunction. Drugs and RNAi-targeted on pyruvate metabolism interacted with tko25t in ways that implicated pyruvate or one of its metabolic derivatives in playing a central role in generating such a signal. RNA-seq revealed that dietary pyruvate-induced changes in transcript representation were mostly non-coherent with those produced by tko25t or high-sugar, consistent with the idea that growth regulation operates primarily at the translational and/or metabolic level.
Collapse
Affiliation(s)
- Jack George
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tea Tuomela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Esko Kemppainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samuel Braun
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Cagri Yalgin
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Dar MI, Green ID, Khan FA. Trace metal contamination: Transfer and fate in food chains of terrestrial invertebrates. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2019.e00116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Drosophila ZIP13 is posttranslationally regulated by iron-mediated stabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1487-1497. [DOI: 10.1016/j.bbamcr.2019.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
|
33
|
Kolosov D, Donly C, MacMillan H, O'Donnell MJ. Transcriptomic analysis of the Malpighian tubules of Trichoplusia ni: Clues to mechanisms for switching from ion secretion to ion reabsorption in the distal ileac plexus. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:73-89. [PMID: 30562492 DOI: 10.1016/j.jinsphys.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/02/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Excretion of metabolic wastes and toxins in insect Malpighian tubules (MTs) is coupled to secretion of ions and fluid. Larval lepidopterans demonstrate a complex and regionalized MT morphology, and recent studies of larvae of the cabbage looper, Trichoplusia ni, have revealed several unusual aspects of ion transport in the MTs. Firstly, cations are reabsorbed via secondary cells (SCs) in T. ni, whereas in most insects SCs secrete ions. Secondly, SCs are coupled to neighbouring principal cells (PCs) via gap junctions to enable such ion reabsorption. Thirdly, PCs in the SC-containing distal ileac plexus (DIP) region of the tubule reverse from cation secretion to reabsorption in response to dietary ion loading. Lastly, antidiuresis is observed in response to a kinin neuropeptide, which targets both PCs and SCs, whereas in most insects kinins are diuretics that act exclusively via SCs. Recent studies have generated a basic model of ion transport in the DIP of the larval T. ni. RNAseq was used to elucidate previously uncharacterised aspects of ion transport and endocrine regulation in the DIP, with the aim of painting a composite picture of ion transport and identifying putative regulatory mechanisms of ion transport reversal in this tissue. Results indicated an overall expression of 9103 transcripts in the DIP, 993 and 382 of which were differentially expressed in the DIP of larvae fed high-K+ and high-Na+ diets respectively. Differentially expressed transcripts include ion-motive ATPases, ion channels and co-transporters, aquaporins, nutrient and xenobiotic transporters, cell adhesion and junction components, and endocrine receptors. Notably, several transcripts for voltage-gated ion channels and cell volume regulation-associated products were detected in the DIP and differentially expressed in larvae fed ion-rich diet. The study provides insights into the transport of solutes (sugars, amino acids, xenobiotics, phosphate and inorganic ions) by the DIP of lepidopterans. Our data suggest that this region of the MT in lepidopterans (as previously reported) transports cations, fluid, and xenobiotics/toxic metals. Besides this, the DIP expresses genes coding for the machinery involved in Na+- and H+-dependent reabsorption of solutes, chloride transport, and base recovery. Additionally, many of the transcripts expressed by the DIP a capacity of this region to respond to, process, and sometimes produce, neuropeptides, steroid hormones and neurotransmitters. Lastly, the DIP appears to possess an arsenal of septate junction components, differential expression of which may indicate junctional restructuring in the DIP of ion-loaded larvae.
Collapse
Affiliation(s)
| | - Cam Donly
- Department of Biology, University of Western Ontario, Canada; London Research and Development Centre, Agriculture and Agri-Food Canada, Canada
| | | | | |
Collapse
|
34
|
Landry GM, Furrow E, Holmes HL, Hirata T, Kato A, Williams P, Strohmaier K, Gallo CJR, Chang M, Pandey MK, Jiang H, Bansal A, Franz MC, Montalbetti N, Alexander MP, Cabrero P, Dow JAT, DeGrado TR, Romero MF. Cloning, function, and localization of human, canine, and Drosophila ZIP10 (SLC39A10), a Zn 2+ transporter. Am J Physiol Renal Physiol 2018; 316:F263-F273. [PMID: 30520657 DOI: 10.1152/ajprenal.00573.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zinc (Zn2+) is the second most abundant trace element, but is considered a micronutrient, as it is a cofactor for many enzymes and transcription factors. Whereas Zn2+ deficiency can cause cognitive immune or metabolic dysfunction and infertility, excess Zn2+ is nephrotoxic. As for other ions and solutes, Zn2+ is moved into and out of cells by specific membrane transporters: ZnT, Zip, and NRAMP/DMT proteins. ZIP10 is reported to be localized at the apical membrane of renal proximal tubules in rats, where it is believed to play a role in Zn2+ import. Renal regulation of Zn2+ is of particular interest in light of growing evidence that Zn2+ may play a role in kidney stone formation. The objective of this study was to show that ZIP10 homologs transport Zn2+, as well as ZIP10, kidney localization across species. We cloned ZIP10 from dog, human, and Drosophila ( CG10006), tested clones for Zn2+ uptake in Xenopus oocytes and localized the protein in renal structures. CG10006, rather than foi (fear-of-intimacy, CG6817) is the primary ZIP10 homolog found in Drosophila Malpighian tubules. The ZIP10 antibody recognizes recombinant dog, human, and Drosophila ZIP10 proteins. Immunohistochemistry reveals that ZIP10 in higher mammals is found not only in the proximal tubule, but also in the collecting duct system. These ZIP10 proteins show Zn2+ transport. Together, these studies reveal ZIP10 kidney localization, a role in renal Zn2+ transport, and indicates that CG10006 is a Drosophila homolog of ZIP10.
Collapse
Affiliation(s)
- Greg M Landry
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Eva Furrow
- Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota , St. Paul, Minnesota
| | - Heather L Holmes
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Taku Hirata
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Akira Kato
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Center for Biological Resources and Informatics and Department of Biological Sciences, Tokyo Institute of Technology , Yokohama , Japan
| | - Paige Williams
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Käri Strohmaier
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Chris J R Gallo
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Minhwang Chang
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Mukesh K Pandey
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Huailei Jiang
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Aditya Bansal
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Marie-Christine Franz
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Nicolas Montalbetti
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Mariam P Alexander
- Laboratory of Medicine and Pathology, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Pablo Cabrero
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Timothy R DeGrado
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Michael F Romero
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| |
Collapse
|
35
|
Tejeda-Guzmán C, Rosas-Arellano A, Kroll T, Webb SM, Barajas-Aceves M, Osorio B, Missirlis F. Biogenesis of zinc storage granules in Drosophila melanogaster. J Exp Biol 2018; 221:jeb168419. [PMID: 29367274 PMCID: PMC5897703 DOI: 10.1242/jeb.168419] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers.
Collapse
Affiliation(s)
- Carlos Tejeda-Guzmán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Abraham Rosas-Arellano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Martha Barajas-Aceves
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Beatriz Osorio
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| |
Collapse
|
36
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
37
|
Navarro JA, Schneuwly S. Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster. Front Genet 2017; 8:223. [PMID: 29312444 PMCID: PMC5743009 DOI: 10.3389/fgene.2017.00223] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023] Open
Abstract
Maintenance of metal homeostasis is crucial for many different enzymatic activities and in turn for cell function and survival. In addition, cells display detoxification and protective mechanisms against toxic accumulation of metals. Perturbation of any of these processes normally leads to cellular dysfunction and finally to cell death. In the last years, loss of metal regulation has been described as a common pathological feature in many human neurodegenerative diseases. However, in most cases, it is still a matter of debate whether such dyshomeostasis is a primary or a secondary downstream defect. In this review, we will summarize and critically evaluate the contribution of Drosophila to model human diseases that involve altered metabolism of metals or in which metal dyshomeostasis influence their pathobiology. As a prerequisite to use Drosophila as a model, we will recapitulate and describe the main features of core genes involved in copper and zinc metabolism that are conserved between mammals and flies. Drosophila presents some unique strengths to be at the forefront of neurobiological studies. The number of genetic tools, the possibility to easily test genetic interactions in vivo and the feasibility to perform unbiased genetic and pharmacological screens are some of the most prominent advantages of the fruitfly. In this work, we will pay special attention to the most important results reported in fly models to unveil the role of copper and zinc in cellular degeneration and their influence in the development and progression of human neurodegenerative pathologies such as Parkinson's disease, Alzheimer's disease, Huntington's disease, Friedreich's Ataxia or Menkes, and Wilson's diseases. Finally, we show how these studies performed in the fly have allowed to give further insight into the influence of copper and zinc in the molecular and cellular causes and consequences underlying these diseases as well as the discovery of new therapeutic strategies, which had not yet been described in other model systems.
Collapse
Affiliation(s)
- Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
38
|
Dow JA. The essential roles of metal ions in insect homeostasis and physiology. CURRENT OPINION IN INSECT SCIENCE 2017; 23:43-50. [PMID: 29129281 DOI: 10.1016/j.cois.2017.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Metal ions play distinct roles in living organisms, including insects. Some, like sodium and potassium, are central players in osmoregulation and 'blood and guts' transport physiology, and have been implicated in cold adaptation. Calcium is a key player as a second messenger, and as a structural element. Other metals, particularly those with multiple redox states, can be cofactors in many metalloenzymes, but can contribute to toxic oxidative stress on the organism in excess. This short review selects some examples where classical knowledge has been supplemented with recent advances, in order to emphasize the importance of metals as essential nutrients for insect survival.
Collapse
Affiliation(s)
- Julian At Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
39
|
Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltó MD. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int J Mol Sci 2017; 18:E1456. [PMID: 28684721 PMCID: PMC5535947 DOI: 10.3390/ijms18071456] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster. Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided.
Collapse
Affiliation(s)
- Pablo Calap-Quintana
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
| | - Javier González-Fernández
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
| | - Noelia Sebastiá-Ortega
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| | - José Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
| | - María Dolores Moltó
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| |
Collapse
|