1
|
Sharma R, Sharma H, Jones S, Borghini-Fuhrer I, Domingo GJ, Gibson RA, Rolfe K, Tan L, Fiţa IG, Chen C, Bird P, Pingle A, Duparc S. Optimal balance of benefit versus risk for tafenoquine in the treatment of Plasmodium vivax malaria. Malar J 2024; 23:145. [PMID: 38741094 DOI: 10.1186/s12936-024-04924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥ 16 years. Despite this, questions have arisen on the optimal dose of tafenoquine. Before the availability of tafenoquine, a 3-day course of chloroquine in combination with the 8-aminoquinoline primaquine was the only effective radical cure for vivax malaria. The World Health Organization (WHO)-recommended standard regimen is 14 days of primaquine 0.25 mg/kg/day or 7 days of primaquine 0.5 mg/kg/day in most regions, or 14 days of primaquine 0.5 mg/kg/day in East Asia and Oceania, however the long treatment courses of 7 or 14 days may result in poor adherence and, therefore, low treatment efficacy. A single dose of tafenoquine 300 mg in combination with a 3-day course of chloroquine is an important advancement for the radical cure of vivax malaria in patients without glucose-6-phosphate dehydrogenase (G6PD) deficiency, as the use of a single-dose treatment will improve adherence. Selection of a single 300 mg dose of tafenoquine for the radical cure of P. vivax malaria was based on collective efficacy and safety data from 33 studies involving more than 4000 trial participants who received tafenoquine, including over 800 subjects who received the 300 mg single dose. The safety profile of single-dose tafenoquine 300 mg is similar to that of standard-dosage primaquine 0.25 mg/kg/day for 14 days. Both primaquine and tafenoquine can cause acute haemolytic anaemia in individuals with G6PD deficiency; severe haemolysis can lead to anaemia, kidney damage, and, in some cases, death. Therefore, relapse prevention using an 8-aminoquinoline must be balanced with the need to avoid clinical haemolysis associated with G6PD deficiency. To minimize this risk, the WHO recommends G6PD testing for all individuals before the administration of curative doses of 8-aminoquinolines. In this article, the authors review key efficacy and safety data from the pivotal trials of tafenoquine and argue that the currently approved dose represents a favourable benefit-risk profile.
Collapse
Affiliation(s)
- Raman Sharma
- Global Health Medicines R&D, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | | | | | | | | | - Rachel A Gibson
- Global Health Medicines R&D, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.
| | - Katie Rolfe
- Global Health Medicines R&D, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | | | | | | | | | | | | |
Collapse
|
2
|
Pukrittayakamee S, Jittamala P, Watson JA, Hanboonkunupakarn B, Leungsinsiri P, Poovorawan K, Chotivanich K, Bancone G, Chu CS, Imwong M, Day NPJ, Taylor WRJ, White NJ. Primaquine in glucose-6-phosphate dehydrogenase deficiency: an adaptive pharmacometric assessment of ascending dose regimens in healthy volunteers. eLife 2024; 12:RP87318. [PMID: 38319064 PMCID: PMC10945527 DOI: 10.7554/elife.87318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Background Primaquine is an 8-aminoquinoline antimalarial. It is the only widely available treatment to prevent relapses of Plasmodium vivax malaria. The 8-aminoquinolines cause dose-dependent haemolysis in glucose-6-phosphate dehydrogenase deficiency (G6PDd). G6PDd is common in malaria endemic areas but testing is often not available. As a consequence primaquine is underused. Methods We conducted an adaptive pharmacometric study to characterise the relationship between primaquine dose and haemolysis in G6PDd. The aim was to explore shorter and safer primaquine radical cure regimens compared to the currently recommended 8-weekly regimen (0.75 mg/kg once weekly), potentially obviating the need for G6PD testing. Hemizygous G6PDd healthy adult Thai and Burmese male volunteers were admitted to the Hospital for Tropical Diseases in Bangkok. In Part 1, volunteers were given ascending dose primaquine regimens whereby daily doses were increased from 7.5 mg up to 45 mg over 15-20 days. In Part 2 conducted at least 6 months later, a single primaquine 45 mg dose was given. Results 24 volunteers were enrolled in Part 1, and 16 in Part 2 (13 participated in both studies). In three volunteers, the ascending dose regimen was stopped because of haemolysis (n=1) and asymptomatic increases in transaminases (n=2; one was hepatitis E positive). Otherwise the ascending regimens were well tolerated with no drug-related serious adverse events. In Part 1, the median haemoglobin concentration decline was 3.7 g/dL (range: 2.1-5.9; relative decline of 26% [range: 15-40%]). Primaquine doses up to 0.87 mg/kg/day were tolerated subsequently without clinically significant further falls in haemoglobin. In Part 2, the median haemoglobin concentration decline was 1.7 g/dL (range 0.9-4.1; relative fall of 12% [range: 7-30% decrease]). The ascending dose primaquine regimens gave seven times more drug but resulted in only double the haemoglobin decline. Conclusions In patients with Southeast Asian G6PDd variants, full radical cure treatment can be given in under 3 weeks compared with the current 8-week regimen. Funding Medical Research Council of the United Kingdom (MR/R015252/1) and Wellcome (093956/Z/10/C, 223253/Z/21/Z). Clinical trial number Thai Clinical Trial Registry: TCTR20170830002 and TCTR20220317004.
Collapse
Affiliation(s)
- Sasithon Pukrittayakamee
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Podjanee Jittamala
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - James A Watson
- Oxford University Clinical Research Unit, Hospital for Tropical DiseasesHo Chi MinhViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Borimas Hanboonkunupakarn
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Pawanrat Leungsinsiri
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Kittiyod Poovorawan
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Kesinee Chotivanich
- Clinical Therapeutics Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Nicholas PJ Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Oxford University Clinical Research Unit, Hospital for Tropical DiseasesHo Chi MinhViet Nam
| | - Walter RJ Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Oxford University Clinical Research Unit, Hospital for Tropical DiseasesHo Chi MinhViet Nam
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Oxford University Clinical Research Unit, Hospital for Tropical DiseasesHo Chi MinhViet Nam
| |
Collapse
|
3
|
Chamchoy K, Sudsumrit S, Wongwigkan J, Petmitr S, Songdej D, Adams ER, Edwards T, Leartsakulpanich U, Boonyuen U. Molecular characterization of G6PD mutations identifies new mutations and a high frequency of intronic variants in Thai females. PLoS One 2023; 18:e0294200. [PMID: 37967096 PMCID: PMC10651042 DOI: 10.1371/journal.pone.0294200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked enzymopathy caused by mutations in the G6PD gene. A medical concern associated with G6PD deficiency is acute hemolytic anemia induced by certain foods, drugs, and infections. Although phenotypic tests can correctly identify hemizygous males, as well as homozygous and compound heterozygous females, heterozygous females with a wide range of G6PD activity may be misclassified as normal. This study aimed to develop multiplex high-resolution melting (HRM) analyses to enable the accurate detection of G6PD mutations, especially among females with heterozygous deficiency. Multiplex HRM assays were developed to detect six G6PD variants, i.e., G6PD Gaohe (c.95A>G), G6PD Chinese-4 (c.392G>T), G6PD Mahidol (c.487G>A), G6PD Viangchan (c.871G>A), G6PD Chinese-5 (c.1024C>T), and G6PD Union (c.1360C>T) in two reactions. The assays were validated and then applied to genotype G6PD mutations in 248 Thai females. The sensitivity of the HRM assays developed was 100% [95% confidence interval (CI): 94.40%-100%] with a specificity of 100% (95% CI: 88.78%-100%) for detecting these six mutations. The prevalence of G6PD deficiency was estimated as 3.63% (9/248) for G6PD deficiency and 31.05% (77/248) for intermediate deficiency by phenotypic assay. The developed HRM assays identified three participants with normal enzyme activity as heterozygous for G6PD Viangchan. Interestingly, a deletion in intron 5 nucleotide position 637/638 (c.486-34delT) was also detected by the developed HRM assays. G6PD genotyping revealed a total of 12 G6PD genotypes, with a high prevalence of intronic variants. Our results suggested that HRM analysis-based genotyping is a simple and reliable approach for detecting G6PD mutations, and could be used to prevent the misdiagnosis of heterozygous females by phenotypic assay. This study also sheds light on the possibility of overlooking intronic variants, which could affect G6PD expression and contribute to enzyme deficiency.
Collapse
Affiliation(s)
- Kamonwan Chamchoy
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sirapapha Sudsumrit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jutamas Wongwigkan
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duantida Songdej
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Emily R. Adams
- Centre for Drugs and Diagnostics Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Thomas Edwards
- Centre for Drugs and Diagnostics Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Kosasih A, James R, Chau NH, Karman MM, Panggalo LV, Wini L, Thanh NV, Obadia T, Satyagraha AW, Asih PBS, Syafruddin D, Taylor WRJ, Mueller I, Sutanto I, Karunajeewa H, Pasaribu AP, Baird JK. Case Series of Primaquine-Induced Haemolytic Events in Controlled Trials with G6PD Screening. Pathogens 2023; 12:1176. [PMID: 37764985 PMCID: PMC10537757 DOI: 10.3390/pathogens12091176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Primaquine for radical cure of Plasmodium vivax malaria poses a potentially life-threatening risk of haemolysis in G6PD-deficient patients. Herein, we review five events of acute haemolytic anaemia following the administration of primaquine in four malaria trials from Indonesia, the Solomon Islands, and Vietnam. Five males aged 9 to 48 years were improperly classified as G6PD-normal by various screening procedures and included as subjects in trials of anti-relapse therapy with daily primaquine. Routine safety monitoring by physical examination, urine inspection, and blood haemoglobin (Hb) assessment were performed in all those trials. Early signs of acute haemolysis, i.e., dark urine and haemoglobin drop >20%, occurred only after day 3 and as late as day 8 of primaquine dosing. All patients were hospitalized and fully recovered, all but one following blood transfusion rescue. Hb nadir was 4.7 to 7.9 g/dL. Hospitalization was for 1 to 7 days. Hb levels returned to baseline values 3 to 10 days after transfusion. Failed G6PD screening procedures in these trials led G6PD-deficient patients to suffer harmful exposures to primaquine. The safe application of primaquine anti-relapse therapy requires G6PD screening and anticipation of its failure with a means of prompt detection and rescue from the typically abrupt haemolytic crisis.
Collapse
Affiliation(s)
- Ayleen Kosasih
- Oxford University Clinical Research Unit Indonesia, Jakarta 10430, Indonesia; (A.K.); (M.M.K.); (J.K.B.)
| | - Robert James
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (R.J.); (I.M.)
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City 749000, Vietnam; (N.H.C.); (N.V.T.)
| | - Michelle M. Karman
- Oxford University Clinical Research Unit Indonesia, Jakarta 10430, Indonesia; (A.K.); (M.M.K.); (J.K.B.)
| | | | - Lyndes Wini
- Vector-Borne Disease Control (VBDC) Division, Solomon Islands Ministry of Health and Medical Services, Honiara P.O. Box R113, Solomon Islands;
| | - Ngo Viet Thanh
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City 749000, Vietnam; (N.H.C.); (N.V.T.)
| | - Thomas Obadia
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France;
- Institut Pasteur, Université Paris Cité, G5 Infectious Diseases Epidemiology and Analytics, F-75015 Paris, France
| | - Ari Winasti Satyagraha
- Exeins Health Initiative, Jakarta 12870, Indonesia; (L.V.P.); (A.W.S.)
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong 16911, Indonesia; (P.B.S.A.); (D.S.)
| | - Puji Budi Setia Asih
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong 16911, Indonesia; (P.B.S.A.); (D.S.)
| | - Din Syafruddin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong 16911, Indonesia; (P.B.S.A.); (D.S.)
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Hasanuddin University Medical Research Center, Makassar 90245, Indonesia
| | - Walter R. J. Taylor
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (R.J.); (I.M.)
| | - Inge Sutanto
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia;
| | - Harin Karunajeewa
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | | | - J. Kevin Baird
- Oxford University Clinical Research Unit Indonesia, Jakarta 10430, Indonesia; (A.K.); (M.M.K.); (J.K.B.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
5
|
Taylor WRJ, Meagher N, Ley B, Thriemer K, Bancone G, Satyagraha A, Assefa A, Chand K, Chau NH, Dhorda M, Degaga TS, Ekawati LL, Hailu A, Hasanzai MA, Naddim MN, Pasaribu AP, Rahim AG, Sutanto I, Thanh NV, Tuyet-Trinh NT, Waithira N, Woyessa A, Dondorp A, von Seidlein L, Simpson JA, White NJ, Baird JK, Day NP, Price RN. Weekly primaquine for radical cure of patients with Plasmodium vivax malaria and glucose-6-phosphate dehydrogenase deficiency. PLoS Negl Trop Dis 2023; 17:e0011522. [PMID: 37672548 PMCID: PMC10482257 DOI: 10.1371/journal.pntd.0011522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/10/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The World Health Organization recommends that primaquine should be given once weekly for 8-weeks to patients with Plasmodium vivax malaria and glucose-6-phosphate dehydrogenase (G6PD) deficiency, but data on its antirelapse efficacy and safety are limited. METHODS Within the context of a multicentre, randomised clinical trial of two primaquine regimens in P. vivax malaria, patients with G6PD deficiency were excluded and enrolled into a separate 12-month observational study. They were treated with a weekly dose of 0.75 mg/kg primaquine for 8 weeks (PQ8W) plus dihydroartemisinin piperaquine (Indonesia) or chloroquine (Afghanistan, Ethiopia, Vietnam). G6PD status was diagnosed using the fluorescent spot test and confirmed by genotyping for locally prevalent G6PD variants. The risk of P. vivax recurrence following PQ8W and the consequent haematological recovery were characterized in all patients and in patients with genotypically confirmed G6PD variants, and compared with the patients enrolled in the main randomised control trial. RESULTS Between July 2014 and November 2017, 42 male and 8 female patients were enrolled in Afghanistan (6), Ethiopia (5), Indonesia (19), and Vietnam (20). G6PD deficiency was confirmed by genotyping in 31 patients: Viangchan (14), Mediterranean (4), 357A-G (3), Canton (2), Kaiping (2), and one each for A-, Chatham, Gaohe, Ludhiana, Orissa, and Vanua Lava. Two patients had recurrent P. vivax parasitaemia (days 68 and 207). The overall 12-month cumulative risk of recurrent P. vivax malaria was 5.1% (95% CI: 1.3-18.9) and the incidence rate of recurrence was 46.8 per 1000 person-years (95% CI: 11.7-187.1). The risk of P. vivax recurrence was lower in G6PD deficient patients treated with PQ8W compared to G6PD normal patients in all treatment arms of the randomised controlled trial. Two of the 26 confirmed hemizygous males had a significant fall in haemoglobin (>5g/dl) after the first dose but were able to complete their 8 week regimen. CONCLUSIONS PQ8W was highly effective in preventing P. vivax recurrences. Whilst PQ8W was well tolerated in most patients across a range of different G6PD variants, significant falls in haemoglobin may occur after the first dose and require clinical monitoring. TRIAL REGISTRATION This trial is registered at ClinicalTrials.gov (NCT01814683).
Collapse
Affiliation(s)
- Walter R. J. Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Niamh Meagher
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ari Satyagraha
- Eijkman Institute of Molecular Biology, Jakarta, Indonesia.8. Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Krisin Chand
- Oxford University Clinical Research Unit, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nguyen Hoang Chau
- Oxford University Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tamiru S. Degaga
- College of Medicine & Health Sciences, Arbaminch University, Arbaminch, Ethiopia
| | - Lenny L. Ekawati
- Oxford University Clinical Research Unit, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Asrat Hailu
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Awab Ghulam Rahim
- Nangarhar Medical Faculty, Nangarhar University, Ministry of Higher Education, Jalalabad, Afghanistan
- Health and Social Development Organization, Kabul, Afghanistan
| | - Inge Sutanto
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ngo Viet Thanh
- Oxford University Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Tuyet-Trinh
- Oxford University Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adugna Woyessa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Arjen Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - J. Kevin Baird
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nicholas P. Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N. Price
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| |
Collapse
|
6
|
Nelwan EJ, Shakinah S, Pasaribu A. Association of G6PD status and haemolytic anaemia in patients receiving anti-malarial agents: a systematic review and meta-analysis. Malar J 2023; 22:77. [PMID: 36872344 PMCID: PMC9985861 DOI: 10.1186/s12936-023-04493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Some anti-malarial drugs often cause haemolytic anaemia in glucose-6-phosphate-dehydrogenase deficiency (G6PDd) patients. This study aims to analyse the association of G6PDd and anaemia in malaria patients receiving anti-malarial drugs. METHODS A literature search was performed in major database portals. All studies searched using keywords with Medical Subject Headings (MeSH) were included, without date or language restriction. Pooled mean difference of haemoglobin and risk ratio of anaemia were analysed using RevMan. RESULTS Sixteen studies comprising 3474 malaria patients that included 398 (11.5%) with G6PDd were found. Mean difference of haemoglobin in G6PDd/G6PD normal (G6PDn) patients was - 0.16 g/dL (95% CI - 0.48, 0.15; I2 5%, p = 0.39), regardless of the type of malaria and dose of drugs. In particular with primaquine (PQ), mean difference of haemoglobin in G6PDd/G6PDn patients with dose < 0.5 mg/kg/day was - 0.04 (95% CI - 0.35, 0.27; I2 0%, p = 0.69). The risk ratio of developing anaemia in G6PDd patients was 1.02 (95% CI 0.75, 1.38; I2 0%, p = 0.79). CONCLUSION Single or daily standard doses of PQ (0.25 mg/kg/day) and weekly PQ (0.75 mg/kg/week) did not increase the risk of anaemia in G6PDd patients.
Collapse
Affiliation(s)
- Erni J Nelwan
- Division of Tropical and Infectious Disease, Internal Medicine Department, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. .,Division of Tropical and Infectious Disease, Internal Medicine Department, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Sharifah Shakinah
- Division of Tropical and Infectious Disease, Internal Medicine Department, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Division of Tropical and Infectious Disease, Internal Medicine Department, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Adeline Pasaribu
- Division of Tropical and Infectious Disease, Internal Medicine Department, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Division of Tropical and Infectious Disease, Internal Medicine Department, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
7
|
Nain M, Gill J, Mohan M, Sharma A. Single-Nucleotide Polymorphisms in Glucose-6-Phosphate Dehydrogenase and their Relevance for the Deployment of Primaquine as a Radical Cure for Malaria. Am J Trop Med Hyg 2023; 108:470-476. [PMID: 36746659 PMCID: PMC9978548 DOI: 10.4269/ajtmh.22-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/21/2022] [Indexed: 02/08/2023] Open
Abstract
Malaria remains an important public health problem despite efforts to control it. Besides active transmission, relapsing malaria caused by dormant liver stages of Plasmodium vivax and Plasmodium ovale hypnozoites is a major hurdle in malaria control and elimination programs. Primaquine (PQ) is the most widely used drug for radical cure of malaria. Due to its anti-hypnozoite and gametocidal activity, PQ plays a key role in malaria relapse and transmission. The human enzyme glucose-6-phosphate dehydrogenase (G6PD) is crucial in determining the safety of PQ because G6PD-deficient individuals are prone to hemolysis if treated with PQ. Therefore, there is a need to study the prevalence of G6PD-deficient genetic variants in endemic populations to assess the risk of PQ treatment and the necessity to develop alternative treatments. In this work, we discuss the common G6PD variants, their varying enzymatic activity, and their distribution on the three-dimensional structure of G6PD. Our work highlights the important G6PD variants and the need for large-scale G6PD gene polymorphism studies to predict populations at risk of PQ-induced toxicity.
Collapse
Affiliation(s)
- Minu Nain
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Jasmita Gill
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Mradul Mohan
- ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
8
|
Risk of hemolysis in Plasmodium vivax malaria patients receiving standard primaquine treatment in a population with high prevalence of G6PD deficiency. Infection 2023; 51:213-222. [PMID: 35976559 PMCID: PMC9892342 DOI: 10.1007/s15010-022-01905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/07/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Primaquine is essential for the radical cure of Plasmodium vivax malaria, but it poses a potential danger of severe hemolysis in G6PD-deficient (G6PDd) patients. This study aimed to determine whether primaquine is safe in a population with high G6PD prevalence but lacking G6PD diagnosis capacity. METHODS In Myanmar, 152 vivax patients were gender- and age-matched at 1:3 for G6PDd versus G6PD-normal (G6PDn). Their risk of acute hemolysis was followed for 28 days after treatment with the standard chloroquine and 14-day primaquine (0.25 mg/kg/day) regimen. RESULTS Patients anemic and non-anemic at enrollment showed a rising and declining trend in the mean hemoglobin level, respectively. In males, the G6PDd group showed substantially larger magnitudes of hemoglobin reduction and lower hemoglobin nadir levels than the G6PDn group, but this trend was not evident in females. Almost 1/3 of the patients experienced clinically concerning declines in hemoglobin, with five requiring blood transfusion. CONCLUSIONS The standard 14-day primaquine regimen carries a significant risk of acute hemolytic anemia (AHA) in vivax patients without G6PD testing in a population with a high prevalence of G6PD deficiency and anemia. G6PD testing would avoid most of the clinically significant Hb reductions and AHA in male patients.
Collapse
|
9
|
Ley B, Alam MS, Satyagraha AW, Phru CS, Thriemer K, Tadesse D, Shibiru T, Hailu A, Kibria MG, Hossain MS, Rahmat H, Poespoprodjo JR, Khan WA, Simpson JA, Price RN. Variation in Glucose-6-Phosphate Dehydrogenase activity following acute malaria. PLoS Negl Trop Dis 2022; 16:e0010406. [PMID: 35544453 PMCID: PMC9094517 DOI: 10.1371/journal.pntd.0010406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/08/2022] [Indexed: 01/12/2023] Open
Abstract
Primaquine and tafenoquine are the only licensed drugs with activity against Plasmodium vivax hypnozoites but cause haemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Malaria also causes haemolysis, leading to the replacement of older erythrocytes with low G6PD activity by reticulocytes and young erythrocytes with higher activity. Aim of this study was to assess the impact of acute malaria on G6PD activity. Selected patients with uncomplicated malaria were recruited in Bangladesh (n = 87), Indonesia (n = 75), and Ethiopia (n = 173); G6PD activity was measured at the initial presentation with malaria and a median of 176 days later (range 140 to 998) in the absence of malaria. Among selected participants (deficient participants preferentially enrolled in Bangladesh but not at other sites) G6PD activity fell between malaria and follow up by 79.1% (95%CI: 40.4 to 117.8) in 6 participants classified as deficient (<30% activity), 43.7% (95%CI: 34.2 to 53.1) in 39 individuals with intermediate activity (30% to <70%), and by 4.5% (95%CI: 1.4 to 7.6) in 290 G6PD normal (≥70%) participants. In Bangladesh and Indonesia G6PD activity was significantly higher during acute malaria than when the same individuals were retested during follow up (40.9% (95%CI: 33.4-48.1) and 7.4% (95%CI: 0.2 to 14.6) respectively), whereas in Ethiopia G6PD activity was 3.6% (95%CI: -1.0 to -6.1) lower during acute malaria. The change in G6PD activity was apparent in patients presenting with either P. vivax or P. falciparum infection. Overall, 66.7% (4/6) severely deficient participants and 87.2% (34/39) with intermediate deficiency had normal activities when presenting with malaria. These findings suggest that G6PD activity rises significantly and at clinically relevant levels during acute malaria. Prospective case-control studies are warranted to confirm the degree to which the predicted population attributable risks of drug induced haemolysis is lower than would be predicted from cross sectional surveys.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- * E-mail:
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Ching Swe Phru
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Dagimawie Tadesse
- Arba Minch University, College of Medicine & Health Sciences, Arba Minch, Ethiopia
| | - Tamiru Shibiru
- Arba Minch University, College of Medicine & Health Sciences, Arba Minch, Ethiopia
| | - Asrat Hailu
- Arba Minch University, College of Medicine & Health Sciences, Arba Minch, Ethiopia
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mohammad Sharif Hossain
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Hisni Rahmat
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Jeanne R. Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua
- Centre for Child Health-PRO, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wasif Ali Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Brito-Sousa JD, Phanor J, Balieiro PCDS, Silva-Neto AV, Cordeiro JSM, Vitor-Silva S, Mendes M, Sampaio VS, Melo GCD, Lacerda M, Monteiro W. Effect of weekly versus daily primaquine on Plasmodium vivax malaria recurrences: A real-life cohort study. Rev Soc Bras Med Trop 2022; 55:e07382021. [PMID: 35522815 PMCID: PMC9070075 DOI: 10.1590/0037-8682-0738-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Although primaquine (PQ) is indicated for G6PD-deficient patients, data on weekly PQ use in Brazil are limited. Methods: We aimed to investigate malaria recurrences among participants receiving daily and weekly PQ treatments in a real-life setting of two municipalities in the Amazon between 2019 and 2020. Results: Patients receiving weekly PQ treatment had a lower risk of recurrence than those receiving daily PQ treatment (risk ratio: 0.62, 95% confidence interval: 0.41-0.94), using a model adjusted for study site. Conclusions: Weekly PQ use did not increase the risk of malaria recurrence. Further studies with larger populations are warranted.
Collapse
Affiliation(s)
- Jose Diego Brito-Sousa
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Brasil; Universidade do Estado do Amazonas, Brasil
| | - Jeffe Phanor
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Brasil; Universidade do Estado do Amazonas, Brasil
| | | | | | - Jady Shayenne Mota Cordeiro
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Brasil; Universidade do Estado do Amazonas, Brasil
| | - Sheila Vitor-Silva
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Brasil; Universidade Federal do Amazonas, Brasil
| | - Maxwell Mendes
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Brasil
| | - Vanderson Souza Sampaio
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Brasil; Universidade do Estado do Amazonas, Brasil; Fundação de Vigilância em Saúde do Amazonas Dra. Rosemary Costa Pinto, Brasil
| | - Gisely Cardoso de Melo
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Brasil; Universidade do Estado do Amazonas, Brasil
| | - Marcus Lacerda
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Brasil; Universidade do Estado do Amazonas, Brasil; Fundação Oswaldo Cruz, Brasil
| | - Wuelton Monteiro
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Brasil; Universidade do Estado do Amazonas, Brasil
| |
Collapse
|
11
|
Stewart AGA, Zimmerman PA, McCarthy JS. Genetic Variation of G6PD and CYP2D6: Clinical Implications on the Use of Primaquine for Elimination of Plasmodium vivax. Front Pharmacol 2021; 12:784909. [PMID: 34899347 PMCID: PMC8661410 DOI: 10.3389/fphar.2021.784909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Abstract
Primaquine, an 8-aminoquinoline, is the only medication approved by the World Health Organization to treat the hypnozoite stage of Plasmodium vivax and P. ovale malaria. Relapse, triggered by activation of dormant hypnozoites in the liver, can occur weeks to years after primary infection, and provides the predominant source of transmission in endemic settings. Hence, primaquine is essential for individual treatment and P. vivax elimination efforts. However, primaquine use is limited by the risk of life-threatening acute hemolytic anemia in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. More recently, studies have demonstrated decreased efficacy of primaquine due to cytochrome P450 2D6 (CYP2D6) polymorphisms conferring an impaired metabolizer phenotype. Failure of standard primaquine therapy has occurred in individuals with decreased or absent CYP2D6 activity. Both G6PD and CYP2D6 are highly polymorphic genes, with considerable geographic and interethnic variability, adding complexity to primaquine use. Innovative strategies are required to overcome the dual challenge of G6PD deficiency and impaired primaquine metabolism. Further understanding of the pharmacogenetics of primaquine is key to utilizing its full potential. Accurate CYP2D6 genotype-phenotype translation may optimize primaquine dosing strategies for impaired metabolizers and expand its use in a safe, efficacious manner. At an individual level the current challenges with G6PD diagnostics and CYP2D6 testing limit clinical implementation of pharmacogenetics. However, further characterisation of the overlap and spectrum of G6PD and CYP2D6 activity may optimize primaquine use at a population level and facilitate region-specific dosing strategies for mass drug administration. This precision public health approach merits further investigation for P. vivax elimination.
Collapse
Affiliation(s)
| | - Peter A Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, United States
| | - James S McCarthy
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
12
|
van Beek SW, Svensson EM, Tiono AB, Okebe J, D'Alessandro U, Gonçalves BP, Bousema T, Drakeley C, Ter Heine R. Model-based assessment of the safety of community interventions with primaquine in sub-Saharan Africa. Parasit Vectors 2021; 14:524. [PMID: 34627346 PMCID: PMC8502297 DOI: 10.1186/s13071-021-05034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single low-dose primaquine (SLD-PQ) is recommended in combination with artemisinin-based combination therapy to reduce Plasmodium falciparum transmission in areas threatened by artemisinin resistance or aiming for malaria elimination. SLD-PQ may be beneficial in mass drug administration (MDA) campaigns to prevent malaria transmission but uptake is limited by concerns of hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The aim of this study was to improve the evidence on the safety of MDA with SLD-PQ in a sub-Saharan African setting. METHODS A nonlinear mixed-effects model describing the pharmacokinetics and treatment-induced hemolysis of primaquine was developed using data from an adult (n = 16, G6PD deficient) and pediatric study (n = 38, G6PD normal). The relationship between primaquine pharmacokinetics and hemolysis was modeled using an established erythrocyte lifespan model. The safety of MDA with SLD-PQ was explored through Monte Carlo simulations for SLD-PQ at 0.25 or 0.4 mg/kg using baseline data from a Tanzanian setting with detailed information on hemoglobin concentrations and G6PD status. RESULTS The predicted reduction in hemoglobin levels following SLD-PQ was small and returned to pre-treatment levels after 25 days. G6PD deficiency (African A- variant) was associated with a 2.5-fold (95% CI 1.2-8.2) larger reduction in hemoglobin levels. In the Tanzanian setting where 43% of the population had at least mild anemia (hemoglobin < 11-13 g/dl depending on age and sex) and 2.73% had severe anemia (hemoglobin < 7-8 g/dl depending on age and sex), an additional 3.7% and 6.0% of the population were predicted to develop at least mild anemia and 0.25% and 0.41% to develop severe anemia after 0.25 and 0.4 mg/kg SLD-PQ, respectively. Children < 5 years of age and women ≥ 15 years of age were found to have a higher chance to have low pre-treatment hemoglobin. CONCLUSIONS This study supports the feasibility of MDA with SLD-PQ in a sub-Saharan African setting by predicting small and transient reductions in hemoglobin levels. In a setting where a substantial proportion of the population had low hemoglobin concentrations, our simulations suggest treatment with SLD-PQ would result in small increases in the prevalence of anemia which would most likely be transient.
Collapse
Affiliation(s)
- Stijn W van Beek
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Alfred B Tiono
- National Center for Research and Training on Malaria (CNRFP), Ouagadougou, Burkina Faso
| | - Joseph Okebe
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Faraja , The Gambia
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- London School of Hygiene & Tropical Medicine, London, UK.
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Dynamics of G6PD activity in patients receiving weekly primaquine for therapy of Plasmodium vivax malaria. PLoS Negl Trop Dis 2021; 15:e0009690. [PMID: 34495956 PMCID: PMC8452019 DOI: 10.1371/journal.pntd.0009690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/20/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute Plasmodium vivax malaria is associated with haemolysis, bone marrow suppression, reticulocytopenia, and post-treatment reticulocytosis leading to haemoglobin recovery. Little is known how malaria affects glucose-6-phosphate dehydrogenase (G6PD) activity and whether changes in activity when patients present may lead qualitative tests, like the fluorescent spot test (FST), to misdiagnose G6PD deficient (G6PDd) patients as G6PD normal (G6PDn). Giving primaquine or tafenoquine to such patients could result in severe haemolysis. METHODS We investigated the G6PD genotype, G6PD enzyme activity over time and the baseline FST phenotype in Cambodians with acute P. vivax malaria treated with 3-day dihydroartemisinin piperaquine and weekly primaquine, 0·75 mg/kg x8 doses. RESULTS Of 75 recruited patients (males 63), aged 5-63 years (median 24), 15 were G6PDd males (14 Viangchan, 1 Canton), 3 were G6PD Viangchan heterozygous females, and 57 were G6PDn; 6 patients had α/β-thalassaemia and 26 had HbE. Median (range) Day0 G6PD activities were 0·85 U/g Hb (0·10-1·36) and 11·4 U/g Hb (6·67-16·78) in G6PDd and G6PDn patients, respectively, rising significantly to 1·45 (0·36-5·54, p<0.01) and 12·0 (8·1-17·4, p = 0.04) U/g Hb on Day7, then falling to ~Day0 values by Day56. Day0 G6PD activity did not correlate (p = 0.28) with the Day0 reticulocyte counts but both correlated over time. The FST diagnosed correctly 17/18 G6PDd patients, misclassifying one heterozygous female as G6PDn. CONCLUSIONS In Cambodia, acute P. vivax malaria did not elevate G6PD activities in our small sample of G6PDd patients to levels that would result in a false normal qualitative test. Low G6PDd enzyme activity at disease presentation increases upon parasite clearance, parallel to reticulocytosis. More work is needed in G6PDd heterozygous females to ascertain the effect of P. vivax on their G6PD activities. TRIAL REGISTRATION The trial was registered (ACTRN12613000003774) with the Australia New Zealand Clinical trials (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=363399&isReview=true).
Collapse
|
14
|
Abstract
Cindy S Chu and co-authors review options for diagnosis, safe and radical cure, and relapse prevention of Plasmodium Vivax.
Collapse
Affiliation(s)
- Cindy S. Chu
- Shoklo Malaria Research Unit-Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
- * E-mail:
| | - Nicholas J. White
- Shoklo Malaria Research Unit-Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Abstract
In this review for the Vivax malaria collection, Kamala Thriemer and colleagues explore efforts to eliminate P. vivax malaria.
Collapse
Affiliation(s)
- Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Bancone G, Chu CS. G6PD Variants and Haemolytic Sensitivity to Primaquine and Other Drugs. Front Pharmacol 2021; 12:638885. [PMID: 33790795 PMCID: PMC8005603 DOI: 10.3389/fphar.2021.638885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 02/04/2023] Open
Abstract
Restrictions on the cultivation and ingestion of fava beans were first reported as early as the fifth century BC. Not until the late 19th century were clinical descriptions of fava-induced disease reported and soon after characterised as “favism” in the early 20th century. It is now well known that favism as well as drug-induced haemolysis is caused by a deficiency of the glucose-6-phosphate dehydrogenase (G6PD) enzyme, one of the most common enzyme deficiency in humans. Interest about the interaction between G6PD deficiency and therapeutics has increased recently because mass treatment with oxidative 8-aminoquinolines is necessary for malaria elimination. Historically, assessments of haemolytic risk have focused on the clinical outcomes (e.g., haemolysis) associated with either a simplified phenotypic G6PD characterisation (deficient or normal) or an ill-fitting classification of G6PD genetic variants. It is increasingly apparent that detailed knowledge of both aspects is required for a complete understanding of haemolytic risk. While more attention has been devoted recently to better phenotypic characterisation of G6PD activity (including the development of new point-of care tests), the classification of G6PD variants should be revised to be clinically useful in malaria eliminating countries and in populations with prevalent G6PD deficiency. The scope of this work is to summarize available literature on drug-induced haemolysis among individuals with different G6PD variants and to highlight knowledge gaps that could be filled with further clinical and laboratory research.
Collapse
Affiliation(s)
- Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Foy BH, Gonçalves BP, Higgins JM. Unraveling Disease Pathophysiology with Mathematical Modeling. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:371-394. [PMID: 31977295 DOI: 10.1146/annurev-pathmechdis-012419-032557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modeling has enabled fundamental advances in our understanding of the mechanisms of health and disease for centuries, since at least the time of William Harvey almost 500 years ago. Recent technological advances in molecular methods, computation, and imaging generate optimism that mathematical modeling will enable the biomedical research community to accelerate its efforts in unraveling the molecular, cellular, tissue-, and organ-level processes that maintain health, predispose to disease, and determine response to treatment. In this review, we discuss some of the roles of mathematical modeling in the study of human physiology and pathophysiology and some challenges and opportunities in general and in two specific areas: in vivo modeling of pulmonary function and in vitro modeling of blood cell populations.
Collapse
Affiliation(s)
- Brody H Foy
- Center for Systems Biology and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bronner P Gonçalves
- Center for Systems Biology and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - John M Higgins
- Center for Systems Biology and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; .,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
18
|
Significant Efficacy of a Single Low Dose of Primaquine Compared to Stand-Alone Artemisinin Combination Therapy in Reducing Gametocyte Carriage in Cambodian Patients with Uncomplicated Multidrug-Resistant Plasmodium falciparum Malaria. Antimicrob Agents Chemother 2020; 64:AAC.02108-19. [PMID: 32179526 PMCID: PMC7269483 DOI: 10.1128/aac.02108-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
Abstract
Since 2012, a single low dose of primaquine (SLDPQ; 0.25 mg/kg of body weight) with artemisinin-based combination therapies has been recommended as the first-line treatment of acute uncomplicated Plasmodium falciparum malaria to interrupt its transmission, especially in low-transmission settings of multidrug resistance, including artemisinin resistance. Policy makers in Cambodia have been reluctant to implement this recommendation due to primaquine safety concerns and a lack of data on its efficacy. Since 2012, a single low dose of primaquine (SLDPQ; 0.25 mg/kg of body weight) with artemisinin-based combination therapies has been recommended as the first-line treatment of acute uncomplicated Plasmodium falciparum malaria to interrupt its transmission, especially in low-transmission settings of multidrug resistance, including artemisinin resistance. Policy makers in Cambodia have been reluctant to implement this recommendation due to primaquine safety concerns and a lack of data on its efficacy. In this randomized controlled trial, 109 Cambodians with acute uncomplicated P. falciparum malaria received dihydroartemisinin-piperaquine (DP) alone or combined with SLDPQ on the first treatment day. The transmission-blocking efficacy of SLDPQ was evaluated on days 0, 1, 2, 3, 7, 14, 21, and 28, and recrudescence by reverse transcriptase PCR (RT-PCR) (gametocyte prevalence) and membrane feeding assays with Anopheles minimus mosquitoes (gametocyte infectivity). Without the influence of recrudescent infections, DP-SLDPQ reduced gametocyte carriage 3-fold compared to that achieved with DP. Of 48 patients tested on day 0, only 3 patients were infectious to mosquitoes (∼6%). Posttreatment, three patients were infectious on day 14 (3.5%, 1/29) and on the 1st and 7th days of recrudescence (8.3%, 1/12 for each); this overall low infectivity precluded our ability to assess its transmission-blocking efficacy. Our study confirms the effective gametocyte clearance of SLDPQ when combined with DP in multidrug-resistant P. falciparum infections and the negative impact of recrudescent infections due to poor DP efficacy. Artesunate-mefloquine (ASMQ) has replaced DP, and ASMQ-SLDPQ has been deployed to treat all patients with symptomatic P. falciparum infections to further support the elimination of multidrug-resistant P. falciparum in Cambodia. (This study has been registered at ClinicalTrials.gov under identifier NCT02434952.)
Collapse
|
19
|
Taylor WRJ, Kheng S, Muth S, Tor P, Kim S, Bjorge S, Topps N, Kosal K, Sothea K, Souy P, Char CM, Vanna C, Ly P, Khieu V, Christophel E, Kerleguer A, Pantaleo A, Mukaka M, Menard D, Baird JK. Hemolytic Dynamics of Weekly Primaquine Antirelapse Therapy Among Cambodians With Acute Plasmodium vivax Malaria With or Without Glucose-6-Phosphate Dehydrogenase Deficiency. J Infect Dis 2020; 220:1750-1760. [PMID: 31549159 PMCID: PMC6804333 DOI: 10.1093/infdis/jiz313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background Hemoglobin (Hb) data are limited in Southeast Asian glucose-6-phosphate dehydrogenase (G6PD) deficient (G6PD−) patients treated weekly with the World Health Organization–recommended primaquine regimen (ie, 0.75 mg/kg/week for 8 weeks [PQ 0.75]). Methods We treated Cambodians who had acute Plasmodium vivax infection with PQ0.75 and a 3-day course of dihydroartemisinin/piperaquine and determined the Hb level, reticulocyte count, G6PD genotype, and Hb type. Results Seventy-five patients (male sex, 63) aged 5–63 years (median, 24 years) were enrolled. Eighteen were G6PD deficient (including 17 with G6PD Viangchan) and 57 were not G6PD deficient; 26 had HbE (of whom 25 were heterozygous), and 6 had α-/β-thalassemia. Mean Hb concentrations at baseline (ie, day 0) were similar between G6PD deficient and G6PD normal patients (12.9 g/dL [range, 9‒16.3 g/dL] and 13.26 g/dL [range, 9.6‒16 g/dL], respectively; P = .46). G6PD deficiency (P = <.001), higher Hb concentration at baseline (P = <.001), higher parasitemia level at baseline (P = .02), and thalassemia (P = .027) influenced the initial decrease in Hb level, calculated as the nadir level minus the baseline level (range, −5.8–0 g/dL; mean, −1.88 g/dL). By day 14, the mean difference from the day 7 level (calculated as the day 14 level minus the day 7 level) was 0.03 g/dL (range, −0.25‒0.32 g/dL). Reticulocyte counts decreased from days 1 to 3, peaking on day 7 (in the G6PD normal group) and day 14 (in the G6PD deficient group); reticulocytemia at baseline (P = .001), G6PD deficiency (P = <.001), and female sex (P = .034) correlated with higher counts. One symptomatic, G6PD-deficient, anemic male patient was transfused on day 4. Conclusions The first PQ0.75 exposure was associated with the greatest decrease in Hb level and 1 blood transfusion, followed by clinically insignificant decreases in Hb levels. PQ0.75 requires monitoring during the week after treatment. Safer antirelapse regimens are needed in Southeast Asia. Clinical Trials Registration ACTRN12613000003774.
Collapse
Affiliation(s)
- Walter R J Taylor
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia.,Service de Médecine Tropicale et Humanitaire, Hôpitaux Universitaires de Genève, Switzerland.,Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Sim Kheng
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Pety Tor
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Steven Bjorge
- World Health Organization (WHO) Cambodia Country Office, Phnom Penh, Cambodia
| | - Narann Topps
- World Health Organization (WHO) Cambodia Country Office, Phnom Penh, Cambodia
| | - Khem Kosal
- Pailin Referral Hospital, Pailin, Cambodia
| | | | - Phum Souy
- Anlong Veng Referral Hospital, Anlong Venh, Cambodia
| | - Chuor Meng Char
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Chan Vanna
- Pramoy Health Center, Veal Veng, Cambodia
| | - Po Ly
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Virak Khieu
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Eva Christophel
- WHO Western Pacific Regional Office, Manila, the Philippines
| | | | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Didier Menard
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Genetics and Resistance Group, Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
| | - J Kevin Baird
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Eijkman Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
20
|
Val F, Costa FT, King L, Brito-Sousa JD, Bassat Q, Monteiro WM, Siqueira AM, Luzzatto L, Lacerda MV. Tafenoquine for the prophylaxis, treatment and elimination of malaria: eagerness must meet prudence. Future Microbiol 2019; 14:1261-1279. [PMID: 31596137 DOI: 10.2217/fmb-2019-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malaria puts more than 3 billion people at risk of infection and causes high morbidity and mortality. Plasmodium vivax forms hypnozoites, which may initiate recurrences, even in the absence of reinfection or superinfection. Until recently, the only drug available for eliminating hypnozoites was primaquine (PQ), which, given its short half-life, requires a relatively long course of treatment. Tafenoquine (TQ) is a PQ analog with a longer half-life. This enables radical cure of malaria with a single dose and overcomes adherence issues associated with PQ, thereby increasing effectiveness in real-life settings. Clinical studies have provided sound evidence for TQ's safety and efficacy against malaria, which recently led to its approval by the US FDA. Here, we review aspects of TQ, including how to avoid hemolytic anemia in G6PD deficient patients. We believe that TQ promises to be a major advance toward malaria elimination.
Collapse
Affiliation(s)
- Fernando Val
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil
| | - Fabio Tm Costa
- Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Liam King
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jose D Brito-Sousa
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Escola Superior de Ciências da Saúde,Universidade do Estado do Amazonas, Manaus, Amazonas, 69065-001, Brazil
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, 08036, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, CP 1929, Maputo, Mozambique.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, 08950, Spain
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Escola Superior de Ciências da Saúde,Universidade do Estado do Amazonas, Manaus, Amazonas, 69065-001, Brazil
| | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Lucio Luzzatto
- Department of Hematology & Blood Transfusion, Muhimbili University of Health & Allied Sciences, Dar-es-Salaam, Tanzania
| | - Marcus Vg Lacerda
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas e Maria Deane, FIOCRUZ-AM, Manaus, Amazonas, 69057-070, Brazil
| |
Collapse
|
21
|
CYP2D6 Polymorphisms and the Safety and Gametocytocidal Activity of Single-Dose Primaquine for Plasmodium falciparum. Antimicrob Agents Chemother 2019; 63:AAC.00538-19. [PMID: 31383656 PMCID: PMC6761544 DOI: 10.1128/aac.00538-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Single-dose primaquine (PQ) clears mature gametocytes and reduces the transmission of Plasmodium falciparum after artemisinin combination therapy. Genetic variation in CYP2D6, the gene producing the drug-metabolizing enzyme cytochrome P450 2D6 (CYP2D6), influences plasma concentrations of PQ and its metabolites and is associated with PQ treatment failure in Plasmodium vivax malaria. Single-dose primaquine (PQ) clears mature gametocytes and reduces the transmission of Plasmodium falciparum after artemisinin combination therapy. Genetic variation in CYP2D6, the gene producing the drug-metabolizing enzyme cytochrome P450 2D6 (CYP2D6), influences plasma concentrations of PQ and its metabolites and is associated with PQ treatment failure in Plasmodium vivax malaria. Using blood and saliva samples of varying quantity and quality from 8 clinical trials across Africa (n = 1,076), we were able to genotype CYP2D6 for 774 samples (72%). We determined whether genetic variation in CYP2D6 has implications for PQ efficacy in individuals with gametocytes at the time of PQ administration (n = 554) and for safety in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals treated with PQ (n = 110). Individuals with a genetically inferred CYP2D6 poor/intermediate metabolizer status had a higher gametocyte prevalence on day 7 or 10 after PQ than those with an extensive/ultrarapid CYP2D6 metabolizer status (odds ratio [OR] = 1.79 [95% confidence interval {CI}, 1.10, 2.90]; P = 0.018). The mean minimum hemoglobin concentrations during follow-up for G6PD-deficient individuals were 11.8 g/dl for CYP2D6 extensive/ultrarapid metabolizers and 12.1 g/dl for CYP2D6 poor/intermediate metabolizers (P = 0. 803). CYP2D6 genetically inferred metabolizer status was also not associated with anemia following PQ treatment (P = 0.331). We conclude that CYP2D6 poor/intermediate metabolizer status may be associated with prolonged gametocyte carriage after treatment with single-low-dose PQ but not with treatment safety.
Collapse
|
22
|
Abstract
The technical genesis and practice of 8-aminoquinoline therapy of latent malaria offer singular scientific, clinical, and public health insights. The 8-aminoquinolines brought revolutionary scientific discoveries, dogmatic practices, benign neglect, and, finally, enduring promise against endemic malaria. The clinical use of plasmochin-the first rationally synthesized blood schizontocide and the first gametocytocide, tissue schizontocide, and hypnozoitocide of any kind-commenced in 1926. Plasmochin became known to sometimes provoke fatal hemolytic crises. World War II delivered a newer 8-aminoquinoline, primaquine, and the discovery of glucose-6-phosphate dehydrogenase (G6PD) deficiency as the basis of its hemolytic toxicity came in 1956. Primaquine nonetheless became the sole therapeutic option against latent malaria. After 40 years of fitful development, in 2018 the U.S. Food and Drug Administration registered the 8-aminoquinoline called tafenoquine for the prevention of all malarias and the treatment of those that relapse. Tafenoquine also cannot be used in G6PD-unknown or -deficient patients. The hemolytic toxicity of the 8-aminoquinolines impedes their great potential, but this problem has not been a research priority. This review explores the complex technical dimensions of the history of 8-aminoquinolines. The therapeutic principles thus examined may be leveraged in improved practice and in understanding the bright prospect of discovery of newer drugs that cannot harm G6PD-deficient patients.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Chu CS, Freedman DO. Tafenoquine and G6PD: a primer for clinicians. J Travel Med 2019; 26:taz023. [PMID: 30941413 PMCID: PMC6542331 DOI: 10.1093/jtm/taz023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Tafenoquine, an 8-aminoquinoline, is now indicated for causal prophylaxis against all human malarias and as radical curative (anti-relapse) treatment against Plasmodium vivax and Plasmodium ovale. As with other 8-aminoquinolines, tafenoquine causes hemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency (hemizygous males and homozygous females) and is contraindicated in this population. Those with intermediate G6PD activity (heterozygous females) are also at risk for hemolysis. Awareness of how to prescribe tafenoquine in relation to G6PD status is needed so it can be used safely. METHODS A standard literature search was performed on varying combinations of the terms tafenoquine, Arakoda, Kodatef, Krintafel, Kozenis, primaquine, G6PD deficiency, malaria prophylaxis and radical cure. The data were gathered and interpreted to review how tafenoquine should be prescribed in consideration of the G6PD status of an individual and traveller. RESULTS Tafenoquine should only be given to those with G6PD activity >70% of the local population median. Qualitative G6PD tests are sufficient for diagnosing G6PD deficiency in males. However, in females quantitative G6PD testing is necessary to differentiate deficient, intermediate and normal G6PD statuses. Testing for G6PD deficiency is mandatory before tafenoquine prescription. Measures can be taken to avoid tafenoquine administration to ineligible individuals (i.e. due to G6PD status, age, pregnancy and lactation). Primaquine is still necessary for some of these cases. This review provides actions that can be taken to diagnose and manage hemolysis when tafenoquine is given inadvertently to ineligible individuals. CONCLUSION Attention to G6PD status is required for safe prescription of tafenoquine. A high index of suspicion is needed if hemolysis occurs. Clinicians should seek evidence-based information for the management and treatment of iatrogenicy hemolysis caused by 8-aminoquinolines.
Collapse
Affiliation(s)
- Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David O Freedman
- William C. Gorgas Center for Geographic Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Affiliation(s)
- Jane C Quinn
- Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Stuart McCarthy
- Australian Quinoline Veterans and Families Association, Moores Pocket, QLD, Australia
| |
Collapse
|
25
|
Chu CS, Bancone G, Soe NL, Carrara VI, Gornsawun G, Nosten F. The impact of using primaquine without prior G6PD testing: a case series describing the obstacles to the medical management of haemolysis. Wellcome Open Res 2019; 4:25. [PMID: 31069260 PMCID: PMC6480970 DOI: 10.12688/wellcomeopenres.15100.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 01/10/2023] Open
Abstract
Radical cure of
Plasmodium vivax malaria in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals employs weekly primaquine dosing. This is the only recommended regimen for this patient sub-group. If national malaria programs mandate daily primaquine dosing (the recommended regimen for G6PD normal individuals), then G6PD testing before prescription is necessary to avoid iatrogenic haemolysis in G6PD deficient individuals. In this case series, two
P. vivax infected patients with unknown G6PD status from two different countries were prescribed primaquine as per national malaria program guidelines. During treatment both patients presented to the clinic with symptoms of anaemia after taking primaquine incorrectly. The clinical management of the iatrogenic severe haemolysis that occurred in these patients demonstrates the various adverse effects primaquine can cause, that other common medical treatments also have haemolytic potential, and how the diagnosis of G6PD deficiency can be elusive during acute haemolysis. Health care providers should provide careful instructions about primaquine dosing, be watchful for haemolysis, and have a high index of suspicion for G6PD deficiency in the presence of haemolysis if the G6PD status is previously unknown.
Collapse
Affiliation(s)
- Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nay Lin Soe
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Chu CS, Bancone G, Soe NL, Carrara VI, Gornsawun G, Nosten F. The impact of using primaquine without prior G6PD testing: a case series describing the obstacles to the medical management of haemolysis. Wellcome Open Res 2019; 4:25. [PMID: 31069260 PMCID: PMC6480970 DOI: 10.12688/wellcomeopenres.15100.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 09/29/2023] Open
Abstract
Radical cure of Plasmodium vivax malaria in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals employs weekly primaquine dosing. This is the only recommended regimen for this patient sub-group. If national malaria programs mandate daily primaquine dosing (the recommended regimen for G6PD normal individuals), then G6PD testing before prescription is necessary to avoid iatrogenic haemolysis in G6PD deficient individuals. In this case series, two P. vivax infected patients with unknown G6PD status from two different countries were prescribed primaquine as per national malaria program guidelines. During treatment both patients presented to the clinic with symptoms of anaemia after taking primaquine incorrectly. The clinical management of the iatrogenic severe haemolysis that occurred in these patients demonstrates the various adverse effects primaquine can cause, that other common medical treatments also have haemolytic potential, and how the diagnosis of G6PD deficiency can be elusive during acute haemolysis. Health care providers should provide careful instructions about primaquine dosing, be watchful for haemolysis, and have a high index of suspicion for G6PD deficiency in the presence of haemolysis if the G6PD status is previously unknown.
Collapse
Affiliation(s)
- Cindy S. Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nay Lin Soe
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Verena I. Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Lauden SM, Chongwain S, Achidi A, Helm E, Cusick SE, Krug A, Slusher TM, Lund TC. Prevalence of glucose-6-phosphate dehydrogenase deficiency in Cameroonian blood donors. BMC Res Notes 2019; 12:195. [PMID: 30940186 PMCID: PMC6444568 DOI: 10.1186/s13104-019-4226-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
Objective Deficiency in G6PD is the most common enzymopathy worldwide. It is frequently found in individuals of African descent in whom it can lead to hemolytic crises triggered by the use of certain antimalarial medications and infection. The prevalence of G6PD deficiency and its contribution to morbidity in West Africa is under-studied. To understand the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in West African blood donors. Results We evaluated the G6PD status and infectious disease screening tests of 1001 adult male Cameroonian blood donors (mean age 31.7 ± 9.8 years). The prevalence of G6PD deficiency was 7.9%. There was no difference in levels of hemoglobin or ABO subtype between those who were G6PD-normal compared to those that were deficient. Interestingly, G6PD-normal vs. deficient blood donors were less likely to have screened positive for hepatitis C virus (p = 0.02) and rapid plasma reagin (indicative of syphilis, p = 0.03). There was no significant difference in hepatitis B sAg, HIV-1, or HIV-2 reactivity between those with vs. without G6PD sufficiency. These data suggest that G6PD deficiency is common among West African male blood donors and may be associated with specific infectious disease exposure.
Collapse
Affiliation(s)
- Stephanie M Lauden
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | | | | | - Ethan Helm
- Mbingo Baptist Hospital, Mbingo, Cameroon
| | - Sarah E Cusick
- Division of Global Pediatrics, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Amelia Krug
- Division of Global Pediatrics, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Tina M Slusher
- Division of Global Pediatrics, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Troy C Lund
- Division of Global Pediatrics, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA. .,Global Pediatrics, Stem Cell Institute, Pediatric Blood and Marrow Transplant Program, University of Minnesota, MMC 366, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
28
|
Dysoley L, Kim S, Lopes S, Khim N, Bjorges S, Top S, Huch C, Rekol H, Westercamp N, Fukuda MM, Hwang J, Roca-Feltrer A, Mukaka M, Menard D, Taylor WR. The tolerability of single low dose primaquine in glucose-6-phosphate deficient and normal falciparum-infected Cambodians. BMC Infect Dis 2019; 19:250. [PMID: 30871496 PMCID: PMC6419451 DOI: 10.1186/s12879-019-3862-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Background The WHO recommends single low-dose primaquine (SLDPQ, 0.25 mg/kg body weight) in falciparum-infected patients to block malaria transmission and contribute to eliminating multidrug resistant Plasmodium falciparum from the Greater Mekong Sub region (GMS). However, the anxiety regarding PQ-induced acute haemolytic anaemia in glucose-6-phosphate dehydrogenase deficiency (G6PDd) has hindered its use. Therefore, we assessed the tolerability of SLDPQ in Cambodia to inform national policy. Methods This open randomised trial of dihydroartemisinin-piperaquine (DHAPP) + SLDPQ vs. DHAPP alone recruited Cambodians aged ≥1 year with acute uncomplicated P. falciparum. Randomisation was 4:1 DHAPP+SLDPQ: DHAPP for G6PDd patients and 1:1 for G6PDn patients, according to the results of the qualitative fluorescent spot test. Definitive G6PD status was determined by genotyping. Day (D) 7 haemoglobin (Hb) concentration was the primary outcome measure. Results One hundred nine patients (88 males, 21 females), aged 4–76 years (median 23) were enrolled; 12 were G6PDd Viangchan (9 hemizygous males, 3 heterozygous females). Mean nadir Hb occurred on D7 [11.6 (range 6.4 ─ 15.6) g/dL] and was significantly lower (p = 0.040) in G6PDd (n = 9) vs. G6PDn (n = 46) DHAPP+SLDPQ recipients: 10.9 vs. 12.05 g/dL, Δ = -1.15 (95% CI: -2.24 ─ -0.05) g/dL. Three G6PDn patients had D7 Hb concentrations < 8 g/dL; D7-D0 Hbs were 6.4 ─ 6.9, 7.4 ─ 7.4, and 7.5 ─ 8.2 g/dL. For all patients, mean (range) D7-D0 Hb decline was -1.45 (-4.8 ─ 2.4) g/dL, associated significantly with higher D0 Hb, higher D0 parasitaemia, and receiving DHAPP; G6PDd was not a factor. No patient required a blood transfusion. Conclusions DHAPP+SLDPQ was associated with modest Hb declines in G6PD Viangchan, a moderately severe variant. Our data augment growing evidence that SLDPQ in SE Asia is well tolerated and appears safe in G6PDd patients. Cambodia is now deploying SLDPQ and this should encourage other GMS countries to follow suit. Trial registration The clinicaltrials.gov reference number is NCT02434952. Electronic supplementary material The online version of this article (10.1186/s12879-019-3862-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lek Dysoley
- National Center for National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.,School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Saorin Kim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Nimol Khim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Steven Bjorges
- WHO Cambodia country office, Pasteur Street, Phnom Penh, Cambodia
| | | | - Chea Huch
- National Center for National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Huy Rekol
- National Center for National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nelli Westercamp
- Malaria Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA
| | - Mark M Fukuda
- U.S. President's Malaria Initiative, Malaria Branch, Division Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Bangkok, Thailand
| | - Jimee Hwang
- U.S. President's Malaria Initiative, Malaria Branch, Division Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research unit (MORU), 420/60 Rajvithi Road, Bangkok, 10400, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Didier Menard
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Biology of Host-Parasite Interactions Unit, Malaria Genetics and Resistance Group, Institut Pasteur - INSERM U1201 - CNRS ERL9195, Paris, France
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Research unit (MORU), 420/60 Rajvithi Road, Bangkok, 10400, Thailand. .,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
|
30
|
Chan XHS, Win YN, Mawer LJ, Tan JY, Brugada J, White NJ. Risk of sudden unexplained death after use of dihydroartemisinin-piperaquine for malaria: a systematic review and Bayesian meta-analysis. THE LANCET. INFECTIOUS DISEASES 2018; 18:913-923. [PMID: 29887371 PMCID: PMC6060085 DOI: 10.1016/s1473-3099(18)30297-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dihydroartemisinin-piperaquine is an effective and well tolerated artemisinin-based combination therapy that has been assessed extensively for the prevention and treatment of malaria. Piperaquine, similar to several structurally related antimalarials currently used, can prolong cardiac ventricular repolarisation duration and the electrocardiographic QT interval, leading to concerns about its proarrhythmic potential. We aimed to assess the risk of potentially lethal iatrogenic ventricular arrhythmias in individuals receiving dihydroartemisinin-piperaquine. METHODS We did a systematic review and Bayesian meta-analysis. We searched clinical bibliographic databases (last on May 24, 2017) for studies of dihydroartemisinin-piperaquine in human beings. Further unpublished studies were identified with the WHO Evidence Review Group on the Cardiotoxicity of Antimalarials. We searched for articles containing "dihydroartemisinin-piperaquine" as title, abstract, or subject heading keywords, with synonyms and variant spellings as additional search terms. We excluded animal studies, but did not apply limits on language or publication date. Eligible studies were prospective, randomised, controlled trials or cohort studies in which individuals received at least one 3-day treatment course of dihydroartemisinin-piperaquine for mass drug administration, preventive therapy, or case management of uncomplicated malaria, with follow-up over at least 3 days. At least two independent reviewers screened titles, abstracts, and full texts, agreed study eligibility, and extracted information about study and participant characteristics, adverse event surveillance methodology, dihydroartemisinin-piperaquine exposures, loss-to-follow up, and any deaths after dihydroartemisinin-piperaquine treatment into a standardised database. The risk of sudden unexplained death after dihydroartemisinin-piperaquine with 95% credible intervals (CI) generated by Bayesian meta-analysis was compared with the baseline rate of sudden cardiac death. FINDINGS Our search identified 94 eligible primary studies including data for 197 867 individuals who had received dihydroartemisinin-piperaquine: 154 505 in mass drug administration programmes; 15 188 in 14 studies of repeated courses in preventive therapies and case management of uncomplicated malaria; and 28 174 as single-course treatments of uncomplicated malaria in 76 case-management studies. There was one potentially drug-related sudden unexplained death: a healthy woman aged 16 in Mozambique who developed heart palpitations several hours after the second dose of dihydroartemisinin-piperaquine and collapsed and died on the way to hospital (no autopsy or ECG was done). The median pooled risk estimate of sudden unexplained death after dihydroartemisinin-piperaquine was 1 in 757 950 (95% CI 1 in 2 854 490 to 1 in 209 114). This risk estimate was not higher than the baseline rate of sudden cardiac death (0·7-11·9 per 100 000 person-years or 1 in 1 714 280 to 1 in 100 835 over a 30-day risk period). The risk of bias was low in most studies and unclear in a few. INTERPRETATION Dihydroartemisinin-piperaquine was associated with a low risk of sudden unexplained death that was not higher than the baseline rate of sudden cardiac death. Concerns about repolarisation-related cardiotoxicity need not limit its current use for the prevention and treatment of malaria. FUNDING Wellcome Trust, UK Medical Research Council, WHO, Bill & Melinda Gates Foundation, and University of Oxford.
Collapse
Affiliation(s)
- Xin Hui S Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Yan Naung Win
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Defence Services Medical Research Centre & Health and Disease Control Unit, Naypyidaw, Myanmar
| | - Laura J Mawer
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Royal Free London NHS Foundation Trust, London, UK
| | - Jireh Y Tan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Josep Brugada
- Arrhythmia Section, Cardiology Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Spain
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
31
|
Lover AA, Dantzer E, Hongvanthong B, Chindavongsa K, Welty S, Reza T, Khim N, Menard D, Bennett A. Prevalence and risk factors for asymptomatic malaria and genotyping of glucose 6-phosphate (G6PD) deficiencies in a vivax-predominant setting, Lao PDR: implications for sub-national elimination goals. Malar J 2018; 17:218. [PMID: 29859089 PMCID: PMC5984820 DOI: 10.1186/s12936-018-2367-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
Background Lao People Democratic Republic (PDR; Laos), a landlocked country in Southeast Asia, has made important progress in reducing malaria morbidity and mortality in the past 5–6 years, and the northern provinces have very low reported incidence. To support national progress towards elimination, it is critical to verify and understand these changes in disease burden. Methods A two-stage cluster cross-sectional survey was conducted in four districts within four northern provinces (Khua, Phongsaly Province; Paktha, Bokeo Province; Nambak, Luang Prabang, and Muang Et, Huaphanh Province). During September and October 2016, demographics and malaria risk factors were collected from a total of 1492 households. A total of 5085 persons consented to collection of blood samples for testing, by rapid diagnostic test (RDT) and polymerase chain reaction (PCR)-based testing. Risk factors for infection were examined using logistic regression; and a randomized subset of males was tested for glucose-6-phosphate dehydrogenase (G6PD) deficiencies using a combined PCR and sequencing approach. Results There were zero positives by RDT, and PCR detected Plasmodium infections in 39 (0.77%; 95% CI 0.40–1.47%) of 5082 analysable samples. The species distribution was Plasmodium vivax (28 total); Plasmodium falciparum/P. vivax (5); P. falciparum (3), Plasmodium malariae (2), and P. vivax/P. malariae (1). In multivariable analysis, the main risk factors included having any other cases within the household [aOR 12.83 (95% CI 4.40 to 37.38), p < 0.001]; and lack of bed net ownership within the household [aOR 10.91 (95% 5.42–21.94), p < 0.001]; age, sex and forest-travel were not associated with parasitaemia. A total of 910 males were tested for the six most common G6PDd in SE Asia; and 30 (3.3%; 95% CI 2.1–5.1%) had a G6PD variant allele associated with G6PD deficiency, with the majority being the Union (14) and Viangchan (11) polymorphisms, with smaller numbers of Canton and Mahidol. Conclusion This is the first rigorous PCR-based population survey for malaria infection in Northern Lao PDR, and found a very low prevalence of asymptomatic Plasmodium infections by standard PCR methods, with P. vivax predominating in the surveyed districts. Clustering of cases within households, and lack of a bed nets suggest reactive case detection, and scale-up of coverage should be prioritized. The predominance of infections with P. vivax, combined with moderate levels of serious G6PD deficiencies highlight the need for careful rollout of primaquine towards elimination goals. Electronic supplementary material The online version of this article (10.1186/s12936-018-2367-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew A Lover
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, CA, USA.
| | - Emily Dantzer
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, CA, USA
| | - Bouasy Hongvanthong
- Center for Malariology, Parasitology and Entomology (CMPE), Ministry of Health, Vientiane, Lao PDR
| | | | - Susie Welty
- Global Strategic Information, Institute for Global Health Sciences, University of California, San Francisco, CA, USA
| | - Tania Reza
- Global Strategic Information, Institute for Global Health Sciences, University of California, San Francisco, CA, USA
| | | | - Didier Menard
- Malaria Genetic and Resistance Group, Institut Pasteur, Paris, France
| | - Adam Bennett
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
32
|
Watson J, Taylor WRJ, Bancone G, Chu CS, Jittamala P, White NJ. Implications of current therapeutic restrictions for primaquine and tafenoquine in the radical cure of vivax malaria. PLoS Negl Trop Dis 2018; 12:e0006440. [PMID: 29677199 PMCID: PMC5931686 DOI: 10.1371/journal.pntd.0006440] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/02/2018] [Accepted: 04/10/2018] [Indexed: 12/02/2022] Open
Abstract
Background The 8-aminoquinoline antimalarials, the only drugs which prevent relapse of vivax and ovale malaria (radical cure), cause dose-dependent oxidant haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Patients with <30% and <70% of normal G6PD activity are not given standard regimens of primaquine and tafenoquine, respectively. Both drugs are currently considered contraindicated in pregnant and lactating women. Methods Quantitative G6PD enzyme activity data from 5198 individuals were used to estimate the proportions of heterozygous females who would be ineligible for treatment at the 30% and 70% activity thresholds, and the relationship with the severity of the deficiency. This was used to construct a simple model relating allele frequency in males to the potential population coverage of tafenoquine and primaquine under current prescribing restrictions. Findings Independent of G6PD deficiency, the current pregnancy and lactation restrictions will exclude ~13% of females from radical cure treatment. This could be reduced to ~4% if 8-aminoquinolines can be prescribed to women breast-feeding infants older than 1 month. At a 30% activity threshold, approximately 8–19% of G6PD heterozygous women are ineligible for primaquine treatment; at a 70% threshold, 50–70% of heterozygous women and approximately 5% of G6PD wild type individuals are ineligible for tafenoquine treatment. Thus, overall in areas where the G6PDd allele frequency is >10% more than 15% of men and more than 25% of women would be unable to receive tafenoquine. In vivax malaria infected patients these proportions will be lowered by any protective effect against P. vivax conferred by G6PD deficiency. Conclusion If tafenoquine is deployed for radical cure, primaquine will still be needed to obtain high population coverage. Better radical cure antimalarial regimens are needed. More than half of the malaria outside of Sub-Saharan Africa is caused by the parasite Plasmodium vivax which is characterised by multiple relapses of malaria from parasites which persist in the liver. The only drugs which prevent these relapses (radical cure) are the 8-aminoquinolines primaquine and tafenoquine, and they both cause haemolytic anaemia in G6PD deficiency, the most common enzymopathy of man. Neither can currently be prescribed in pregnancy or lactation. Tafenoquine is given as a single dose regimen and is a significant advance over primaquine (recommended as a 14 day regimen). However, a greater number of individuals, mostly females, will be ineligible for tafenoquine treatment due to a tighter restriction on the minimum G6PD enzyme activity considered safe for use of the drug. Using enzyme activity data from over 5000 individuals, we estimate the proportions ineligible due to G6PD deficiency as a function of the deficient allele prevalence. Adding this to simple estimates of pregnancy and lactation, we estimate the proportions of populations who cannot receive either tafenoquine or primaquine radical cure. For the elimination of vivax malaria in areas with a high prevalence of G6PD deficiency, then if tafenoquine is deployed primaquine will still be needed, so better regimens should be developed.
Collapse
Affiliation(s)
- James Watson
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- * E-mail:
| | - Walter R. J. Taylor
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S. Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Podjanee Jittamala
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J. White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
| |
Collapse
|
33
|
Shi X, Wang L, Li X, Bai J, Li J, Li S, Wang Z, Zhou M. Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress. Oncotarget 2018; 8:45981-45993. [PMID: 28526807 PMCID: PMC5542242 DOI: 10.18632/oncotarget.17520] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Dihydroartemisinin is an effective antimalarial agent with multiple biological activities. In the present investigation, we elucidated its therapeutic potential and working mechanism on human tongue squamous cell carcinoma (TSCC). It was demonstrated that dihydroartemisinin could significantly inhibit cell growth in a dose- and time-dependent manner by the Cell Counting Kit-8 and colony formation assay in vitro. Meanwhile, autophagy was promoted in the Cal-27 cells treated by dihydroartemisinin, evidenced by increased LC3B-II level, increased autophagosome formation, and increased Beclin-1 level compared to dihydroartemisinin-untreated cells. Importantly, dihydroartemisinin caused DNA double-strand break with simultaneously increased γH2AX foci and oxidative stress; this inhibited the nuclear localization of phosphorylated signal transducer and activator of transcription 3 (p-STAT3), finally leading to autophagic cell death. Furthermore, the antitumor effect of dihydroartemisinin-monotherapy was confirmed with a mouse xenograft model, and no kidney injury associated with toxic effect was observed after intraperitoneal injection with dihydroartemisinin for 3 weeks in vivo. In the present study, it was revealed that dihydroartemisinin-induced DNA double-strand break promoted oxidative stress, which decreased p-STAT3 (Tyr705) nuclear localization, and successively increased autophagic cell death in the Cal-27 cells. Thus, dihydroartemisinin alone may represent an effective and safe therapeutic agent for human TSCC.
Collapse
Affiliation(s)
- Xinli Shi
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China.,Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoming Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China
| | - Jing Bai
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China
| | - Jianchun Li
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shenghao Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zeming Wang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Mingrui Zhou
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
34
|
Chu CS, Bancone G, Nosten F, White NJ, Luzzatto L. Primaquine-induced haemolysis in females heterozygous for G6PD deficiency. Malar J 2018; 17:101. [PMID: 29499733 PMCID: PMC5833093 DOI: 10.1186/s12936-018-2248-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/24/2018] [Indexed: 01/15/2023] Open
Abstract
Oxidative agents can cause acute haemolytic anaemia in persons with G6PD deficiency. Understanding the relationship between G6PD genotype and the phenotypic expression of the enzyme deficiency is necessary so that severe haemolysis can be avoided. The patterns of oxidative haemolysis have been well described in G6PD deficient hemizygous males and homozygous females; and haemolysis in the proportionally more numerous heterozygous females has been documented mainly following consumption of fava beans and more recently dapsone. It has long been known that 8-aminoquinolines, notably primaquine and tafenoquine, cause acute haemolysis in G6PD deficiency. To support wider use of primaquine in Plasmodium vivax elimination, more data are needed on the haemolytic consequences of 8-aminoquinolines in G6PD heterozygous females. Two recent studies (in 2017) have provided precisely such data; and the need has emerged for the development of point of care quantitative testing of G6PD activity. Another priority is exploring alternative 8-aminoquinoline dosing regimens that are practical and improve safety in G6PD deficient individuals.
Collapse
Affiliation(s)
- Cindy S Chu
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Germana Bancone
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucio Luzzatto
- Department of Haematology, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| |
Collapse
|
35
|
Taylor WR, Naw HK, Maitland K, Williams TN, Kapulu M, D'Alessandro U, Berkley JA, Bejon P, Okebe J, Achan J, Amambua AN, Affara M, Nwakanma D, van Geertruyden JP, Mavoko M, Lutumba P, Matangila J, Brasseur P, Piola P, Randremanana R, Lasry E, Fanello C, Onyamboko M, Schramm B, Yah Z, Jones J, Fairhurst RM, Diakite M, Malenga G, Molyneux M, Rwagacondo C, Obonyo C, Gadisa E, Aseffa A, Loolpapit M, Henry MC, Dorsey G, John C, Sirima SB, Barnes KI, Kremsner P, Day NP, White NJ, Mukaka M. Single low-dose primaquine for blocking transmission of Plasmodium falciparum malaria - a proposed model-derived age-based regimen for sub-Saharan Africa. BMC Med 2018; 16:11. [PMID: 29347975 PMCID: PMC5774032 DOI: 10.1186/s12916-017-0990-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/12/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In 2012, the World Health Organization recommended blocking the transmission of Plasmodium falciparum with single low-dose primaquine (SLDPQ, target dose 0.25 mg base/kg body weight), without testing for glucose-6-phosphate dehydrogenase deficiency (G6PDd), when treating patients with uncomplicated falciparum malaria. We sought to develop an age-based SLDPQ regimen that would be suitable for sub-Saharan Africa. METHODS Using data on the anti-infectivity efficacy and tolerability of primaquine (PQ), the epidemiology of anaemia, and the risks of PQ-induced acute haemolytic anaemia (AHA) and clinically significant anaemia (CSA), we prospectively defined therapeutic-dose ranges of 0.15-0.4 mg PQ base/kg for children aged 1-5 years and 0.15-0.5 mg PQ base/kg for individuals aged ≥6 years (therapeutic indices 2.7 and 3.3, respectively). We chose 1.25 mg PQ base for infants aged 6-11 months because they have the highest rate of baseline anaemia and the highest risks of AHA and CSA. We modelled an anthropometric database of 661,979 African individuals aged ≥6 months (549,127 healthy individuals, 28,466 malaria patients and 84,386 individuals with other infections/illnesses) by the Box-Cox transformation power exponential and tested PQ doses of 1-15 mg base, selecting dosing groups based on calculated mg/kg PQ doses. RESULTS From the Box-Cox transformation power exponential model, five age categories were selected: (i) 6-11 months (n = 39,886, 6.03%), (ii) 1-5 years (n = 261,036, 45.46%), (iii) 6-9 years (n = 20,770, 3.14%), (iv) 10-14 years (n = 12,155, 1.84%) and (v) ≥15 years (n = 328,132, 49.57%) to receive 1.25, 2.5, 5, 7.5 and 15 mg PQ base for corresponding median (1st and 99th centiles) mg/kg PQ base of: (i) 0.16 (0.12-0.25), (ii) 0.21 (0.13-0.37), (iii) 0.25 (0.16-0.38), (iv) 0.26 (0.15-0.38) and (v) 0.27 (0.17-0.40). The proportions of individuals predicted to receive optimal therapeutic PQ doses were: 73.2 (29,180/39,886), 93.7 (244,537/261,036), 99.6 (20,690/20,770), 99.4 (12,086/12,155) and 99.8% (327,620/328,132), respectively. CONCLUSIONS We plan to test the safety of this age-based dosing regimen in a large randomised placebo-controlled trial (ISRCTN11594437) of uncomplicated falciparum malaria in G6PDd African children aged 0.5 - 11 years. If the regimen is safe and demonstrates adequate pharmacokinetics, it should be used to support malaria elimination.
Collapse
Affiliation(s)
- W Robert Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Tropical and Humanitarian Medicine, University Hospitals of Geneva, Geneva, Switzerland.
| | - Htee Khu Naw
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Wellcome Trust Centre for Clinical Tropical Medicine and Department of Paediatrics, Faculty of Medicine, Imperial College, London, UK
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Wellcome Trust Centre for Clinical Tropical Medicine and Department of Paediatrics, Faculty of Medicine, Imperial College, London, UK
| | - Melissa Kapulu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Umberto D'Alessandro
- MRC Unit, Fajara, Banjul, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - James A Berkley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Philip Bejon
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | | | | | | | | | | | | | - Muhindo Mavoko
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Pascal Lutumba
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Junior Matangila
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Patrice Piola
- Institut Pasteur de Madagascar, BP 1274, Antananarivo, Madagascar
| | | | - Estrella Lasry
- Kinshasa Mahidol Oxford Research Unit, Kinshasa, Democratic Republic of Congo
| | - Caterina Fanello
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Marie Onyamboko
- Kinshasa Mahidol Oxford Research Unit, Kinshasa, Democratic Republic of Congo
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | | | - Zolia Yah
- National Malaria Control Programme, Monrovia, Sierra Leone
| | - Joel Jones
- National Malaria Control Programme, Monrovia, Sierra Leone
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | | | - Malcolm Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chandy John
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Karen I Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Peter Kremsner
- Institute of Tropical Medicine, University of Tubingen, Tubingen, Germany
| | - Nicholas P Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Uthman OA, Graves PM, Saunders R, Gelband H, Richardson M, Garner P. Safety of primaquine given to people with G6PD deficiency: systematic review of prospective studies. Malar J 2017; 16:346. [PMID: 28830424 PMCID: PMC5568268 DOI: 10.1186/s12936-017-1989-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022] Open
Abstract
Background Haemolysis risk with single dose or short course primaquine was evaluated in glucose-6-phosphate dehydrogenase (G6PD) deficient people. Methods Major electronic databases (to August 2016) were searched for single or short course 8-aminoquinolines (8-AQ) in (1) randomized comparisons against placebo in G6PD deficient people; and (2) observational comparisons in G6PD deficient compared to replete people. Two authors independently assessed eligibility, risk-of-bias, and extracted data. Results Five randomized controlled trials and four controlled observational cohorts were included. In G6PD deficient individuals, high-dose (0.75 mg/kg) PQ resulted in lower average haemoglobin levels at 7 days (mean difference [MD] −1.45 g/dl, 95% CI −2.17 to −0.74, 2 trials) and larger percentage fall from baseline to day 7 (MD −10.31%, 95% CI −17.69 to −2.92, 3 trials) compared to placebo. In G6PD deficient compared to replete people, average haemoglobin was lower at 7 days (MD −1.19 g/dl, 95% CI −1.94 to −0.44, 2 trials) and haemoglobin change from baseline to day 7 was greater (MD −9.10%, 95% CI −12.55 to −5.65, 5 trials). One small trial evaluated mid-range PQ dose (0.4–0.5 mg/kg) in G6PD deficient people, with no difference detected in average haemoglobin at day 7 compared to placebo. In one cohort comparing G6PD deficient and replete people there was a greater fall with G6PD deficiency (MD −4.99%, 95% CI −9.96 to −0.02). For low-dose PQ (0.1–0.25 mg/kg) in G6PD deficient people, haemoglobin change from baseline was similar to the placebo group (MD 1.72%, 95% CI −1.89 to 5.34, 2 trials). Comparing low dose PQ in G6PD deficient with replete people, the average haemoglobin was lower in the G6PD deficient group at 7 days (−0.57 g (95% CI −0.97 to −0.17, 1 trial)); although change from baseline was similar (MD −1.45%, 95% CI −5.69 to 2.78, 3 trials). Conclusions Falls in average haemoglobin are less marked with the 0.1 to 0.25 mg/kg PQ than with the 0.75 mg/kg dose, and severe haemolytic events are not common. However, data were limited and the evidence GRADE was low or very low certainty. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1989-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olalekan A Uthman
- Centre for Evidence Synthesis in Global Health, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK. .,Warwick Centre for Applied Health Research and Delivery (WCAHRD), Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| | - Patricia M Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
| | - Rachel Saunders
- Centre for Evidence Synthesis in Global Health, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hellen Gelband
- Cochrane Infectious Disease Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Marty Richardson
- Centre for Evidence Synthesis in Global Health, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Paul Garner
- Centre for Evidence Synthesis in Global Health, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
37
|
Ong KIC, Kosugi H, Thoeun S, Araki H, Thandar MM, Iwagami M, Hongvanthong B, Brey PT, Kano S, Jimba M. Systematic review of the clinical manifestations of glucose-6-phosphate dehydrogenase deficiency in the Greater Mekong Subregion: implications for malaria elimination and beyond. BMJ Glob Health 2017; 2:e000415. [PMID: 29082022 PMCID: PMC5656182 DOI: 10.1136/bmjgh-2017-000415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION To achieve malaria elimination in the Greater Mekong Subregion (GMS) by 2030, proper case management is necessary. 8-aminoquinolines, such as primaquine, are the only available medicines effective in preventing relapse of the hypnozoite stage of Plasmodium vivax, as well as the onward transmission of Plasmodium falciparum. However, primaquine can cause haemolysis in individuals who have glucose-6-phosphate dehydrogenase deficiency (G6PDd). We conducted a systematic review on the reported clinical manifestations of G6PDd to provide a comprehensive overview of the situation in the GMS. METHODS The protocol for this systematic review was registered on PROSPERO: International prospective register of systematic reviews (CRD42016043146). We searched the PubMed/MEDLINE, CINAHL, and Web of Science databases for published articles describing the clinical manifestations of G6PDd in the GMS. We included articles of all study designs from inception until 31 July 2016, reporting the clinical manifestations of G6PDd. We then performed a narrative synthesis of these articles. RESULTS We included 56 articles in this review, 45 of which were from Thailand. Haemolysis in G6PD-deficient individuals was caused not only by primaquine but also by other medicines and infections. Other clinical manifestations of G6PDd that were found were favism, neonatal jaundice and chronic non-spherocytic haemolytic anaemia. G6PDd also influenced the clinical presentations of genetic disorders and infections, such as thalassemia and typhoid fever. CONCLUSION As G6PDd also affects the clinical presentations of other infections, the benefits of G6PD testing and proper record keeping transcend those of malaria case management. Therefore, healthcare workers at the community level should be made familiar with complications resulting from G6PDd as these complications extend beyond the scope of malaria.
Collapse
Affiliation(s)
- Ken Ing Cherng Ong
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic
| | - Hodaka Kosugi
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sophea Thoeun
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitomi Araki
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic
| | - Moe Moe Thandar
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Moritoshi Iwagami
- SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic.,Institut Pasteur du Laos, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic.,Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Bouasy Hongvanthong
- SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic.,Center of Malariology, Parasitology and Entomology, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic
| | - Paul T Brey
- SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic.,Institut Pasteur du Laos, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic
| | - Shigeyuki Kano
- SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic.,Institut Pasteur du Laos, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic.,Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masamine Jimba
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic
| |
Collapse
|
38
|
Rueangweerayut R, Bancone G, Harrell EJ, Beelen AP, Kongpatanakul S, Möhrle JJ, Rousell V, Mohamed K, Qureshi A, Narayan S, Yubon N, Miller A, Nosten FH, Luzzatto L, Duparc S, Kleim JP, Green JA. Hemolytic Potential of Tafenoquine in Female Volunteers Heterozygous for Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency ( G6PD Mahidol Variant) versus G6PD-Normal Volunteers. Am J Trop Med Hyg 2017; 97:702-711. [PMID: 28749773 PMCID: PMC5590573 DOI: 10.4269/ajtmh.16-0779] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tafenoquine is an 8-aminoquinoline under investigation for the prevention of relapse in Plasmodium vivax malaria. This open-label, dose-escalation study assessed quantitatively the hemolytic risk with tafenoquine in female healthy volunteers heterozygous for the Mahidol487A glucose-6-phosphate dehydrogenase (G6PD)-deficient variant versus G6PD-normal females, and with reference to primaquine. Six G6PD-heterozygous subjects (G6PD enzyme activity 40-60% of normal) and six G6PD-normal subjects per treatment group received single-dose tafenoquine (100, 200, or 300 mg) or primaquine (15 mg × 14 days). All participants had pretreatment hemoglobin levels ≥ 12.0 g/dL. Tafenoquine dose escalation stopped when hemoglobin decreased by ≥ 2.5 g/dL (or hematocrit decline ≥ 7.5%) versus pretreatment values in ≥ 3/6 subjects. A dose-response was evident in G6PD-heterozygous subjects (N = 15) receiving tafenoquine for the maximum decrease in hemoglobin versus pretreatment values. Hemoglobin declines were similar for tafenoquine 300 mg (-2.65 to -2.95 g/dL [N = 3]) and primaquine (-1.25 to -3.0 g/dL [N = 5]). Two further cohorts of G6PD-heterozygous subjects with G6PD enzyme levels 61-80% (N = 2) and > 80% (N = 5) of the site median normal received tafenoquine 200 mg; hemolysis was less pronounced at higher G6PD enzyme activities. Tafenoquine hemolytic potential was dose dependent, and hemolysis was greater in G6PD-heterozygous females with lower G6PD enzyme activity levels. Single-dose tafenoquine 300 mg did not appear to increase the severity of hemolysis versus primaquine 15 mg × 14 days.
Collapse
Affiliation(s)
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Emma J Harrell
- GlaxoSmithKline Research and Development Ltd., Uxbridge, United Kingdom
| | | | | | | | - Vicki Rousell
- GlaxoSmithKline Research and Development Ltd., Uxbridge, United Kingdom
| | - Khadeeja Mohamed
- GlaxoSmithKline Research and Development Ltd., Uxbridge, United Kingdom
| | - Ammar Qureshi
- GlaxoSmithKline Research and Development Ltd., Uxbridge, United Kingdom
| | - Sushma Narayan
- GlaxoSmithKline Research and Development Ltd., Uxbridge, United Kingdom
| | | | - Ann Miller
- GlaxoSmithKline, King of Prussia, Pennsylvania
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Lucio Luzzatto
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania.,Istituto Toscano Tumori, Florence, Italy
| | | | - Jörg-Peter Kleim
- GlaxoSmithKline Research and Development Ltd., Uxbridge, United Kingdom
| | - Justin A Green
- GlaxoSmithKline Research and Development Ltd., Uxbridge, United Kingdom
| |
Collapse
|
39
|
Watson J, Taylor WR, Menard D, Kheng S, White NJ. Modelling primaquine-induced haemolysis in G6PD deficiency. eLife 2017; 6. [PMID: 28155819 PMCID: PMC5330681 DOI: 10.7554/elife.23061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Primaquine is the only drug available to prevent relapse in vivax malaria. The main adverse effect of primaquine is erythrocyte age and dose-dependent acute haemolytic anaemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd). As testing for G6PDd is often unavailable, this limits the use of primaquine for radical cure. A compartmental model of the dynamics of red blood cell production and destruction was designed to characterise primaquine-induced haemolysis using a holistic Bayesian analysis of all published data and was used to predict a safer alternative to the currently recommended once weekly 0.75 mg/kg regimen for G6PDd. The model suggests that a step-wise increase in daily administered primaquine dose would be relatively safe in G6PDd. If this is confirmed, then were this regimen to be recommended for radical cure patients would not require testing for G6PDd in areas where G6PDd Viangchan or milder variants are prevalent. DOI:http://dx.doi.org/10.7554/eLife.23061.001 Malaria is the most important parasitic disease that affects humans. Over half of the malaria cases in Asia and South America are caused by a species of malaria parasite called Plasmodium vivax (known as vivax malaria). This form of malaria results in repeated illness because dormant parasites in the liver wake at intervals to infect the blood. The only available drug that can stop these relapses is a drug called primaquine, which was developed seventy years ago. Unfortunately, primaquine causes dangerous side effects in certain individuals who are deficient in an enzyme called G6PD, which helps defend red blood cells against stresses. Primaquine damages these cells so that they burst, leading to anaemia. This is a major problem because G6PD deficiency is common in regions where malaria is present: in some areas up to 30% of the population may be G6PD deficient. Since G6PD testing is not widely available, doctors often avoid prescribing primaquine to treat malaria, which results in more cases of disease relapse. Failing to prevent vivax relapses causes extensive illness and hinders efforts to eliminate malaria. Is there a way to give this drug to patients that would be safer for people with G6PD deficiency? Primaquine destroys older rather than younger red blood cells. Watson et al. used mathematical modelling to see whether it is possible to develop a primaquine treatment strategy that would allow a gradual destruction of older red blood cells in individuals with G6PD deficiency, which would be safer. The mathematical model incorporates data from previous studies in malaria patients and healthy volunteers with G6PD deficiency and combines this with knowledge of how red blood cells are produced and destroyed. Watson et al. predicted that giving primaquine over 20 days in a steadily increasing dose was safer than current recommendations. Mathematical models are simplifications of real world processes. The only way to test these findings properly will be to run a clinical trial that gives healthy volunteers who are G6PD deficient a course of primaquine treatment with a steadily increasing dose. DOI:http://dx.doi.org/10.7554/eLife.23061.002
Collapse
Affiliation(s)
- James Watson
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Walter Rj Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Didier Menard
- Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Chu CS, Bancone G, Moore KA, Win HH, Thitipanawan N, Po C, Chowwiwat N, Raksapraidee R, Wilairisak P, Phyo AP, Keereecharoen L, Proux S, Charunwatthana P, Nosten F, White NJ. Haemolysis in G6PD Heterozygous Females Treated with Primaquine for Plasmodium vivax Malaria: A Nested Cohort in a Trial of Radical Curative Regimens. PLoS Med 2017; 14:e1002224. [PMID: 28170391 PMCID: PMC5295665 DOI: 10.1371/journal.pmed.1002224] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Radical cure of Plasmodium vivax malaria with 8-aminoquinolines (primaquine or tafenoquine) is complicated by haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. G6PD heterozygous females, because of individual variation in the pattern of X-chromosome inactivation (Lyonisation) in erythroid cells, may have low G6PD activity in the majority of their erythrocytes, yet are usually reported as G6PD "normal" by current phenotypic screening tests. Their haemolytic risk when treated with 8-aminoquinolines has not been well characterized. METHODS AND FINDINGS In a cohort study nested within a randomised clinical trial that compared different treatment regimens for P. vivax malaria, patients with a normal standard NADPH fluorescent spot test result (≳30%-40% of normal G6PD activity) were randomised to receive 3 d of chloroquine or dihydroartemisinin-piperaquine in combination with primaquine, either the standard high dose of 0.5 mg base/kg/day for 14 d or a higher dose of 1 mg base/kg/d for 7 d. Patterns of haemolysis were compared between G6PD wild-type and G6PD heterozygous female participants. Between 21 February 2012 and 04 July 2014, 241 female participants were enrolled, of whom 34 were heterozygous for the G6PD Mahidol variant. Haemolysis was substantially greater and a larger proportion of participants reached the threshold of clinically significant haemolysis (fractional haematocrit reduction >25%) in G6PD heterozygotes taking the higher (7 d) primaquine dose (9/17 [53%]) compared with G6PD heterozygotes taking the standard high (14 d) dose (2/16 [13%]; p = 0.022). In heterozygotes, the mean fractional haematocrit reductions were correspondingly greater with the higher primaquine dose (7-d regimen): -20.4% (95% CI -26.0% to -14.8%) (nadir on day 5) compared with the standard high (14 d) dose: -13.1% (95% CI -17.6% to -8.6%) (nadir day 6). Two heterozygotes taking the higher (7 d) primaquine dose required blood transfusion. In wild-type participants, mean haematocrit reductions were clinically insignificant and similar with both doses: -5.8 (95% CI -7.2% to -4.4%) (nadir day 3) compared with -5.5% (95% CI -7.4% to -3.7%) (nadir day 4), respectively. Limitations to this nested cohort study are that the primary objective of the trial was designed to measure efficacy and not haemolysis in relation to G6PD genotype and that the heterozygote groups were small. CONCLUSION Higher daily doses of primaquine have the potential to cause clinically significant haemolysis in G6PD heterozygous females who are reported as phenotypically normal with current point of care tests. TRIAL REGISTRATION ClinicalTrials.gov NCT01640574.
Collapse
Affiliation(s)
- Cindy S. Chu
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kerryn A. Moore
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Htun Htun Win
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Niramon Thitipanawan
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Christina Po
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nongnud Chowwiwat
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Rattanaporn Raksapraidee
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Pornpimon Wilairisak
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Lily Keereecharoen
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Stéphane Proux
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Prakaykaew Charunwatthana
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
41
|
Baird JK, Valecha N, Duparc S, White NJ, Price RN. Diagnosis and Treatment of Plasmodium vivax Malaria. Am J Trop Med Hyg 2016; 95:35-51. [PMID: 27708191 PMCID: PMC5198890 DOI: 10.4269/ajtmh.16-0171] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/19/2016] [Indexed: 11/07/2022] Open
Abstract
The diagnosis and treatment of Plasmodium vivax malaria differs from that of Plasmodium falciparum malaria in fundamentally important ways. This article reviews the guiding principles, practices, and evidence underpinning the diagnosis and treatment of P. vivax malaria.
Collapse
Affiliation(s)
- J Kevin Baird
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Neena Valecha
- National Institute for Malaria Research, New Delhi, India
| | | | - Nicholas J White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N Price
- Division of Global and Tropical Health, Menzies School of Health Research-Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Leang R, Khu NH, Mukaka M, Debackere M, Tripura R, Kheang ST, Chy S, Kak N, Buchy P, Tarantola A, Menard D, Roca-Felterer A, Fairhurst RM, Kheng S, Muth S, Ngak S, Dondorp AM, White NJ, Taylor WRJ. An optimised age-based dosing regimen for single low-dose primaquine for blocking malaria transmission in Cambodia. BMC Med 2016; 14:171. [PMID: 27784313 PMCID: PMC5081959 DOI: 10.1186/s12916-016-0701-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In 2012, the World Health Organization recommended the addition of single low-dose primaquine (SLDPQ, 0.25 mg base/kg body weight) to artemisinin combination therapies to block the transmission of Plasmodium falciparum without testing for glucose-6-phosphate dehydrogenase deficiency. The targeted group was non-pregnant patients aged ≥ 1 year (later changed to ≥ 6 months) with acute uncomplicated falciparum malaria, primarily in countries with artemisinin-resistant P. falciparum (ARPf). No dosing regimen was suggested, leaving malaria control programmes and clinicians in limbo. Therefore, we designed a user-friendly, age-based SLDPQ regimen for Cambodia, the country most affected by ARPf. METHODS By reviewing primaquine's pharmacology, we defined a therapeutic dose range of 0.15-0.38 mg base/kg (9-22.5 mg in a 60-kg adult) for a therapeutic index of 2.5. Primaquine doses (1-20 mg) were tested using a modelled, anthropometric database of 28,138 Cambodian individuals (22,772 healthy, 4119 with malaria and 1247 with other infections); age distributions were: 0.5-4 years (20.0 %, n = 5640), 5-12 years (9.1 %, n = 2559), 13-17 years (9.1 %, n = 2550), and ≥ 18 years (61.8 %, n = 17,389). Optimal age-dosing groups were selected according to calculated mg base/kg doses and proportions of individuals receiving a therapeutic dose. RESULTS Four age-dosing bands were defined: (1) 0.5-4 years, (2) 5-9 years, (3) 10-14 years, and (4) ≥15 years to receive 2.5, 5, 7.5, and 15 mg of primaquine base, resulting in therapeutic doses in 97.4 % (5494/5640), 90.5 % (1511/1669), 97.7 % (1473/1508), and 95.7 % (18,489/19,321) of individuals, respectively. Corresponding median (1st-99th centiles) mg base/kg doses of primaquine were (1) 0.23 (0.15-0.38), (2) 0.29 (0.18-0.45), (3) 0.27 (0.15-0.39), and (4) 0.29 (0.20-0.42). CONCLUSIONS This age-based SLDPQ regimen could contribute substantially to malaria elimination and requires urgent evaluation in Cambodia and other countries with similar anthropometric characteristics. It guides primaquine manufacturers on suitable tablet strengths and doses for paediatric-friendly formulations. Development of similar age-based dosing recommendations for Africa is needed.
Collapse
Affiliation(s)
- Rithea Leang
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Naw Htee Khu
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Mark Debackere
- MSF Belgium Cambodia Malaria Program, #19, Street 388, Sangkat Tuol Svay Prey, Khan Chamkarmon, PO Box 1933, Phnom Penh, Cambodia
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Soy Ty Kheang
- University Research Co., LLC, MK Building, House #10 (2nd floor), St. 214, Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Say Chy
- University Research Co., LLC, MK Building, House #10 (2nd floor), St. 214, Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Neeraj Kak
- University Research Co., LLC Washington DC: 7200 Wisconsin Ave, Bethesda, MD, 20814, USA
| | - Philippe Buchy
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Didier Menard
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Arantxa Roca-Felterer
- Malaria Consortium, House #91 Street 95, Boeung Trabek, Chamkar Morn, Phnom Penh, Cambodia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Song Ngak
- FHI 360 Cambodia Office, #03, Street 330 Boeung Keng Kang III Khan Chamkamon, PO Box: 2586, Phnom Penh, Cambodia
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Walter Robert John Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand. .,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,Centre de Médecine Humanitaire, Hôpitaux Universitaires de Genève, Genève, Switzerland.
| |
Collapse
|
43
|
Siv S, Roca-Feltrer A, Vinjamuri SB, Bouth DM, Lek D, Rashid MA, By NP, Popovici J, Huy R, Menard D. Plasmodium vivax Malaria in Cambodia. Am J Trop Med Hyg 2016; 95:97-107. [PMID: 27708187 PMCID: PMC5201228 DOI: 10.4269/ajtmh.16-0208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022] Open
Abstract
The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed.
Collapse
Affiliation(s)
- Sovannaroth Siv
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | | | - Seshu Babu Vinjamuri
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Denis Mey Bouth
- World Health Organization, Country Office, Phnom Penh, Cambodia
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | | | - Ngau Peng By
- Malaria Consortium Cambodia, Phnom Penh, Cambodia
| | - Jean Popovici
- Institute Pasteur in Cambodia (IPC), Phnom Penh, Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Didier Menard
- Institute Pasteur in Cambodia (IPC), Phnom Penh, Cambodia
| |
Collapse
|
44
|
Single-Dose Primaquine in a Preclinical Model of Glucose-6-Phosphate Dehydrogenase Deficiency: Implications for Use in Malaria Transmission-Blocking Programs. Antimicrob Agents Chemother 2016; 60:5906-13. [PMID: 27458212 DOI: 10.1128/aac.00600-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/02/2016] [Indexed: 12/24/2022] Open
Abstract
Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd) are at risk for developing hemolytic anemia when given the antimalarial drug primaquine (PQ). The WHO Evidence Review Group released a report suggesting that mass administration of a single dose of PQ at 0.25 mg of base/kg of body weight (mpk) (mouse equivalent of 3.125 mpk) could potentially reduce malaria transmission based on its gametocytocidal activity and could be safely administered to G6PD-deficient individuals, but there are limited safety data available confirming the optimum single dose of PQ. A single-dose administration of PQ was therefore assessed in our huRBC-SCID mouse model used to predict hemolytic toxicity with respect to G6PD deficiency. In this model, nonobese diabetic (NOD)/SCID mice are engrafted with human red blood cells (huRBC) from donors with the African or Mediterranean variant of G6PDd (A-G6PDd or Med-G6PDd, respectively) and demonstrate dose-dependent sensitivity to PQ. In mice engrafted with A-G6PD-deficient huRBC, single-dose PQ at 3.125, 6.25, or 12.5 mpk had no significant loss of huRBC compared to the vehicle control group. In contrast, in mice engrafted with Med-G6PDd huRBC, a single dose of PQ at 3.125, 6.25, or 12.5 mpk resulted in a significant, dose-dependent loss of huRBC compared to the value for the vehicle control group. Our data suggest that administration of a single low dose of 0.25 mpk of PQ could induce hemolytic anemia in Med-G6PDd individuals but that use of single-dose PQ at 0.25 mpk as a gametocytocidal drug to block transmission would be safe in areas where A-G6PDd predominates.
Collapse
|
45
|
Abstract
Introduction: Relapses are important contributors to illness and morbidity in Plasmodium vivax and P. ovale infections. Relapse prevention (radical cure) with primaquine is required for optimal management, control and ultimately elimination of Plasmodium vivax malaria. A review was conducted with publications in English, French, Portuguese and Spanish using the search terms ‘P. vivax’ and ‘relapse’. Areas covered: Hypnozoites causing relapses may be activated weeks or months after initial infection. Incidence and temporal patterns of relapse varies geographically. Relapses derive from parasites either genetically similar or different from the primary infection indicating that some derive from previous infections. Malaria illness itself may activate relapse. Primaquine is the only widely available treatment for radical cure. However, it is often not given because of uncertainty over the risks of primaquine induced haemolysis when G6PD deficiency testing is unavailable. Recommended dosing of primaquine for radical cure in East Asia and Oceania is 0.5 mg base/kg/day and elsewhere is 0.25 mg base/kg/day. Alternative treatments are under investigation. Expert commentary: Geographic heterogeneity in relapse patterns and chloroquine susceptibility of P. vivax, and G6PD deficiency epidemiology mean that radical treatment should be given much more than it is today. G6PD testing should be made widely available so primaquine can be given more safely.
Collapse
Affiliation(s)
- Cindy S Chu
- a Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Mae Sot , Thailand.,b Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Bangkok , Thailand
| | - Nicholas J White
- b Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Bangkok , Thailand.,c Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
46
|
Ebstie YA, Abay SM, Tadesse WT, Ejigu DA. Tafenoquine and its potential in the treatment and relapse prevention of Plasmodium vivax malaria: the evidence to date. Drug Des Devel Ther 2016; 10:2387-99. [PMID: 27528800 PMCID: PMC4970641 DOI: 10.2147/dddt.s61443] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite declining global malaria incidence, the disease continues to be a threat to people living in endemic regions. In 2015, an estimated 214 million new malaria cases and 438,000 deaths due to malaria were recorded. Plasmodium vivax is the second most common cause of malaria next to Plasmodium falciparum. Vivax malaria is prevalent especially in Southeast Asia and the Horn of Africa, with enormous challenges in controlling the disease. Some of the challenges faced by vivax malaria-endemic countries include limited access to effective drugs treating liver stages of the parasite (schizonts and hypnozoites), emergence/spread of drug resistance, and misperception of vivax malaria as nonlethal. Primaquine, the only 8-aminoquinoline derivative approved by the US Food and Drug Administration, is intended to clear intrahepatic hypnozoites of P. vivax (radical cure). However, poor adherence to a prolonged treatment course, drug-induced hemolysis in patients with glucose-6-phosphate dehydrogenase deficiency, and the emergence of resistance make it imperative to look for alternative drugs. Therefore, this review focuses on data accrued to date on tafenoquine and gives insight on the potential role of the drug in preventing relapse and radical cure of patients with vivax malaria.
Collapse
Affiliation(s)
| | | | - Wondmagegn T Tadesse
- Department of Pharmacology and Clinical Pharmacy, School of Medicine, College of Health Sciences, Addis Ababa University
| | - Dawit A Ejigu
- Department of Pharmacology, St Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| |
Collapse
|
47
|
Amoah LE, Opong A, Ayanful-Torgby R, Abankwa J, Acquah FK. Prevalence of G6PD deficiency and Plasmodium falciparum parasites in asymptomatic school children living in southern Ghana. Malar J 2016; 15:388. [PMID: 27456336 PMCID: PMC4960760 DOI: 10.1186/s12936-016-1440-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/12/2016] [Indexed: 01/03/2023] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked genetic disorder that results in impaired enzyme activity. Although G6PD deficiency is globally distributed it is more prevalent in malaria-endemic countries. Several mutations have been identified in the G6PD gene, which alter enzyme activity. The G6PD genotype predominantly found in sub-Saharan Africa is the G6PDB (G6PD376A) with (G6PD376G) and G6PDA- (G6PD376G/202A, G6PD376G/542T, G6PD376G/680T and G6PD376G/968C) occurring at lower frequencies. Aim The aim of this study was to identify the prevalence of G6PD deficiency and asymptomatic Plasmodium falciparum carriage in children living in southern Ghana and determine whether G6PD deficiency influences asymptomatic carriage of P. falciparum parasites. Methods Blood samples were obtained once a month from 170 healthy Ghanaian school children aged between 5 and 12 years from Basic schools in two communities Obom and Abura with similar rainfall patterns and malaria peak seasons. G6PD enzyme activity was assessed using the qualitative G6PD RDT kit (AccessBIO). G6PD genotyping and asymptomatic parasite carriage was determined by PCR followed by restriction fragment length polymorphism (RFLP) of DNA extracted from dried blood spots. Results The only sub-Saharan G6PD A- allele detected was the A376G/G202A found in 12.4 % (21/170), of the children and distributed as 4.1 % (7/170) A-, 1.8 % (3/170) A-/A- homozygous deficient males and females and 6.5 % (11/170) A/A- and B/A- heterozygous deficient females. Phenotypically, 10.6 % (15/142) of the children were G6PD deficient. The asymptomatic carriage of P. falciparum by PCR was 50, 29.4, 38.2 and 38.8 % over the months of February through May 2015, respectively, and 28.8, 22.4, 25.9 and 5.9 % by microscopy during the same periods. Conclusions G6PD deficiency was significantly associated with a lowered risk of PCR-estimated asymptomatic P. falciparum carriage in children during the off peak malaria season in Southern Ghana. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1440-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Akua Opong
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ruth Ayanful-Torgby
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.,Ghana Health Service, Ministry of Health, Accra, Ghana
| | - Joana Abankwa
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Festus K Acquah
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
48
|
Lalloo DG, Shingadia D, Bell DJ, Beeching NJ, Whitty CJM, Chiodini PL. UK malaria treatment guidelines 2016. J Infect 2016; 72:635-649. [PMID: 26880088 PMCID: PMC7132403 DOI: 10.1016/j.jinf.2016.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/15/2022]
Abstract
1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9. Most patients treated for P. falciparum malaria should be admitted to hospital for at least 24 h as patients can deteriorate suddenly, especially early in the course of treatment. In specialised units seeing large numbers of patients, outpatient treatment may be considered if specific protocols for patient selection and follow up are in place. 10. Uncomplicated P. falciparum malaria should be treated with an artemisinin combination therapy (Grade 1A). Artemether-lumefantrine (Riamet(®)) is the drug of choice (Grade 2C) and dihydroartemisinin-piperaquine (Eurartesim(®)) is an alternative. Quinine or atovaquone-proguanil (Malarone(®)) can be used if an ACT is not available. Quinine is highly effective but poorly-tolerated in prolonged treatment and should be used in combination with an additional drug, usually oral doxycycline. 11. Severe falciparum malaria, or infections complicated by a relatively high parasite count (more than 2% of red blood cells parasitized) should be treated with intravenous therapy until the patient is well enough to continue with oral treatment. Severe malaria is a rare complication of P. vivax or P. knowlesi infection and also requires parenteral therapy. 12. The treatment of choice for severe or complicated malaria in adults and children is intravenous artesunate (Grade 1A). Intravenous artesunate is unlicensed in the EU but is available in many centres. The alternative is intravenous quinine, which should be started immediately if artesunate is not available (Grade 1A). Patients treated with intravenous quinine require careful monitoring for hypoglycemia. 13. Patients with severe or complicated malaria should be managed in a high-dependency or intensive care environment. They may require haemodynamic support and management of: acute respiratory distress syndrome, disseminated intravascular coagulation, acute kidney injury, seizures, and severe intercurrent infections including Gram-negative bacteraemia/septicaemia. 14. Children with severe malaria should also be treated with empirical broad spectrum antibiotics until bacterial infection can be excluded (Grade 1B). 15. Haemolysis occurs in approximately 10-15% patients following intravenous artesunate treatment. Haemoglobin concentrations should be checked approximately 14 days following treatment in those treated with IV artemisinins (Grade 2C). 16. Falciparum malaria in pregnancy is more likely to be complicated: the placenta contains high levels of parasites, stillbirth or early delivery may occur and diagnosis can be difficult if parasites are concentrated in the placenta and scanty in the blood. 17. Uncomplicated falciparum malaria in the second and third trimester of pregnancy should be treated with artemether-lumefantrine (Grade 2B). Uncomplicated falciparum malaria in the first trimester of pregnancy should usually be treated with quinine and clindamycin but specialist advice should be sought. Severe malaria in any trimester of pregnancy should be treated as for any other patient with artesunate preferred over quinine (Grade 1C). 18. Children with uncomplicated malaria should be treated with an ACT (artemether-lumefantrine or dihydroartemisinin-piperaquine) as first line treatment (Grade 1A). Quinine with doxycycline or clindamycin, or atovaquone-proguanil at appropriate doses for weight can also be used. Doxycycline should not be given to children under 12 years. 19. Either an oral ACT or chloroquine can be used for the treatment of non-falciparum malaria. An oral ACT is preferred for a mixed infection, if there is uncertainty about the infecting species, or for P. vivax infection from areas where chloroquine resistance is common (Grade 1B). 20. Dormant parasites (hypnozoites) persist in the liver after treatment of P. vivax or P. ovale infection: the only currently effective drug for eradication of hypnozoites is primaquine (1A). Primaquine is more effective at preventing relapse if taken at the same time as chloroquine (Grade 1C). 21. Primaquine should be avoided or given with caution under expert supervision in patients with Glucose-6-phosphate dehydrogenase deficiency (G6PD), in whom it may cause severe haemolysis. 22. Primaquine (for eradication of P. vivax or P. ovale hypnozoites) is contraindicated in pregnancy and when breastfeeding (until the G6PD status of child is known); after initial treatment for these infections a pregnant woman should take weekly chloroquine prophylaxis until after delivery or cessation of breastfeeding when hypnozoite eradication can be considered. 23. An acute attack of malaria does not confer protection from future attacks: individuals who have had malaria should take effective anti-mosquito precautions and chemoprophylaxis during future visits to endemic areas.
Collapse
Affiliation(s)
- David G Lalloo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Delane Shingadia
- Department of Infectious Diseases, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| | - David J Bell
- Department of Infectious Diseases, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Nicholas J Beeching
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Christopher J M Whitty
- Hospital for Tropical Diseases, Mortimer Market Centre, Capper Street off Tottenham Court Road, London WC1E 6AU, UK
| | - Peter L Chiodini
- Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
49
|
Abstract
INTRODUCTION Antimalarial drugs are the primary weapon to treat parasite infection, save lives, and curtail further transmission. Accumulating data have indicated that at least some antimalarial drugs may contribute to severe neurological and/or psychiatric side effects which further complicates their use and limits the pool of available medications. AREAS COVERED In this review article, we summarize published scientific studies in search of evidence of the neuropsychiatric effects that may be attributed to the commonly used antimalarial drugs administered alone or in combination. Each individual drug was used as a search term in addition to keywords such as neuropsychiatric, adverse events, and neurotoxicity. EXPERT OPINION Accumulating data based on published reports over several decades have suggested that among the major commonly used antimalarial drugs, only mefloquine exhibited clear indications of serious neurological and/or psychiatric side effects. A more systematic approach to assess the neuropsychiatric adverse effects of new or repurposed antimalarial drugs on their safety, tolerability and efficacy phases of clinical studies and in post-marketing surveillance, is needed to ensure that these life-saving tools remain available and can be prescribed with appropriate caution and medical judgment.
Collapse
Affiliation(s)
- Bryan Grabias
- a Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases , Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| | - Sanjai Kumar
- a Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases , Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| |
Collapse
|
50
|
Oo NN, Bancone G, Maw LZ, Chowwiwat N, Bansil P, Domingo GJ, Htun MM, Thant KZ, Htut Y, Nosten F. Validation of G6PD Point-of-Care Tests among Healthy Volunteers in Yangon, Myanmar. PLoS One 2016; 11:e0152304. [PMID: 27035821 PMCID: PMC4818080 DOI: 10.1371/journal.pone.0152304] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/12/2016] [Indexed: 12/20/2022] Open
Abstract
Primaquine and other 8-amnoquinoline based anti-malarials can cause haemolysis in subjects with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Correct diagnosis of G6PD status in patients is crucial for safe treatment of both relapsing stages of Plasmodium vivax and transmitting forms of Plasmodium falciparum. Lack of suitable point-of-care tests has hampered a much needed wide use of primaquine for malaria elimination. In this study we have assessed the performances of two qualitative tests, the fluorescent spot test (FST) and the G6PD CareStart test (CST), against the gold standard quantitative spectrophotometric assay in a population of 1000 random adult healthy volunteers living in Yangon, Myanmar. The prevalence of G6PD deficiency in the Bamar, Karen and in the whole sample set was 6.6% (10.1% in males), 9.2% (21.0% in males) and 6.8% (11.1% in males) respectively. The FST and CST showed comparable performances with sensitivity over 95% and specificity over 90%, however for cases with severe G6PD activity the FTS had improved performance. If used with a conservative interpretation of the signal, the CareStart test has the potential to be used in the field and, by allowing a wider use of primaquine, to help malaria elimination.
Collapse
Affiliation(s)
- Nwe Nwe Oo
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
- * E-mail: (NNO); (GB)
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- * E-mail: (NNO); (GB)
| | - Lwin Zar Maw
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Nongnud Chowwiwat
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Pooja Bansil
- Diagnostics Program, PATH, Seattle, WA, United States of America
| | | | - Moh Moh Htun
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Ye Htut
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|