1
|
Tang Y, Tang K, Hu Y, Ye ZW, Luo W, Luo C, Cao H, Wang R, Yue X, Liu D, Liu C, Ge X, Liu T, Chen Y, Yuan S, Deng L. M protein ectodomain-specific immunity restrains SARS-CoV-2 variants replication. Front Immunol 2024; 15:1450114. [PMID: 39416782 PMCID: PMC11480003 DOI: 10.3389/fimmu.2024.1450114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction The frequent occurrence of mutations in the SARS-CoV-2 Spike (S) protein, with up to dozens of mutations, poses a severe threat to the current efficacy of authorized COVID-19 vaccines. Membrane (M) protein, which is the most abundant viral structural protein, exhibits a high level of amino acid sequence conservation. M protein ectodomain could be recognized by specific antibodies; however, the extent to which it is immunogenic and provides protection remains unclear. Methods We designed and synthesized multiple peptides derived from coronavirus M protein ectodomains, and determined the secondary structure of specific peptides using circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was utilized to detect IgG responses against the synthesized peptides in clinical samples. To evaluate the immunogenicity of peptide vaccines, BALB/c mice were intraperitoneally immunized with peptide-keyhole limpet hemocyanin (KLH) conjugates adjuvanted with incomplete Freund's adjuvant (IFA). The humoral and T-cell immune responses induced by peptide-KLH conjugates were assessed using ELISA and ELISpot assays, respectively. The efficacy of the S2M2-30-KLH vaccine against SARS-CoV-2 variants was evaluated in vivo using the K18-hACE2 transgenic mouse model. The inhibitory effect of mouse immune serum on SARS-CoV-2 virus replication in vitro was evaluated using microneutralization assays. The subcellular localization of the M protein was evaluated using an immunofluorescent staining method, and the Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) activity of the S2M2-30-specific monoclonal antibody (mAb) was measured using an ADCC reporter assay. Results Seroconversion rates for ectodomain-specific IgG were observed to be high in both SARS-CoV-2 convalescent patients and individuals immunized with inactivated vaccines. To assess the protective efficacy of the M protein ectodomain-based vaccine, we initially identified a highly immunogenic peptide derived from this ectodomain, named S2M2-30. The mouse serum specific to S2M2-30 showed inhibitory effects on the replication of SARS-CoV-2 variants in vitro. Immunizations of K18-hACE2-transgenic mice with the S2M2-30-keyhole limpet hemocyanin (KLH) vaccine significantly reduced the lung viral load caused by B.1.1.7/Alpha (UK) infection. Further mechanism investigations reveal that serum neutralizing activity, specific T-cell response and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) correlate with the specific immuno-protection conferred by S2M2-30. Discussion The findings of this study suggest that the antibody responses against M protein ectodomain in the population most likely exert a beneficial effect on preventing various SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yibo Tang
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yunqi Hu
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - Zi-Wei Ye
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wanyu Luo
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hehe Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ran Wang
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xinyu Yue
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - Dejian Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Cuicui Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Xingyi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yaoqing Chen
- School of Public Health, Sun Yat-sen University, Shenzhen, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Sun Yat-sen University, Guangzhou, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
- Research and Development Department, Beijing Weimiao Biotechnology Co. Ltd., Beijing, China
| |
Collapse
|
2
|
Moghnieh R, Haddad W, Jbeily N, El-Hassan S, Eid S, Baba H, Sily M, Saber Y, Abdallah D, Bizri AR, Sayegh MH. Immunogenicity and real-world effectiveness of COVID-19 vaccines in Lebanon: Insights from primary and booster schemes, variants, infections, and hospitalization. PLoS One 2024; 19:e0306457. [PMID: 39269963 PMCID: PMC11398646 DOI: 10.1371/journal.pone.0306457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/18/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, we conducted a case-control investigation to assess the immunogenicity and effectiveness of primary and first booster homologous and heterologous COVID-19 vaccination regimens against infection and hospitalization, targeting variants circulating in Lebanon during 2021-2022. The study population comprised active Lebanese military personnel between February 2021 and September 2022. Vaccine effectiveness (VE) against laboratory-confirmed SARS-CoV-2 infection and associated hospitalization was retrospectively determined during different variant-predominant periods using a case-control study design. Vaccines developed by Sinopharm, Pfizer, and AstraZeneca as well as Sputnik V were analyzed. Prospective assessment of humoral immune response, which was measured based on the SARS-CoV-2 antispike receptor binding domain IgG titer, was performed post vaccination at various time points, focusing on Sinopharm and Pfizer vaccines. Statistical analyses were performed using IBM SPSS and GraphPad Prism. COVID-19 VE remained consistently high before the emergence of the Omicron variant, with lower estimates during the Delta wave than those during the Alpha wave for primary vaccination schemes. However, vaccines continued to offer significant protection against infection. VE estimates consistently decreased for the Omicron variant across post-vaccination timeframes and schemes. VE against hospitalization declined over time and was influenced by the variant. No breakthrough infections progressed to critical or fatal COVID-19. Immunogenicity analysis revealed that the homologous Pfizer regimen elicited a stronger humoral response than Sinopharm, while a heterologous Sinopharm/Pfizer regimen yielded comparable results to the Pfizer regimen. Over time, both Sinopharm's and Pfizer's primary vaccination schemes exhibited decreased humoral immunity titers, with Pfizer being a more effective booster than Sinopharm. This study, focusing on healthy young adults, provides insights into VE during different pandemic waves. Continuous research and monitoring are essential for understanding vaccine-mediated immune responses under evolving circumstances.
Collapse
Affiliation(s)
- Rima Moghnieh
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Wajdi Haddad
- Department of Internal Medicine, Central Military Hospital, Military Healthcare, Lebanese Army, Beirut, Lebanon
| | - Nayla Jbeily
- Head of Laboratory Department, FMPS Holding S.A.L., Beirut, Lebanon
| | | | - Shadi Eid
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Hicham Baba
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Marilyne Sily
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Yara Saber
- Laboratory Department, FMPS Holding S.A.L., Beirut, Lebanon
| | - Dania Abdallah
- Pharmacy Department, Makassed General Hospital, Beirut, Lebanon
| | | | - Mohamed H Sayegh
- American University of Beirut, Beirut, Lebanon
- Department of Health and Human Services, GAP Solutions (Contract No. 75N93019D00026), National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States of America
| |
Collapse
|
3
|
Runge M, Karimian Z, Kheirandish M, Borghi G, Wodniak N, Fahmy K, Mantel C, Cherian T, Nabil Ahmed Said Z, Najafi F, Thneibat F, Ul-Haq Z, Fazid S, Ibrahim Salama I, Khosravi Shadmani F, Alrawashdeh A, Sirous S, Bellizzi S, Ahmed A, Lukwiya M, Rashidian A. COVID-19 Vaccine Effectiveness Studies against Symptomatic and Severe Outcomes during the Omicron Period in Four Countries in the Eastern Mediterranean Region. Vaccines (Basel) 2024; 12:906. [PMID: 39204033 PMCID: PMC11360574 DOI: 10.3390/vaccines12080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 09/03/2024] Open
Abstract
Vaccine effectiveness (VE) studies provide real-world evidence to monitor vaccine performance and inform policy. The WHO Regional Office for the Eastern Mediterranean supported a regional study to assess the VE of COVID-19 vaccines against different clinical outcomes in four countries between June 2021 and August 2023. Health worker cohort studies were conducted in 2707 health workers in Egypt and Pakistan, of whom 171 experienced symptomatic laboratory-confirmed SARS-CoV-2 infection. Test-negative design case-control studies were conducted in Iran and Jordan in 4017 severe acute respiratory infection (SARI) patients (2347 controls and 1670 cases) during the Omicron variant dominant period. VE estimates were calculated for each study and pooled by study design for several vaccine types (BBIBP-CorV, AZD1222, BNT162b2, and mRNA-1273, among others). Among health workers, VE against symptomatic infection of a complete primary series could only be computed compared to partial vaccination, suggesting a benefit of providing an additional dose of mRNA vaccines (VE: 88.9%, 95%CI: 15.3-98.6%), while results were inconclusive for other vaccine products. Among SARI patients, VE against hospitalization of a complete primary series with any vaccine compared to non-vaccinated was 20.9% (95%CI: 4.5-34.5%). Effectiveness estimates for individual vaccines, booster doses, and secondary outcomes (intensive care unit admission and death) were inconclusive. Future VE studies will need to address challenges in both design and analysis when conducted late during a pandemic and will be able to utilize the strengthened capacities in countries.
Collapse
Affiliation(s)
| | - Zahra Karimian
- Division of Science, Information and Dissemination, WHO Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt (M.K.)
- Heidelberg Institute of Global Health, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mehrnaz Kheirandish
- Division of Science, Information and Dissemination, WHO Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt (M.K.)
| | | | | | - Kamal Fahmy
- Division of Communicable Diseases, WHO Regional Office for the Eastern Mediterranean, Cairo 11516, Egypt
| | | | | | - Zeinab Nabil Ahmed Said
- Department of Medical Microbiology and Immunology, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11651, Egypt
| | - Farid Najafi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6713954658, Iran (F.K.S.)
| | | | - Zia Ul-Haq
- Institute of Public Health and Social Sciences, Khyber Medical University, Peshawar 25100, Pakistan (S.F.)
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sheraz Fazid
- Institute of Public Health and Social Sciences, Khyber Medical University, Peshawar 25100, Pakistan (S.F.)
| | - Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Centre, Cairo 12622, Egypt;
| | - Fatemeh Khosravi Shadmani
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6713954658, Iran (F.K.S.)
| | - Ahmad Alrawashdeh
- Department of Allied Medical Sciences, Jordan University of Science and Technology, Amman 3030, Jordan
| | | | | | - Amira Ahmed
- WHO Country Office for Egypt, Cairo 11516, Egypt
| | - Michael Lukwiya
- WHO Country Office for Pakistan, Islamabad P.O. Box 1013 44000, Pakistan
| | - Arash Rashidian
- Division of Science, Information and Dissemination, WHO Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt (M.K.)
| | | |
Collapse
|
4
|
Zhao Y, Wan Y, Hu X, Tong X, Xu B, Jiang X, Bai S, Cao C. SARS-CoV-2 Vaccination Improves Semen Quality in Men Recovered From COVID-19: A Retrospective Cohort Study. Am J Mens Health 2024; 18:15579883241264120. [PMID: 39054777 PMCID: PMC11282512 DOI: 10.1177/15579883241264120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been reported to decrease semen quality in reproductive-age men. Semen quality in vaccinated men after SARS-CoV-2 infection remains unclear. We recruited reproductive-age Chinese men scheduled for COVID-19 vaccination from December 2022 to March 2023. Among 1,639 vaccinated participants, an upward trend was found in sperm concentration (p < .001), progressive motility (p < .001), total motility (p < .001), total motile sperm count (TMSC) (p < .001), and normal morphology (p = .01) over time following COVID-19 recovery. Among men with an SARS-CoV-2 infection that lasted less than 30 days, men who received an inactivated vaccine booster had higher sperm progressive (p = .006) and total motility (p = .005) as well as TMSC (p = .008) than those without a booster vaccine, whereas no difference was found in semen parameters among men who received a recombinant protein vaccine. Similarly, an upward trend in semen quality was found among 122 men who provided semen samples before and after COVID-19. Higher risks of asthenozoospermia (odds ratio [OR] = 2.23, p < .001) and teratozoospermia (OR = 2.09, p = .03) were found among men who had an SARS-CoV-2 infection that lasted less than 30 days than among those without COVID-19. Collectively, after receiving SARS-CoV-2 vaccination, adverse but reversible semen parameters were observed in men recovering from COVID-19 over time. Recombinant protein vaccines and inactivated vaccine boosters should be recommended to all reproductive-age men.
Collapse
Affiliation(s)
- Yuanqi Zhao
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
- Wannan Medical College, Wuhu, P.R. China
| | - Yangyang Wan
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xianhong Tong
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Bo Xu
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Shun Bai
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Cheng Cao
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
5
|
Toledo-Romaní ME, Valenzuela-Silva C, Montero-Díaz M, Iñiguez-Rojas L, Rodríguez-González M, Martínez-Cabrera M, Puga-Gómez R, German-Almeida A, Fernández-Castillo S, Climent-Ruiz Y, Santana-Mederos D, López-González L, Morales-Suárez I, Doroud D, Valdés-Balbín Y, García-Rivera D, Van der Stuyft P, Vérez-Bencomo V. Real-world effectiveness of the heterologous SOBERANA-02 and SOBERANA-Plus vaccine scheme in 2-11 years-old children during the SARS-CoV-2 Omicron wave in Cuba: a longitudinal case-population study. LANCET REGIONAL HEALTH. AMERICAS 2024; 34:100750. [PMID: 38699214 PMCID: PMC11063520 DOI: 10.1016/j.lana.2024.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Background Increased pediatric COVID-19 occurrence due to the SARS-CoV-2 Omicron variant has raised concerns about the effectiveness of existing vaccines. The protection provided by the SOBERANA-02-Plus vaccination scheme against this variant has not yet been studied. We aimed to evaluate the scheme's effectiveness against symptomatic Omicron infection and severe disease in children. Methods In September 2021, Cuba implemented a mass pediatric immunization with the heterologous SOBERANA-02-Plus scheme: 2 doses of conjugated SOBERANA-02 followed by a heterologous SOBERANA-Plus dose. By December, before the Omicron outbreak, 95.4% of 2-18 years-old had been fully immunized. During the entire Omicron wave, we conducted a nationwide longitudinal post-vaccination case-population study to evaluate the real-world effectiveness of the SOBERANA-02-Plus scheme against symptomatic infection and severe disease in children without previous SARS-CoV-2 infection. The identification of COVID-19 cases relied on surveillance through first line services, which refer clinical suspects to pediatric hospitals where they are diagnosed based on a positive RT-PCR test. We defined the Incidence Rate ratio (IRR) as IRvaccinated age group/IRunvaccinated 1-year-old and calculated vaccine effectiveness as VE = (1-IRR)∗100%. 24 months of age being the 'eligible for vaccination' cut-off, we used a regression discontinuity approach to estimate effectiveness by contrasting incidence in all unvaccinated 1-year-old versus vaccinated 2-years-old. Estimates in the vaccinated 3-11 years-old are reported from a descriptive perspective. Findings We included 1,098,817 fully vaccinated 2-11 years-old and 98,342 not vaccinated 1-year-old children. During the 24-week Omicron wave, there were 7003/26,241,176 person-weeks symptomatic COVID-19 infections in the vaccinated group (38.2 per 105 person-weeks in 2-years-old and 25.5 per 105 person-weeks in 3-11 years-old) against 3577/2,312,273 (154.7 per 105 person-weeks) in the unvaccinated group. The observed overall vaccine effectiveness against symptomatic infection was 75.3% (95% CI, 73.5-77.0%) in 2-years-old children, and 83.5% (95% CI, 82.8-84.2%) in 3-11 years-old. It was somewhat lower during Omicron BA.1 then during Omicron BA.2 variant circulation, which took place 1-3 and 4-6 months after the end of the vaccination campaign. The effectiveness against severe symptomatic disease was 100.0% (95% CI not estimated) and 94.6% (95% CI, 82.0-98.6%) in the respective age groups. No child death from COVID-19 was observed. Interpretation Immunization of 2-11 years-old with the SOBERANA-02-Plus scheme provided strong protection against symptomatic and severe disease caused by the Omicron variant, which was sustained during the six months post-vaccination follow-up. Our results contrast with the observations in previous real-world vaccine effectiveness studies in children, which might be explained by the type of immunity a conjugated protein-based vaccine induces and the vaccination strategy used. Funding National Fund for Science and Technology (FONCI-CITMA-Cuba).
Collapse
Affiliation(s)
| | | | | | - Luisa Iñiguez-Rojas
- Latin-American Faculty of Social Sciences, Havana University, La Havana, Cuba
| | | | | | | | | | | | | | | | - Lissette López-González
- “Juan Manuel Marquez” Pediatric Hospital and National Group of Pediatric, Ministry of Public Health, Cuba
| | | | | | | | | | | | | |
Collapse
|
6
|
Liao Y, Su J, Zhao J, Qin Z, Zhang Z, Gao W, Wan J, Liao Y, Zou X, He X. The effectiveness of booster vaccination of inactivated COVID-19 vaccines against susceptibility, infectiousness, and transmission of omicron BA.2 variant: a retrospective cohort study in Shenzhen, China. Front Immunol 2024; 15:1359380. [PMID: 38881892 PMCID: PMC11176464 DOI: 10.3389/fimmu.2024.1359380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 06/18/2024] Open
Abstract
Little studies evaluated the effectiveness of booster vaccination of inactivated COVID-19 vaccines against being infected (susceptibility), infecting others (infectiousness), and spreading the disease from one to another (transmission). Therefore, we conducted a retrospective cohort study to evaluate the effectiveness of booster vaccination of inactivated COVID-19 vaccines against susceptibility, infectiousness, and transmission in Shenzhen during an Omicron BA.2 outbreak period from 1 February to 21 April 2022. The eligible individuals were classified as four sub-cohorts according to the inactivated COVID-19 vaccination status of both the close contacts and their index cases: group 2-2, fully vaccinated close contacts seeded by fully vaccinated index cases (reference group); group 2-3, booster-vaccinated close contacts seeded by fully vaccinated index cases; group 3-2, fully vaccinated close contacts seeded by booster-vaccinated index cases; and group 3-3, booster-vaccinated close contacts seeded by booster-vaccinated index cases. Univariate and multivariate logistic regression analyses were applied to estimate the effectiveness of booster vaccination. The sample sizes of groups 2-2, 2-3, 3-2, and 3-3 were 846, 1,115, 1,210, and 2,417, respectively. We found that booster vaccination had an effectiveness against infectiousness of 44.9% (95% CI: 19.7%, 62.2%) for the adults ≥ 18 years, 62.2% (95% CI: 32.0%, 78.9%) for the female close contacts, and 60.8% (95% CI: 38.5%, 75.1%) for the non-household close contacts. Moreover, booster vaccination had an effectiveness against transmission of 29.0% (95% CI: 3.2%, 47.9%) for the adults ≥ 18 years, 38.9% (95% CI: 3.3%, 61.3%) for the female close contacts, and 45.8% (95% CI: 22.1%, 62.3%) for the non-household close contacts. However, booster vaccination against susceptibility did not provide any protective effect. In summary, this study confirm that booster vaccination of the inactivated COVID-19 vaccines provides low level of protection and moderate level of protection against Omicron BA.2 transmission and infectiousness, respectively. However, booster vaccination does not provide any protection against Omicron BA.2 susceptibility.
Collapse
Affiliation(s)
- Yuxue Liao
- Office of Emergency, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jiao Su
- Department of Biochemistry, Changzhi Medical College, Changzhi, China
| | - Jieru Zhao
- Department of Infectious Disease, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Zhen Qin
- Class of 2002 of the Department of Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Zhuo'Ao Zhang
- Class of 2002 of the Department of Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Wei Gao
- Office of Emergency, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jia Wan
- Office of Emergency, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yi Liao
- Office of Emergency, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xuan Zou
- Office of Emergency, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaofeng He
- Institute of Evidence-Based Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
7
|
Gilca R, Amini R, Carazo S, Doggui R, Frenette C, Boivin G, Charest H, Dumaresq J. The Changing Landscape of Respiratory Viruses Contributing to Hospitalizations in Quebec, Canada: Results From an Active Hospital-Based Surveillance Study. JMIR Public Health Surveill 2024; 10:e40792. [PMID: 38709551 DOI: 10.2196/40792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/15/2024] [Accepted: 03/20/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND A comprehensive description of the combined effect of SARS-CoV-2 and respiratory viruses other than SARS-CoV-2 (ORVs) on acute respiratory infection (ARI) hospitalizations is lacking. OBJECTIVE This study aimed to compare the viral etiology of ARI hospitalizations before the pandemic (8 prepandemic influenza seasons, 2012-13 to 2019-20) and during 3 pandemic years (periods of increased SARS-CoV-2 and ORV circulation in 2020-21, 2021-22, and 2022-23) from an active hospital-based surveillance network in Quebec, Canada. METHODS We compared the detection of ORVs and SARS-CoV-2 during 3 pandemic years to that in 8 prepandemic influenza seasons among patients hospitalized with ARI who were tested systematically by the same multiplex polymerase chain reaction (PCR) assay during periods of intense respiratory virus (RV) circulation. The proportions of infections between prepandemic and pandemic years were compared by using appropriate statistical tests. RESULTS During prepandemic influenza seasons, overall RV detection was 92.7% (1384/1493) (respiratory syncytial virus [RSV]: 721/1493, 48.3%; coinfections: 456/1493, 30.5%) in children (<18 years) and 62.8% (2723/4339) (influenza: 1742/4339, 40.1%; coinfections: 264/4339, 6.1%) in adults. Overall RV detection in children was lower during pandemic years but increased from 58.6% (17/29) in 2020-21 (all ORVs; coinfections: 7/29, 24.1%) to 90.3% (308/341) in 2021-22 (ORVs: 278/341, 82%; SARS-CoV-2: 30/341, 8.8%; coinfections: 110/341, 32.3%) and 88.9% (361/406) in 2022-23 (ORVs: 339/406, 84%; SARS-CoV-2: 22/406, 5.4%; coinfections: 128/406, 31.5%). In adults, overall RV detection was also lower during pandemic years but increased from 43.7% (333/762) in 2020-21 (ORVs: 26/762, 3.4%; SARS-CoV-2: 307/762, 40.3%; coinfections: 7/762, 0.9%) to 57.8% (731/1265) in 2021-22 (ORVs: 179/1265, 14.2%; SARS-CoV-2: 552/1265, 43.6%; coinfections: 42/1265, 3.3%) and 50.1% (746/1488) in 2022-23 (ORVs: 409/1488, 27.5%; SARS-CoV-2: 337/1488, 22.6%; coinfections: 36/1488, 2.4%). No influenza or RSV was detected in 2020-21; however, their detection increased in the 2 subsequent years but did not reach prepandemic levels. Compared to the prepandemic period, the peaks of RSV hospitalization shifted in 2021-22 (16 weeks earlier) and 2022-23 (15 weeks earlier). Moreover, the peaks of influenza hospitalization shifted in 2021-22 (17 weeks later) and 2022-23 (4 weeks earlier). Age distribution was different compared to the prepandemic period, especially during the first pandemic year. CONCLUSIONS Significant shifts in viral etiology, seasonality, and age distribution of ARI hospitalizations occurred during the 3 pandemic years. Changes in age distribution observed in our study may reflect modifications in the landscape of circulating RVs and their contribution to ARI hospitalizations. During the pandemic period, SARS-CoV-2 had a low contribution to pediatric ARI hospitalizations, while it was the main contributor to adult ARI hospitalizations during the first 2 seasons and dropped below ORVs during the third pandemic season. Evolving RVs epidemiology underscores the need for increased scrutiny of ARI hospitalization etiology to inform tailored public health recommendations.
Collapse
Affiliation(s)
- Rodica Gilca
- Direction des risques biologiques, Institut national de santé publique du Québec, Québec, QC, Canada
- Research Center of Centre hospitalier universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de médecine préventive, Université Laval, Québec, QC, Canada
| | - Rachid Amini
- Direction des risques biologiques, Institut national de santé publique du Québec, Québec, QC, Canada
| | - Sara Carazo
- Direction des risques biologiques, Institut national de santé publique du Québec, Québec, QC, Canada
- Research Center of Centre hospitalier universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de médecine préventive, Université Laval, Québec, QC, Canada
| | - Radhouene Doggui
- Direction des risques biologiques, Institut national de santé publique du Québec, Québec, QC, Canada
| | - Charles Frenette
- Department of Medicine, Division of Infectious Diseases, McGill University Health Center, Montreal, QC, Canada
| | - Guy Boivin
- Research Center of Centre hospitalier universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Hugues Charest
- Laboratoire de santé publique, Institut national de santé publique du Québec, Montreal, QC, Canada
| | - Jeannot Dumaresq
- Departement of Microbiology and Infectiology, Centre intégré de santé et de services sociaux de Chaudière-Appalaches, Levis, QC, Canada
| |
Collapse
|
8
|
Ma M, Wu X, Zhao Q, Liu R, Li Q, Guo X, Shen Z, Tarimo CS, Feng Y, Zhao L, Ye B, Wu J, Miao Y. Temporal changes in factors associated with COVID-19 vaccine hesitancy among Chinese adults: Repeated nationally representative survey. SSM Popul Health 2024; 25:101574. [PMID: 38273868 PMCID: PMC10809179 DOI: 10.1016/j.ssmph.2023.101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Background COVID-19 vaccine hesitancy has been cited as one of the main obstacles impacting vaccine coverage. However, factors that affect hesitancy may change over time. Understanding these evolving concerns and adapting strategies accordingly are crucial for effectively addressing vaccine hesitancy effectively and promoting public health. We aimed to explore the temporal changes in factors associated with COVID-19 VH during the COVID-19 pandemic and assess the dynamic evolution of VH. Methods In August 2022 and February 2023, repeated online surveys were undertaken to collect information from 5378 adults across four regions of China. Multiple linear regression models assessed the influencing factors of COVID-19 VH. The association between protective motive theory (PMT) (perceived severity, susceptibility, benefits, barriers, and self-efficacy) and VH was evaluated by structural equation modeling (SEM). Results Repeated measures showed that 573 (10.7%) and 1598 (29.7%) of the 5378 participants reported COVID-19 VH in the baseline and follow-up surveys, respectively. Educational levels, chronic disease, history of allergy, COVID-19 infection, and trust in medical staff and vaccine developers were positively associated with COVID-19 VH (P<0.05). The application of SEM revealed that perceived severity, susceptibility, vaccination barriers, and self-efficacy in the PMT directly impacted on VH (P<0.05). In addition, severity, susceptibility, benefits, and barriers had a significant direct effect on self-efficacy as β = 0.113, β = 0.070, β = 0.722, β = -0.516 respectively with P < 0.001. Conclusion The prevalence of COVID-19 VH was relatively low in the baseline survey and much higher in the follow-up survey, with a significant increase in hesitancy rates among mainland Chinese residents. Acknowledging the substantial impact on the shaping of COVID-19 VH, one must consider factors including perceived severity, susceptibility, vaccination barriers, and self-efficacy.
Collapse
Affiliation(s)
- Mingze Ma
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Henan Province Engineering Research Center of Health Economy & Health Technology Assessment, Zheng Zhou, Henan, China
| | - Xiaoman Wu
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Henan Province Engineering Research Center of Health Economy & Health Technology Assessment, Zheng Zhou, Henan, China
| | - Qiuping Zhao
- Henan Key Laboratory for Health Management of Chronic Diseases, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zheng Zhou, Henan, China
| | - Rongmei Liu
- Henan Key Laboratory for Health Management of Chronic Diseases, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zheng Zhou, Henan, China
| | - Quanman Li
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Henan Province Engineering Research Center of Health Economy & Health Technology Assessment, Zheng Zhou, Henan, China
| | - Xinghong Guo
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Henan Province Engineering Research Center of Health Economy & Health Technology Assessment, Zheng Zhou, Henan, China
| | - Zhanlei Shen
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Henan Province Engineering Research Center of Health Economy & Health Technology Assessment, Zheng Zhou, Henan, China
| | - Clifford Silver Tarimo
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania
| | - Yifei Feng
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Henan Province Engineering Research Center of Health Economy & Health Technology Assessment, Zheng Zhou, Henan, China
| | - Lipei Zhao
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Henan Province Engineering Research Center of Health Economy & Health Technology Assessment, Zheng Zhou, Henan, China
| | - Beizhu Ye
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Henan Province Engineering Research Center of Health Economy & Health Technology Assessment, Zheng Zhou, Henan, China
| | - Jian Wu
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Henan Province Engineering Research Center of Health Economy & Health Technology Assessment, Zheng Zhou, Henan, China
| | - Yudong Miao
- Department of Health Management, College of Public Health, Zhengzhou University, Henan, China
- Henan Province Engineering Research Center of Health Economy & Health Technology Assessment, Zheng Zhou, Henan, China
| |
Collapse
|
9
|
Vashishtha VM, Kumar P. The durability of vaccine-induced protection: an overview. Expert Rev Vaccines 2024; 23:389-408. [PMID: 38488132 DOI: 10.1080/14760584.2024.2331065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Current vaccines vary widely in both their efficacy against infection and disease, and the durability of the efficacy. Some vaccines provide practically lifelong protection with a single dose, while others provide only limited protection following annual boosters. What variables make vaccine-induced immune responses last? Can breakthroughs in these factors and technologies help us produce vaccines with better protection and fewer doses? The durability of vaccine-induced protection is now a hot area in vaccinology research, especially after COVID-19 vaccines lost their luster. It has fueled discussion on the eventual utility of existing vaccines to society and bolstered the anti-vaxxer camp. To sustain public trust in vaccines, lasting vaccines must be developed. AREAS COVERED This review summarizes licensed vaccines' protection. It analyses immunological principles and vaccine and vaccinee parameters that determine longevity of antibodies. The review concludes with challenges and the way forward to improve vaccine durability. EXPERT OPINION Despite enormous advances, we still lack essential markers and reliable correlates of lasting protection. Most research has focused on humoral immune responses, but we must also focus on innate, mucosal, and cellular responses - their assessment, correlates, determinants, and novel adjuvants. Suitable vaccine designs and platforms for durable immunity must be found.
Collapse
Affiliation(s)
- Vipin M Vashishtha
- Department of Pediatrics, Mangla Hospital & Research Center, Shakti Chowk, Bijnor, Uttar Pradesh, India
| | - Puneet Kumar
- Department of Pediatrician, Kumar Child Clinic, New Delhi, India
| |
Collapse
|
10
|
Ren N, Wang Z, Gao S. Immunogenicity Persistence of a Third-Dose Homologous BBIBP-CorV/CoronaVac Boosting Vaccination: A Prospective Open-Label Study. Viral Immunol 2024; 37:16-23. [PMID: 38109058 DOI: 10.1089/vim.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The inactivated whole-virion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine has been widely used in a two-dose schedule, but with insufficient data on the immunogenicity of homologous BBIBP-CorV/CoronaVac boosting vaccination and too little follow-up to assess the duration of the immunogenic response. We prospectively evaluated the immunogenicity of a third-dose BBIBP-CorV/CoronaVac boosting vaccination, with neutralizing titers against wild type and Omicron assessed at the baseline (immediately before the booster dose), and days 14, 28, 98, and 174 post the third-booster. Of 182 volunteers screened, 165 were assessed eligible for enrolment. No moderate/severe adverse events were observed during the term of the study. From the baseline to day 174 post the third booster, neutralizing titers against wild type and Omicron peaked by approximately sixfold increase (up to 811.83 and 33.40, respectively) at day 14 and slowly decreased over time. The geometric mean titers against Omicron were lower than against type with a 19.8-39. Sixfold reduction at all time points. The seropositivity against Omicron at the baseline, days 14, 28, 98, and 174 after the booster dose was 12.6%, 50.0%, 37.8%, 38.6%, and 22.8%, respectively. Data presented herein indicated that the BBIBP-CorV/CoronaVac booster significantly enhances the neutralizing potency against wild-type strain but elicited weaker neutralizing activity to Omicron. Our findings suggest that individuals receiving booster inactivated vaccine remain at risk for Omicron infection, which is crucial to inform ongoing and future vaccination strategies to combat coronavirus disease 2019.
Collapse
Affiliation(s)
- Na Ren
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Zhihong Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Sikang Gao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Zeng T, Wang K, Guo Z, Sun S, Zhai Z, Lu Y, Teng Z, He D, Wang K, Tian M, Zhao S. Distinguishing the Vaccine Effectiveness of Inactivated BBIBP-CorV Vaccine Booster Against the Susceptibility, Infectiousness, and Transmission of Omicron Stains: A Retrospective Cohort Study in Urumqi, China. Infect Dis Ther 2023; 12:2405-2416. [PMID: 37768483 PMCID: PMC10600082 DOI: 10.1007/s40121-023-00873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION With COVID-19 vaccination rolled out globally, increasing numbers of studies have shown that booster vaccines can enhance an individual's protection against the infection, hospitalization, and death caused by SARS-CoV-2. This study evaluated the effectiveness of COVID-19 vaccine BBIBP-CorV booster against being infected (susceptibility), infecting others (infectiousness), and spreading the disease from one to another (transmission). METHODS This retrospective cohort study investigated the close contacts of all officially ascertained COVID-19 confirmed cases in Urumqi, China between August 1 and September 7, 2022. Eligible records were divided into four subcohorts based on the vaccination status of both the close contact and their source case: group 2-2, 2-dose contacts seeded by 2-dose source case (as the reference level); group 2-3, 3-dose contacts seeded by 2-dose source case; group 3-2, 2-dose contacts seeded by 3-dose source case; and group 3-3, 3-dose contacts seeded by 3-dose source case. In the four subcohorts, multivariate logistic regression models were used to examine the vaccine effectiveness (VE) for the BBIBP-CorV booster dose. We adjusted for potential confounding variables, including the sex and age of source cases and close contacts, the calendar week of contact history and contact settings. We evaluated the statistical uncertainty using a 95% confidence interval (CI). In addition, we conducted subgroup analyses to evaluate VE by sex. RESULTS The sample sizes of groups 2-2, 2-3, 3-2, and 3-3 were 1184, 3773, 4723, and 27,136 individuals, respectively. Overall VE against susceptibility (group 2-3 vs 2-2) was 42.1% (95% CI 10.6, 62.5), VE against infectiousness (group 3-2 vs 2-2) was 62.0% (95% CI 37.2, 77.0), and VE against transmission (group 3-3 vs 2-2) was 83.7% (95% CI 75.1, 89.4). In the sex-stratified subgroups, male close contacts showed similar VE compared to the overall. However, among female close contacts, while the booster dose improved VE against infectiousness and VE against susceptibility, the VEs were not significantly different from zero. CONCLUSION BBIBP-CorV vaccine booster was associated with mild to moderate levels of protection against Omicron susceptibility, infectiousness, and transmission. Real-world assessment of protective performance of COVID-19 vaccines against the risk of Omicron strains is continuously needed, and may provide information that helps vaccination strategy.
Collapse
Affiliation(s)
- Ting Zeng
- School of Public Health, Xinjiang Medical University, Ürümqi, 830017, China
| | - Kailu Wang
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Zihao Guo
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyu Zhai
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yaoqin Lu
- School of Public Health, Xinjiang Medical University, Ürümqi, 830017, China
- Urumqi Center for Disease Control and Prevention, Ürümqi, 830026, China
| | - Zhidong Teng
- Department of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, 830017, China
| | - Daihai He
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, 830017, China.
| | - Maozai Tian
- Department of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, 830017, China.
| | - Shi Zhao
- Centre for Health Systems and Policy Research, Chinese University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|