1
|
Gu H, Qiu H, Yang H, Deng Z, Zhang S, Du L, He F. PRRSV utilizes MALT1-regulated autophagy flux to switch virus spread and reserve. Autophagy 2024:1-22. [PMID: 39081059 DOI: 10.1080/15548627.2024.2386195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen, which can survive host antiviral immunity with various mechanisms. PRRSV infection induces macroautophagy/autophagy, facilitating virus replication. MALT1, a central immune regulator, was manipulated by PRRSV to optimize viral infection at different stages of the virus cycle. In this study, the key role of MALT1 in autophagy regulation during PRRSV infection was characterized, enlightening the role of autophagy flux in favor of virus spread and persistent infection. PRRSV-induced autophagy was confirmed to facilitate virus proliferation. Furthermore, autophagic fusion was dynamically regulated during PRRSV infection. Importantly, PRRSV-induced MALT1 facilitated autophagosome-lysosome fusion and autolysosome formation, thus contributing to autophagy flux and virus proliferation. Mechanically, MALT1 regulated autophagy via mediating MTOR-ULK1 and -TFEB signaling and affecting lysosomal homeostasis. MALT1 inhibition by inhibitor Mi-2 or RNAi induced lysosomal membrane permeabilization (LMP), leading to the block of autophagic fusion. Further, MALT1 overexpression alleviated PRRSV-induced LMP via inhibiting ROS generation. In addition, blocking autophagy flux suppressed virus release significantly, indicating that MALT1-maintained complete autophagy flux during PRRSV infection favors successful virus spread and its proliferation. In contrast, autophagosome accumulation upon MALT1 inhibition promoted PRRSV reserve for future virus proliferation once the autophagy flux recovers. Taken together, for the first time, these findings elucidate that MALT1 was utilized by PRRSV to regulate host autophagy flux, to determine the fate of virus for either proliferation or reserve.Abbreviations: 3-MA: 3-methyladenine; BafA1: bafilomycin A1; BFP/mBFP: monomeric blue fluorescent protein; CQ: chloroquine; DMSO: dimethyl sulfoxide; dsRNA: double-stranded RNA; GFP: green fluorescent protein; hpi: hours post infection; IFA: indirect immunofluorescence assay; LAMP1: lysosomal associated membrane protein 1; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine-methyl ester; LMP: lysosomal membrane permeabilization; mAb: monoclonal antibody; MALT1: MALT1 paracaspase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; nsp: nonstructural protein; ORF: open reading frame; pAb: polyclonal antibody; PRRSV: porcine reproductive and respiratory syndrome virus; PRRSV-N: PRRSV nucleocapsid protein; Rapa: rapamycin; RFP: red fluorescent protein; ROS: reactive oxygen species; SBI: SBI-0206965; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Han Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - He Qiu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Haotian Yang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Zhuofan Deng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Shengkun Zhang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fang He
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- TianMu Laboratory, ZJU-Xinchang Joint Innovation Centre, Xinchang, Zhejiang, P.R. China
| |
Collapse
|
2
|
Marongiu L, Burkard M, Helling T, Biendl M, Venturelli S. Modulation of the replication of positive-sense RNA viruses by the natural plant metabolite xanthohumol and its derivatives. Crit Rev Food Sci Nutr 2023:1-15. [PMID: 37942943 DOI: 10.1080/10408398.2023.2275169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The COVID-19 pandemic has highlighted the importance of identifying new potent antiviral agents. Nutrients as well as plant-derived substances are promising candidates because they are usually well tolerated by the human body and readily available in nature, and consequently mostly cheap to produce. A variety of antiviral effects have recently been described for the hop chalcone xanthohumol (XN), and to a lesser extent for its derivatives, making these hop compounds particularly attractive for further investigation. Noteworthy, mounting evidence indicated that XN can suppress a wide range of viruses belonging to several virus families, all of which share a common reproductive cycle. As a result, the purpose of this review is to summarize the most recent research on the antiviral properties of XN and its derivatives, with a particular emphasis on the positive-sense RNA viruses human hepatitis C virus (HCV), porcine reproductive and respiratory syndrome virus (PRRSV), and severe acute respiratory syndrome corona virus (SARS-CoV-2).
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Thomas Helling
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Martin Biendl
- HHV Hallertauer Hopfenveredelungsgesellschaft m.b.H, Mainburg, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Yang Y, Liu Y, Lou R, Lei Y, Li G, Xu Z, You X. Glycyrrhiza polysaccharides inhibits PRRSV replication. Virol J 2023; 20:140. [PMID: 37408066 DOI: 10.1186/s12985-023-02052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/25/2023] [Indexed: 07/07/2023] Open
Abstract
Glycyrrhiza polysaccharide (GCP) is a natural plant active polysaccharide extracted from traditional Chinese medicine licorice. In this research, we studied the antiviral activity of glycyrrhiza polysaccharide against porcine reproductive and respiratory syndrome virus (PRRSV), a virus of the Arteriviridae family, with a high rate of variation and has caused huge economic losses to the pig industry in various countries since its discovery. Our results show that GCP can inhibit PRRSV replication in a dose-dependent manner. Furthermore, GCP could inhibit the mRNA expression of receptor genes CD163 and NF-κB p65 and promote the mRNA expression of the SLA-7 gene. Because of these results, GCP can be used as a candidate drug to prevent and treat PRRS.
Collapse
Affiliation(s)
- Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Yongjian Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Ran Lou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Gan Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Zhiqian Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China.
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China.
| |
Collapse
|
4
|
Hou L, Yang X, Liu C, Guo J, Shi Y, Sun T, Feng X, Zhou J, Liu J. Heme Oxygenase-1 and Its Metabolites Carbon Monoxide and Biliverdin, but Not Iron, Exert Antiviral Activity against Porcine Circovirus Type 3. Microbiol Spectr 2023; 11:e0506022. [PMID: 37140466 PMCID: PMC10269822 DOI: 10.1128/spectrum.05060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) is a newly discovered pathogen that causes porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs, multisystemic inflammation, and reproductive failure. Heme oxygenase-1 (HO-1), a stress-inducible enzyme, exerts protective functions by converting heme into carbon monoxide (CO), biliverdin (BV), and iron. However, the effects of HO-1 and its metabolites on PCV3 replication remain unknown. In this study, experiments involving specific inhibitors, lentivirus transduction, and small interfering RNA (siRNA) transfection revealed that active PCV3 infection reduced HO-1 expression and that the expression of HO-1 negatively regulated virus replication in cultured cells, depending on its enzymatic activity. Subsequently, the effects of the HO-1 metabolites (CO, BV, and iron) on PCV3 infection were investigated. The CO inducers (cobalt protoporphyrin IX [CoPP] or tricarbonyl dichloro ruthenium [II] dimer [CORM-2]) mediate PCV3 inhibition by generating CO, and this inhibition is reversed by hemoglobin (Hb; a CO scavenger). The inhibition of PCV3 replication by BV depended on BV-mediated reactive oxygen species (ROS) reduction, as N-acetyl-l-cysteine affected PCV3 replication while reducing ROS production. The reduction product of BV, bilirubin (BR), specifically promoted nitric oxide (NO) generation and further activated the cyclic GMP/protein kinase G (cGMP/PKG) pathway to attenuate PCV3 infection. Both the iron provided by FeCl3 and the iron chelated by deferoxamine (DFO) with CoPP treatment failed to affect PCV3 replication. Our data demonstrate that the HO-1-CO-cGMP/PKG, HO-1-BV-ROS, and HO-1-BV-BR-NO-cGMP/PKG pathways contribute crucially to the inhibition of PCV3 replication. These results provide important insights regarding preventing and controlling PCV3 infection. IMPORTANCE The regulation of host protein expression by virus infection is the key to facilitating self-replication. As an important emerging pathogen of swine, clarification of the interaction between PCV3 infection and the host enables us to understand the viral life cycle and pathogenesis better. Heme oxygenase-1 (HO-1) and its metabolites carbon monoxide (CO), biliverdin (BV), and iron have been demonstrated to involve a wealth of viral replications. Here, we, for the first time, demonstrated that HO-1 expression decreases in PCV3-infected cells and negatively regulates PCV3 replication and that the HO-1 metabolic products CO and BV inhibit PCV3 replication by the CO- or BV/BR/NO-dependent cGMP/PKG pathway or BV-mediated ROS reduction, but the iron (the third metabolic product) does not. Specifically, PCV3 infection maintains normal proliferation by downregulating HO-1 expression. These findings clarify the mechanism by which HO-1 modulates PCV3 replication in cells and provide important targets for preventing and controlling PCV3 infection.
Collapse
Affiliation(s)
- Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
PRRSV infection activates NLRP3 inflammasome through inducing cytosolic mitochondrial DNA stress. Vet Microbiol 2023; 279:109673. [PMID: 36764219 DOI: 10.1016/j.vetmic.2023.109673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes severe interstitial pneumonia and inflammatory response in piglets and growing pigs. IL-1β is implicated in PRRSV-mediated inflammatory response and the pathogenesis of PRRSV infection. Mitochondria are critical intracellular organelles which is served as signaling platform for antiviral immunity response to participate in immune response of virus infection. The role of mitochondria in PRRSV-mediated inflammatory response and the pathogenesis of PRRSV infection has not been elucidated. Here, our data suggested that PRRSV infection facilitates mitochondrial dysfunction, which induces cytosolic mitochondrial DNA (mtDNA) stress and ROS accumulation, severally activates the NLRP3 inflammasome and NF-κB signaling pathway, and consequently stimulates IL-1β production in PAMs. Furthermore, mtDNA degradation by DNase I abrogates the activation of NLRP3 inflammasome and IL-1β secretion during PRRSV infection. Scavenging ROS significantly inhibits NF-κB signaling activation and the subsequently transcription and secretion of IL-1β. In conclusion, our results indicate that cytosolic mtDNA stress and ROS accumulation after PRRSV infection-induced mitochondrial dysfunction activate NLRP3 inflammasome and NF-κB signaling pathway to promote IL-1β production, revealing a new strategy for vaccine and drug development to PRRSV.
Collapse
|
6
|
AMP-activated kinase regulates porcine reproductive and respiratory syndrome virus infection in vitro. Virus Genes 2022; 58:133-142. [DOI: 10.1007/s11262-022-01888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/11/2022] [Indexed: 10/18/2022]
|
7
|
Zhang ZW, Ansari AR, Dong L, Niu XY, Yang WJ, Li HZ, Xu FL, Yang KL, Song H. Alterations in the expression level of visfatin in the lungs of piglets infected with PRRSV and its effect on PRRSV replication. Microb Pathog 2022; 164:105443. [PMID: 35150869 DOI: 10.1016/j.micpath.2022.105443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by PRRS virus (PRRSV), characterized by sow reproductive failure and respiratory symptoms in pigs of all ages. PRRSV mainly causes severe lung damage by invading alveolar macrophages. Visfatin is closely related to acute lung injury, immune response and inflammation along with virus invasion to the host. Therefore, the current study was performed to clarify the relationship between visfatin and PRRSV infection. We used ternary piglets to construct a piglet model to explore the expression of visfatin and tight junction protein in lung injury induced by PRRSV infection, and then further studied the inhibition effect of visfatin on PRRSV replication by PRRSV infection of Marc-145 cells. Our results indicated that both PRRSV attenuated and virulent infections could damage the lung tissues, which could not only lead to severe inflammatory reaction (such as increased expression of TNF-α, TGF-β, IL-8 and IL-10) in lung tissues of piglets, but also brought about the sharp decrease of ZO-1 and Tricellulin expressions resulting in impaired alveolar epithelial barrier. Meanwhile, we found significantly up-regulated expression of visfatin in lungs and serum of pigs after PRRSV infection that were related to both the degree of lung injury and the virulence of PRRSV strain. Moreover, visfatin might inhibit the PRRSV infection to Marc-145 cells in time dependent fashion. Hence, the current investigation provides the novel information about the effect of visfatin and PRRSV co-culture on Marc-145 cells and the effect of visfatin on PRRSV proliferation at different time points.
Collapse
Affiliation(s)
- Zhe-Wei Zhang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary & Animal Sciences (CVAS) Jhang; University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Ling Dong
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Yu Niu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Jie Yang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui-Zhen Li
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fen-Liang Xu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke-Li Yang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Sinaga E, Fitrayadi A, Asrori A, Rahayu SE, Suprihatin S, Prasasty VD. Hepatoprotective effect of Pandanus odoratissimus seed extracts on paracetamol-induced rats. PHARMACEUTICAL BIOLOGY 2021; 59:31-39. [PMID: 33403907 PMCID: PMC7801105 DOI: 10.1080/13880209.2020.1865408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Pandanus odoratissimus Linn. (Pandanaceae) seed extract is known to have antioxidant activities. However, the potential hepatoprotective effect is still unclear. OBJECTIVE To investigate the hepatoprotection aspect of P. odoratissimus methanol extract towards paracetamol-induced rats. MATERIALS AND METHODS Thirty male Sprague-Dawley rats were randomly divided into six equal groups: one group served as the healthy control and five groups with hepatotoxicity (hepatotoxic control and 4 treatment groups). The oral treatment of paracetamol-induced hepatotoxicity of 3 g/kg using three different concentrations of P. odoratissimus (300, 600 and 900 mg/kg), and silymarin (200 mg/kg) groups were administered once a day for 14 days. Enzyme activities and protein levels in serum were determined in rats at the end of the treatments. The histopathology of rat livers was observed under an electron microscope with 10× magnification. RESULTS Pandanus odoratissimus significantly decreased the serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT) activities in induced-paracetamol rat serum (p < 0.05). Moreover, P. odoratissimus significantly decreased total bilirubin and direct bilirubin levels (p < 0.05). It significantly blocked the decline of serum albumin and protein levels (p < 0.05). Histopathological changes amplified paracetamol-induced liver damage and the hepatoprotective effect of P. odoratissimus in the liver. DISCUSSION AND CONCLUSIONS Pandanus odoratissimus improved the hepatoprotective effect in a concentration-dependent manner by reducing related hepatic enzyme and protein markers, suggesting as a useful agent in hepatotoxicity treatment, and it can be generalized to a broader study population in different hepatotoxic animal models.
Collapse
Affiliation(s)
- Ernawati Sinaga
- Faculty of Biology, Universitas Nasional, Jakarta, Indonesia
- CONTACT Ernawati Sinaga Faculty of Biology, Universitas Nasional, Jakarta, Indonesia
| | - Ami Fitrayadi
- Faculty of Biology, Universitas Nasional, Jakarta, Indonesia
| | - Asrori Asrori
- Faculty of Biology, Universitas Nasional, Jakarta, Indonesia
| | | | | | - Vivitri Dewi Prasasty
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Vivitri Dewi Prasasty Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
9
|
Mohiuddin M, Kasahara K. The emerging role of oxidative stress in complications of COVID-19 and potential therapeutic approach to diminish oxidative stress. Respir Med 2021; 187:106605. [PMID: 34507024 PMCID: PMC8420129 DOI: 10.1016/j.rmed.2021.106605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Md Mohiuddin
- Department of Respiratory Medicine, Kanazawa University, Ishikawa, Japan.
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
10
|
Zhou Y, Tong T, Jiang X, Fang L, Wu Y, Liang J, Xiao S. GSH-ZnS Nanoparticles Exhibit High-Efficiency and Broad-Spectrum Antiviral Activities via Multistep Inhibition Mechanisms. ACS APPLIED BIO MATERIALS 2020; 3:4809-4819. [PMID: 35021727 DOI: 10.1021/acsabm.0c00332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the good biocompatibility and antibacterial activity of zinc sulfide nanoparticles (ZnS NPs), whether they possess antiviral activity is still unclear. Here, GSH-modified ZnS NPs (GSH-ZnS NPs) were synthesized and their significant antiviral activity was demonstrated using the Arteriviridae family RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), as a model. Mechanistically, GSH-ZnS NPs were shown to reduce PRRSV-induced ROS production to prevent PRRSV multiplication, with no activating effect on the interferon (IFN) signal pathway, the first defense line against virus infection. Furthermore, isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis of GSH-ZnS NP-treated cells revealed the involvement of numerous crucial proteins in virus proliferation, with vitronectin (VTN) being confirmed as an efficient PRRSV antagonist here. Furthermore, GSH-ZnS NPs were found to have potent antiviral effects on the Herpesviridae family DNA virus, pseudorabies virus (PRV), the Coronaviridae family positive-sense RNA virus, porcine epidemic diarrhea virus (PEDV), and the Rhabdoviridae family negative-stranded RNA virus, vesicular stomatitis virus (VSV), indicating their broad-spectrum antiviral activity against viruses from different families with various genome types. Overall, GSH-ZnS NP is a prospective candidate for the development of antiviral nanomaterials and may serve as a model for investigation of potential host restriction factors in combination with proteomics.
Collapse
Affiliation(s)
- Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ting Tong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiaohan Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuan Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
11
|
Molecular and Cellular Mechanisms for PRRSV Pathogenesis and Host Response to Infection. Virus Res 2020; 286:197980. [PMID: 32311386 PMCID: PMC7165118 DOI: 10.1016/j.virusres.2020.197980] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
PRRSV has evolved to arm with various strategies to modify host antiviral response. Viral modulation of homeostatic cellular processes provides favorable conditions for PRRSV survival during infection. PRRSV modulation of cellular processes includes pathways for interferons, apoptosis, microRNAs, cytokines, autophagy, and viral genome recombination.
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous amounts of economic losses to the swine industry for more than three decades, but its control is still unsatisfactory. A significant amount of information is available for host cell-virus interactions during infection, and it is evident that PRRSV has evolved to equip various strategies to disrupt the host antiviral system and provide favorable conditions for survival. The current study reviews viral strategies for modulations of cellular processes including innate immunity, apoptosis, microRNAs, inflammatory cytokines, and other cellular pathways.
Collapse
|
12
|
Ruedas-Torres I, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Pallares FJ, Barranco I, Carrasco L, Gómez-Laguna J. Activation of the extrinsic apoptotic pathway in the thymus of piglets infected with PRRSV-1 strains of different virulence. Vet Microbiol 2020; 243:108639. [PMID: 32273018 DOI: 10.1016/j.vetmic.2020.108639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/17/2022]
Abstract
In the last decade, the outbreaks caused by virulent porcine reproductive and respiratory syndrome virus (PRRSV) strains from both PRRSV-1 and PRRSV-2 have considerably increased. PRRSV is able to modulate the host's immune response through the induction of apoptosis of cells in lymphoid organs like thymus, increasing the susceptibility to secondary infectious agents. The present study aimed to compare the impact of two PRRSV-1 strains, a field low virulent strain (3249 strain) and a virulent strain (Lena strain), in the thymus of infected pigs, focusing on clinical signs, histological analysis, viraemia, thymus viral load and the study of the different routes of apoptosis phenomena by immunohistochemistry. Sera and thymus samples were collected from infected animals with 3249 strain, Lena strain and mock-infected animals at 1, 3, 6, 8 and 13 days post-infection (dpi). Lena-infected animals showed severe clinical disease, high sera and thymus viral loads with evident thymic atrophy since 6 dpi, matching with PRRSV-N protein, TUNEL and cCasp3 expression in the thymic cortex. In both infected groups, there was an increase in the number of cells expressing molecules related to the extrinsic pathway of apoptosis (cCasp8 and Fas) in cortex and medulla, showing an important role in the apoptosis induction produced in thymus of PRRSV-infected piglets. The extensive apoptosis in the thymus through this pathway would lead to a decrease in the number of mature T lymphocytes and the sustained release of viral particles, which may explain the greater severity of the clinical signs observed in Lena-infected pigs.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Francisco José Pallares
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - Inmaculada Barranco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
13
|
Fan L. Signaling pathways involved in regulating apoptosis induction in host cells upon PRRSV infection. Virus Genes 2019; 55:433-439. [PMID: 31004277 DOI: 10.1007/s11262-019-01665-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/14/2019] [Indexed: 12/11/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of porcine reproductive and respiratory syndrome (PRRS), a devastating disease of swine that poses a serious threat to the swine industry worldwide. The induction of apoptosis in host cells is suggested to be the key cellular mechanism that contributes to the pathogenesis of PRRS. Various signaling pathways have been identified to be involved in regulating PRRSV-induced apoptosis. In this review, we summarize the potential signaling pathways that contribute to PRRSV-induced apoptosis, and propose the issues that need to be addressed in future studies for a better understanding of the molecular basis underlying the pathogenesis of PRRS.
Collapse
Affiliation(s)
- Lihong Fan
- Department of Preventive Medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
14
|
Li Z, Wang P, Jiang C, Cui P, Zhang S. Antibacterial activity and modes of action of phosvitin-derived peptide Pt5e against clinical multi-drug resistance bacteria. FISH & SHELLFISH IMMUNOLOGY 2016; 58:370-379. [PMID: 27666191 DOI: 10.1016/j.fsi.2016.09.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Pt5e, a mutant peptide derived from the C-terminal 55 residues of zebrafish phosvitin, has been suggested to be a novel antibacterial peptide. However, if it is applicable to clinical MDR bacteria remains to be tested. In this study, high-purity Pt5e was first expressed and purified by fusion with cationic elastin-like polypeptide. Pt5e was then shown to be capable of effectively killing all the five clinical MDR bacteria tested. Pt5e kill the MDR bacteria at several levels, including inserting into the bacterial membranes, causing the membrane depolarization and permeabilization, and inducing the intracellular apoptosis/necrosis. All these data suggest that Pt5e is a promising therapeutic potential as an antibiotics against clinical MDR bacteria.
Collapse
Affiliation(s)
- Zhijian Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Chengyan Jiang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; College of Life Science and Technology, Hong He University, Mengzi, Yunnan 661100, China
| | - Pengfei Cui
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|