1
|
Cabrera JCB, Hirl RT, Schäufele R, Zhu J, Liu HT, Gong XY, Ogée J, Schnyder H. Half of the 18O enrichment of leaf sucrose is conserved in leaf cellulose of a C 3 grass across atmospheric humidity and CO 2 levels. PLANT, CELL & ENVIRONMENT 2024; 47:2274-2287. [PMID: 38488789 DOI: 10.1111/pce.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 04/30/2024]
Abstract
The 18O enrichment (Δ18O) of cellulose (Δ18OCel) is recognized as a unique archive of past climate and plant function. However, there is still uncertainty regarding the proportion of oxygen in cellulose (pex) that exchanges post-photosynthetically with medium water of cellulose synthesis. Particularly, recent research with C3 grasses demonstrated that the Δ18O of leaf sucrose (Δ18OSuc, the parent substrate for cellulose synthesis) can be much higher than predicted from daytime Δ18O of leaf water (Δ18OLW), which could alter conclusions on photosynthetic versus post-photosynthetic effects on Δ18OCel via pex. Here, we assessed pex in leaves of perennial ryegrass (Lolium perenne) grown at different atmospheric relative humidity (RH) and CO2 levels, by determinations of Δ18OCel in leaves, Δ18OLGDZW (the Δ18O of water in the leaf growth-and-differentiation zone) and both Δ18OSuc and Δ18OLW (adjusted for εbio, the biosynthetic fractionation between water and carbohydrates) as alternative proxies for the substrate for cellulose synthesis. Δ18OLGDZW was always close to irrigation water, and pex was similar (0.53 ± 0.02 SE) across environments when determinations were based on Δ18OSuc. Conversely, pex was erroneously and variably underestimated (range 0.02-0.44) when based on Δ18OLW. The photosynthetic signal fraction in Δ18OCel is much more constant than hitherto assumed, encouraging leaf physiological reconstructions.
Collapse
Affiliation(s)
- Juan C Baca Cabrera
- Lehrstuhl für Grünlandlehre, Technische Universität München, Freising-Weihenstephan, Germany
- Forschungszentrum Jülich, Institute of Bio- and Geoscience, Agrosphere (IBG-3), Wilhelm-Johnen-Strasse, Jülich, Germany
| | - Regina T Hirl
- Lehrstuhl für Grünlandlehre, Technische Universität München, Freising-Weihenstephan, Germany
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Freising-Weihenstephan, Germany
- Crop Physiology Lab, Technische Universität München, Freising-Weihenstephan, Germany
| | - Jianjun Zhu
- Lehrstuhl für Grünlandlehre, Technische Universität München, Freising-Weihenstephan, Germany
| | - Hai Tao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jérôme Ogée
- INRAE, Bordeaux Sciences Agro, UMR ISPA, Villenave d'Ornon, France
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
2
|
Morgner E, Holloway-Phillips M, Basler D, Nelson DB, Kahmen A. Effects of increasing atmospheric CO 2 on leaf water δ 18O values are small and are attenuated in grasses and amplified in dicotyledonous herbs and legumes when transferred to cellulose δ 18O values. THE NEW PHYTOLOGIST 2024. [PMID: 38575849 DOI: 10.1111/nph.19713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
The oxygen isotope composition of cellulose (δ18O values) has been suggested to contain information on stomatal conductance (gs) responses to rising pCO2. The extent by which pCO2 affects leaf water and cellulose δ18O values (δ18OLW and δ18OC) and the isotope processes that determine pCO2 effects on δ18OLW and δ18OC are, however, unknown. We tested the effects of pCO2 on gs, δ18OLW and δ18OC in a glasshouse experiment, where six plant species were grown under pCO2 ranging from 200 to 500 ppm. Increasing pCO2 caused a decline in gs and an increase in δ18OLW, as expected. Importantly, the effects of pCO2 on gs and δ18OLW were small and pCO2 effects on δ18OLW were not directly transferred to δ18OC but were attenuated in grasses and amplified in dicotyledonous herbs and legumes. This is likely because of functional group-specific pCO2 effects on the model parameter pxpex. Our study highlights important uncertainties when using δ18OC as a proxy for gs. Specifically, pCO2-triggered gs effects on δ18OLW and δ18OC are possibly too small to be detected in natural settings and a pCO2 effect on pxpex may render the commonly assumed negative linkage between δ18OC and gs to be incorrect, potentially confounding δ18OC based gs reconstructions.
Collapse
Affiliation(s)
- Eva Morgner
- Department of Environmental Sciences - Botany, University of Basel, 4056, Basel, Switzerland
| | | | - David Basler
- Department of Environmental Sciences - Botany, University of Basel, 4056, Basel, Switzerland
| | - Daniel B Nelson
- Department of Environmental Sciences - Botany, University of Basel, 4056, Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, 4056, Basel, Switzerland
| |
Collapse
|
3
|
Mahmoud AWM, Rashad HM, Esmail SEA, Alsamadany H, Abdeldaym EA. Application of Silicon, Zinc, and Zeolite Nanoparticles-A Tool to Enhance Drought Stress Tolerance in Coriander Plants for Better Growth Performance and Productivity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2838. [PMID: 37570992 PMCID: PMC10421255 DOI: 10.3390/plants12152838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Drought stress in arid regions is a serious factor affecting yield quantity and quality of economic crops. Under drought conditions, the application of nano-elements and nano-agents of water retention improved the water use efficiency, growth performance, and yield quantity of drought-stressed plants. For this objective, two field experiments were performed and organized as randomized complete block designs with six replications. The treatments included kaolin (5 t. ha-1) bentonite (12.5 t. ha-1), perlite (1.25 t.ha-1), N-zeolite (1.3 L.ha-1), N-silicon (2.5 L.ha-1), and N-zinc (2.5 L.ha-1). The current study showed that the application of silicon, zinc, and zeolite nanoparticles only positively influenced the morphological, physiological, and biochemical properties of the drought-stressed coriander plant. Exogenous application of N-silicon, N-zinc, and N-zeolite recorded the higher growth parameters of drought-stressed plants; namely, plant fresh weight, plant dry weight, leaf area, and root length than all the other treatments in both seasons. The improvement ratio, on average for both seasons, reached 17.93, 17.93, and 18.85% for plant fresh weight, 73.46, 73.46, and 75.81% for plant dry weight, 3.65, 3.65, and 3.87% for leaf area, and 17.46, 17.46, and 17.16% for root length of drought-stressed plants treated with N-silicon, N-zinc, and N-zeolite, respectively. For physiological responses, the application of N-zeolite, N-silicon, and N-zinc significantly increased leaf chlorophyll content, photosynthetic rate, water use efficiency, chlorophyll fluorescence, and photosystem II efficiency compared with the control in both seasons, respectively. Similar results were observed in antioxidant compounds, nutrient accumulation, and phytohormones. In contrast, those treatments markedly reduced the value of transpiration rate, nonphotochemical quenching, MDA, ABA, and CAT compared to control plants. Regarding the seed and oil yield, higher seed and oil yields were recorded in drought-stressed plants treated with N-zeolite followed by N-silicon and N-zinc than all the other treatments. Application of N-zeolite, N-silicon and N-zinc could be a promising approach to improve plant growth and productivity as well as to alleviate the adverse impacts of drought stress on coriander plants in arid and semi-arid areas.
Collapse
Affiliation(s)
- Abdel Wahab M. Mahmoud
- Plant Physiology Division, Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Hassan M. Rashad
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.R.); (H.A.)
| | - Sanaa E. A. Esmail
- Department of Ornamental Horticulture, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.R.); (H.A.)
| | - Emad A. Abdeldaym
- Department of Vegetable, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
4
|
Baca Cabrera JC, Hirl RT, Zhu J, Schäufele R, Ogée J, Schnyder H. 18 O enrichment of sucrose and photosynthetic and nonphotosynthetic leaf water in a C 3 grass-atmospheric drivers and physiological relations. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37376738 DOI: 10.1111/pce.14655] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The 18 O enrichment (Δ18 O) of leaf water affects the Δ18 O of photosynthetic products such as sucrose, generating an isotopic archive of plant function and past climate. However, uncertainty remains as to whether leaf water compartmentation between photosynthetic and nonphotosynthetic tissue affects the relationship between Δ18 O of bulk leaf water (Δ18 OLW ) and leaf sucrose (Δ18 OSucrose ). We grew Lolium perenne (a C3 grass) in mesocosm-scale, replicated experiments with daytime relative humidity (50% or 75%) and CO2 level (200, 400 or 800 μmol mol-1 ) as factors, and determined Δ18 OLW , Δ18 OSucrose and morphophysiological leaf parameters, including transpiration (Eleaf ), stomatal conductance (gs ) and mesophyll conductance to CO2 (gm ). The Δ18 O of photosynthetic medium water (Δ18 OSSW ) was estimated from Δ18 OSucrose and the equilibrium fractionation between water and carbonyl groups (εbio ). Δ18 OSSW was well predicted by theoretical estimates of leaf water at the evaporative site (Δ18 Oe ) with adjustments that correlated with gas exchange parameters (gs or total conductance to CO2 ). Isotopic mass balance and published work indicated that nonphotosynthetic tissue water was a large fraction (~0.53) of bulk leaf water. Δ18 OLW was a poor proxy for Δ18 OSucrose , mainly due to opposite Δ18 O responses of nonphotosynthetic tissue water (Δ18 Onon-SSW ) relative to Δ18 OSSW , driven by atmospheric conditions.
Collapse
Affiliation(s)
- Juan C Baca Cabrera
- Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Grünlandlehre, Freising-Weihenstephan, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Regina T Hirl
- Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Grünlandlehre, Freising-Weihenstephan, Germany
| | - Jianjun Zhu
- Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Grünlandlehre, Freising-Weihenstephan, Germany
| | - Rudi Schäufele
- Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Grünlandlehre, Freising-Weihenstephan, Germany
| | | | - Hans Schnyder
- Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Grünlandlehre, Freising-Weihenstephan, Germany
| |
Collapse
|
5
|
Han W, Guan J, Zheng J, Liu Y, Ju X, Liu L, Li J, Mao X, Li C. Probabilistic assessment of drought stress vulnerability in grasslands of Xinjiang, China. FRONTIERS IN PLANT SCIENCE 2023; 14:1143863. [PMID: 37008478 PMCID: PMC10062607 DOI: 10.3389/fpls.2023.1143863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
In the process of climate warming, drought has increased the vulnerability of ecosystems. Due to the extreme sensitivity of grasslands to drought, grassland drought stress vulnerability assessment has become a current issue to be addressed. First, correlation analysis was used to determine the characteristics of the normalized precipitation evapotranspiration index (SPEI) response of the grassland normalized difference vegetation index (NDVI) to multiscale drought stress (SPEI-1 ~ SPEI-24) in the study area. Then, the response of grassland vegetation to drought stress at different growth periods was modeled using conjugate function analysis. Conditional probabilities were used to explore the probability of NDVI decline to the lower percentile in grasslands under different levels of drought stress (moderate, severe and extreme drought) and to further analyze the differences in drought vulnerability across climate zones and grassland types. Finally, the main influencing factors of drought stress in grassland at different periods were identified. The results of the study showed that the spatial pattern of drought response time of grassland in Xinjiang had obvious seasonality, with an increasing trend from January to March and November to December in the nongrowing season and a decreasing trend from June to October in the growing season. August was the most vulnerable period for grassland drought stress, with the highest probability of grassland loss. When the grasslands experience a certain degree of loss, they develop strategies to mitigate the effects of drought stress, thereby decreasing the probability of falling into the lower percentile. Among them, the highest probability of drought vulnerability was found in semiarid grasslands, as well as in plains grasslands and alpine subalpine grasslands. In addition, the primary drivers of April and August were temperature, whereas for September, the most significant influencing factor was evapotranspiration. The results of the study will not only deepen our understanding of the dynamics of drought stress in grasslands under climate change but also provide a scientific basis for the management of grassland ecosystems in response to drought and the allocation of water in the future.
Collapse
Affiliation(s)
- Wanqiang Han
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Jingyun Guan
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
- College of Tourism, Xinjiang University of Finance & Economics, Urumqi, China
| | - Jianghua Zheng
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Yujia Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Xifeng Ju
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Liang Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Jianhao Li
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Xurui Mao
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| | - Congren Li
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
| |
Collapse
|
6
|
Ma WT, Yu YZ, Wang X, Gong XY. Estimation of intrinsic water-use efficiency from δ 13C signature of C 3 leaves: Assumptions and uncertainty. FRONTIERS IN PLANT SCIENCE 2023; 13:1037972. [PMID: 36714771 PMCID: PMC9877432 DOI: 10.3389/fpls.2022.1037972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Carbon isotope composition (δ13C) has been widely used to estimate the intrinsic water-use efficiency (iWUE) of plants in ecosystems around the world, providing an ultimate record of the functional response of plants to climate change. This approach relies on established relationships between leaf gas exchange and isotopic discrimination, which are reflected in different formulations of 13C-based iWUE models. In the current literature, most studies have utilized the simple, linear equation of photosynthetic discrimination to estimate iWUE. However, recent studies demonstrated that using this linear model for quantitative studies of iWUE could be problematic. Despite these advances, there is a scarcity of review papers that have comprehensively reviewed the theoretical basis, assumptions, and uncertainty of 13C-based iWUE models. Here, we 1) present the theoretical basis of 13C-based iWUE models: the classical model (iWUEsim), the comprehensive model (iWUEcom), and the model incorporating mesophyll conductance (iWUEmes); 2) discuss the limitations of the widely used iWUEsim model; 3) and make suggestions on the application of the iWUEmes model. Finally, we suggest that a mechanistic understanding of mesophyll conductance associated effects and post-photosynthetic fractionation are the bottlenecks for improving the 13C-based estimation of iWUE.
Collapse
Affiliation(s)
- Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yong Zhi Yu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| |
Collapse
|
7
|
Macholdt J, Hadasch S, Macdonald A, Perryman S, Piepho HP, Scott T, Styczen ME, Storkey J. Long-term trends in yield variance of temperate managed grassland. AGRONOMY FOR SUSTAINABLE DEVELOPMENT 2023; 43:37. [PMID: 37124333 PMCID: PMC10133363 DOI: 10.1007/s13593-023-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
The management of climate-resilient grassland systems is important for stable livestock fodder production. In the face of climate change, maintaining productivity while minimizing yield variance of grassland systems is increasingly challenging. To achieve climate-resilient and stable productivity of grasslands, a better understanding of the climatic drivers of long-term trends in yield variance and its dependence on agronomic inputs is required. Based on the Park Grass Experiment at Rothamsted (UK), we report for the first time the long-term trends in yield variance of grassland (1965-2018) in plots given different fertilizer and lime applications, with contrasting productivity and plant species diversity. We implemented a statistical model that allowed yield variance to be determined independently of yield level. Environmental abiotic covariates were included in a novel criss-cross regression approach to determine climatic drivers of yield variance and its dependence on agronomic management. Our findings highlight that sufficient liming and moderate fertilization can reduce yield variance while maintaining productivity and limiting loss of plant species diversity. Plots receiving the highest rate of nitrogen fertilizer or farmyard manure had the highest yield but were also more responsive to environmental variability and had less plant species diversity. We identified the days of water stress from March to October and temperature from July to August as the two main climatic drivers, explaining approximately one-third of the observed yield variance. These drivers helped explain consistent unimodal trends in yield variance-with a peak in approximately 1995, after which variance declined. Here, for the first time, we provide a novel statistical framework and a unique long-term dataset for understanding the trends in yield variance of managed grassland. The application of the criss-cross regression approach in other long-term agro-ecological trials could help identify climatic drivers of production risk and to derive agronomic strategies for improving the climate resilience of cropping systems. Supplementary Information The online version contains supplementary material available at 10.1007/s13593-023-00885-w.
Collapse
Affiliation(s)
- Janna Macholdt
- Professorship of Agronomy, Institute of Agriculture and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 5, 06120 Halle (Saale), Germany
| | - Steffen Hadasch
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, Germany
| | - Andrew Macdonald
- Protecting Crops and Environment, Rothamsted Research, Harpenden, AL5 2JQ Hertfordshire UK
| | - Sarah Perryman
- Computational and Analytical Sciences Department, Rothamsted Research, Hertfordshire AL5 2JQ Harpenden, UK
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, Germany
| | - Tony Scott
- Protecting Crops and Environment, Rothamsted Research, Harpenden, AL5 2JQ Hertfordshire UK
| | - Merete Elisabeth Styczen
- Section of Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | - Jonathan Storkey
- Protecting Crops and Environment, Rothamsted Research, Harpenden, AL5 2JQ Hertfordshire UK
| |
Collapse
|
8
|
Sukhova E, Ratnitsyna D, Gromova E, Sukhov V. Development of Two-Dimensional Model of Photosynthesis in Plant Leaves and Analysis of Induction of Spatial Heterogeneity of CO 2 Assimilation Rate under Action of Excess Light and Drought. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233285. [PMID: 36501325 PMCID: PMC9739240 DOI: 10.3390/plants11233285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 05/11/2023]
Abstract
Photosynthesis is a key process in plants that can be strongly affected by the actions of environmental stressors. The stressor-induced photosynthetic responses are based on numerous and interacted processes that can restrict their experimental investigation. The development of mathematical models of photosynthetic processes is an important way of investigating these responses. Our work was devoted to the development of a two-dimensional model of photosynthesis in plant leaves that was based on the Farquhar-von Caemmerer-Berry model of CO2 assimilation and descriptions of other processes including the stomatal and transmembrane CO2 fluxes, lateral CO2 and HCO3- fluxes, transmembrane and lateral transport of H+ and K+, interaction of these ions with buffers in the apoplast and cytoplasm, light-dependent regulation of H+-ATPase in the plasma membrane, etc. Verification of the model showed that the simulated light dependences of the CO2 assimilation rate were similar to the experimental ones and dependences of the CO2 assimilation rate of an average leaf CO2 conductance were also similar to the experimental dependences. An analysis of the model showed that a spatial heterogeneity of the CO2 assimilation rate on a leaf surface should be stimulated under an increase in light intensity and a decrease in the stomatal CO2 conductance or quantity of the open stomata; this prediction was supported by the experimental verification. Results of the work can be the basis of the development of new methods of the remote sensing of the influence of abiotic stressors (at least, excess light and drought) on plants.
Collapse
|
9
|
Russo SE, Ledder G, Muller EB, Nisbet RM. Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. CONSERVATION PHYSIOLOGY 2022; 10:coac061. [PMID: 36128259 PMCID: PMC9477497 DOI: 10.1093/conphys/coac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism's state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change.
Collapse
Affiliation(s)
- Sabrina E Russo
- School of Biological Sciences, University of Nebraska, 1104 T Street Lincoln, Nebraska 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska, 1901 Vine Street, N300 Beadle Center, Lincoln, Nebraska 68588-0660, USA
| | - Glenn Ledder
- Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, Nebraska 68588-0130, USA
| | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Institut für Biologische Analytik und Consulting IBACON GmbH, Arheilger Weg 17 Roß dorf, Hesse D-64380, Germany
| | - Roger M Nisbet
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
10
|
Gong XY, Ma WT, Yu YZ, Fang K, Yang Y, Tcherkez G, Adams MA. Overestimated gains in water-use efficiency by global forests. GLOBAL CHANGE BIOLOGY 2022; 28:4923-4934. [PMID: 35490304 DOI: 10.1111/gcb.16221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/09/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Increases in terrestrial water-use efficiency (WUE) have been reported in many studies, pointing to potential changes in physiological forcing of global carbon and hydrological cycles. However, gains in WUE are of uncertain magnitude over longer (i.e. >10 years) periods of time largely owing to difficulties in accounting for structural and physiological acclimation. 13 C signatures (i.e. δ13 C) of plant organic matter have long been used to estimate WUE at temporal scales ranging from days to centuries. Mesophyll conductance is a key uncertainty in estimated WUE owing to its influence on diffusion of CO2 to sites of carboxylation. Here we apply new knowledge of mesophyll conductance to 464 δ13 C chronologies in tree-rings of 143 species spanning global biomes. Adjusted for mesophyll conductance, gains in WUE during the 20th century (0.15 ppm year-1 ) were considerably smaller than those estimated from conventional modelling (0.26 ppm year-1 ). Across the globe, mean sensitivity of WUE to atmospheric CO2 was 0.15 ppm ppm-1 . Ratios of internal-to-atmospheric CO2 (on a mole fraction basis; ci /ca ) in leaves were mostly constant over time but differed among biomes and plant taxa-highlighting the significance of both plant structure and physiology. Together with synchronized responses in stomatal and mesophyll conductance, our results suggest that ratios of chloroplastic-to-atmospheric CO2 (cc /ca ) are constrained over time. We conclude that forest WUE may have not increased as much as previously suggested and that projections of future climate forcing via CO2 fertilization may need to be adjusted accordingly.
Collapse
Affiliation(s)
- Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yong Zhi Yu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Keyan Fang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé, France
| | - Mark A Adams
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Addy JWG, Ellis RH, MacLaren C, Macdonald AJ, Semenov MA, Mead A. A heteroskedastic model of Park Grass spring hay yields in response to weather suggests continuing yield decline with climate change in future decades. J R Soc Interface 2022; 19:20220361. [PMID: 36000226 PMCID: PMC9399698 DOI: 10.1098/rsif.2022.0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 11/12/2022] Open
Abstract
UK grasslands perform important environmental and economic functions, but their future productivity under climate change is uncertain. Spring hay yields from 1902 to 2016 at one site (the Park Grass Long Term Experiment) in southern England under four different fertilizer regimes were modelled in response to weather (seasonal temperature and rainfall). The modelling approach applied comprised: (1) a Bayesian model comparison to model parametrically the heteroskedasticity in a gamma likelihood function; (2) a Bayesian varying intercept multiple regression model with an autoregressive lag one process (to incorporate the effect of productivity in the previous year) of the response of hay yield to weather from 1902 to 2016. The model confirmed that warmer and drier years, specifically, autumn, winter and spring, in the twentieth and twenty-first centuries reduced yield. The model was applied to forecast future spring hay yields at Park Grass under different climate change scenarios (HadGEM2 and GISS RCP 4.5 and 8.5). This application indicated that yields are forecast to decline further between 2020 and 2080, by as much as 48-50%. These projections are specific to Park Grass, but implied a severe reduction in grassland productivity in southern England with climate change during the twenty-first century.
Collapse
Affiliation(s)
| | - Richard H. Ellis
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | | | | | | | | |
Collapse
|
12
|
Manzur ME, Garello FA, Omacini M, Schnyder H, Sutka MR, García-Parisi PA. Endophytic fungi and drought tolerance: ecophysiological adjustment in shoot and root of an annual mesophytic host grass. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:272-282. [PMID: 35130476 DOI: 10.1071/fp21238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Epichloid endophytic fungi, vertically transmitted symbionts of grasses, can increase plant tolerance to biotic and abiotic stress. Our aim was to identify ecophysiological mechanisms by which the endophyte Epichloë occultans confers drought tolerance to the annual grass Lolium multiflorum Lam. Endophyte-associated or endophyte-free plants were either well-watered or subjected to water deficit. We evaluated plant biomass, root length and nitrogen concentration, and we assessed intrinsic water use efficiency (iWUE) and its components net photosynthesis and stomatal conductance, by carbon and oxygen isotope analysis of shoot tissues. Endophyte-free plants produced more biomass than endophyte-associated ones at field capacity, while water deficit strongly reduced endophyte-free plants biomass. As a result, both types of plants produced similar biomass under water restriction. Based on oxygen isotope composition of plant cellulose, stomatal conductance decreased with water deficit in both endophyte-associated and endophyte-free plants. Meanwhile, carbon isotope composition indicated that iWUE increased with water deficit only in endophyte-associated plants. Thus, the isotope data indicated that net photosynthesis decreased more strongly in endophyte-free plants under water deficit. Additionally, endophyte presence reduced root length but increased its hydraulic conductivity. In conclusion, endophytic fungi confer drought tolerance to the host grass by adjusting shoot and root physiology.
Collapse
Affiliation(s)
- Milena E Manzur
- IIBIO-CONICET-UNSAM, Avenida 25 de Mayo y Francia, San Martín, CPA B1650HMP Buenos Aires, Argentina; and Departamento de Biología Aplicada y Alimentos, Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Fabián A Garello
- Departamento de Biología Aplicada y Alimentos, Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina; and IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Marina Omacini
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina; and Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| | - Moira R Sutka
- DBBE-IBBEA, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Pablo A García-Parisi
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina; and Departamento de Producción Animal, Cátedra de Forrajicultura, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| |
Collapse
|
13
|
Casas C, Gundel PE, Deliens E, Iannone LJ, García Martinez G, Vignale MV, Schnyder H. Loss of fungal symbionts at the arid limit of the distribution range in a native Patagonian grass—Resource eco‐physiological relations. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cecilia Casas
- Facultad de Agronomía Departamento de Recursos Naturales y Ambiente Universidad de Buenos Aires Cátedra de Edafología Buenos Aires Argentina
- Facultad de Agronomía IFEVA Universidad de Buenos Aires CONICET Buenos Aires Argentina
- Lehrstuhl für Grünlandlehre Technische Universität München Freising‐Weihenstephan Germany
| | - Pedro E. Gundel
- Facultad de Agronomía IFEVA Universidad de Buenos Aires CONICET Buenos Aires Argentina
- Instituto de Ciencias Biológicas Universidad de Talca Talca Chile
| | - Eluney Deliens
- Facultad de Agronomía Departamento de Recursos Naturales y Ambiente Universidad de Buenos Aires Cátedra de Edafología Buenos Aires Argentina
| | - Leopoldo J. Iannone
- Facultad de Ciencias Exactas y Naturales Departamento de Biodiversidad y Biología Experimental Laboratorio de Micología Fitopatología y Liquenología Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Micología y Botánica (INMIBO) CONICET—Universidad de Buenos Aires Buenos Aires Argentina
| | | | - María V. Vignale
- Facultad de Ciencias Exactas y Naturales Departamento de Biodiversidad y Biología Experimental Laboratorio de Micología Fitopatología y Liquenología Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Micología y Botánica (INMIBO) CONICET—Universidad de Buenos Aires Buenos Aires Argentina
- Facultad de Ciencias Exactas Químicas y Naturales Instituto de Biotecnología Misiones (InBioMis) Universidad Nacional de Misiones e Instituto Misionero de Biodiversidad (IMiBio) Posadas Argentina
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre Technische Universität München Freising‐Weihenstephan Germany
| |
Collapse
|