1
|
Li J, Ye S, Su F, Yu B, Xu L, Sun H, Yuan X. Transcriptome analysis reveals a new virulence-associated trimeric autotransporter responsible for Glaesserella parasuis autoagglutination. Vet Res 2024; 55:130. [PMID: 39375812 PMCID: PMC11460128 DOI: 10.1186/s13567-024-01387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Capsular polysaccharide is an important virulence factor of Glaesserella parasuis. An acapsular mutant displays multiple phenotype variations, while the underlying mechanism for these variations is unknown. In this study, we created an acapsular mutant by deleting the wza gene in the capsule locus. We then used transcriptome analysis to compare the gene expression profiles of the wza deletion mutant with those of the parental strain to understand the possible reasons for the phenotypic differences. The mutant Δwza, which has a deleted wza gene, secreted less polysaccharide and lost its capsule structure. The Δwza exhibited increased autoagglutination, biofilm formation and adherence to eukaryotic cells, while the complementary strain C-Δwza partially restored the phenotype. Transcriptome analysis revealed several differentially expressed genes (DEGs) in Δwza, including up-regulated outer membrane proteins and proteins involved in peptidoglycan biosynthesis, suggesting that wza deletion affects the cell wall homeostasis of G. parasuis. Transcriptome analysis revealed the contribution of non-coding RNAs in the regulation of DEGs. Moreover, a new virulence-associated trimeric autotransporter, VtaA31 is upregulated in Δwza. It is responsible for enhanced autoagglutination but not for enhanced biofilm formation and adherence to eukaryotic cells in Δwza. In conclusion, these data indicate that wza affects the expression of multiple genes, especially those related to cell wall synthesis. Furthermore, they provide evidence that vtaA31 is involved in the autoagglutination of G. parasuis.
Collapse
Affiliation(s)
- Junxing Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shiyi Ye
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fei Su
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongchao Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
2
|
Gong X, Cui Q, Zhang W, Shi Y, Zhang P, Zhang C, Hu G, Sahin O, Wang L, Shen Z, Fu M. Genomic insight into the diversity of Glaesserella parasuis isolates from 19 countries. mSphere 2024; 9:e0023124. [PMID: 39194201 PMCID: PMC11423579 DOI: 10.1128/msphere.00231-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Glaesserella parasuis is a commensal bacterial organism found in the upper respiratory tract of healthy pigs and the etiological agent of Glässer's disease, which causes severe economic losses in the swine industry. This study aimed to better understand the epidemiological characteristics of this opportunistic pathogen. We investigated the prevalence and distribution of sequence types (STs), serovars, antimicrobial resistance genes (ARGs), and potential virulence factors (VFs) in 764 G. parasuis isolates collected from diseased and healthy pigs from 19 countries, including China. Multilocus sequence typing showed a high degree of variation with 334 STs, of which 93 were not previously recognized. Phylogenetic analysis revealed two major clades distinguished by isolation year, source, country, and serovar. The dominant serovars of G. parasuis were serovars 4 (19.50%), 7 (15.97%), 5/12 (13.87%), and 13 (12.30%). Serovar 7 gradually became one of the dominant serovars in G. parasuis with more VFs and fewer ARGs. Serovars 4 and 5/12 were the most frequent serovars in diseased pigs, whereas serovars 2, 8, and 11 were predominant in healthy pigs. Serovars 7 and 13 possessed more VFs than the other serovars. This study provides novel insights into the global prevalence and epidemiology of G. parasuis and valuable clues for further investigation into the pathogenicity of G. parasuis, which will facilitate the development of effective vaccines.IMPORTANCEGlaesserella parasuis is a clinically important gram-negative opportunistic pathogen, which causes serious financial losses in swine industry on a global scale. No vaccine is known that provides cross-protection against all 15 serovars; furthermore, the correlation between serovar and virulence is largely unknown. This study provides a large number of sequenced strains in 19 countries and compares the genomic diversity of G. parasuis between diseased and healthy pigs. We found a slight change in the dominant serovar of G. parasuis in the world, with serovar 7 gradually emerging as one of the predominant serovars. The observed higher average number of VFs in this particular serovar strain challenges the previously held notion that serovar 7 is non-virulent, indicating a more complex virulence landscape than previously understood. Our analysis indicating that six ARGs [tet(B), sul2, aph(3')-Ia, aph (6)-Id, blaROB-1, and aph(3'')-Ib] are likely to be transmitted horizontally in their entirety. By analyzing VFs, we provided an improved understanding of the virulence of G. parasuis, and these key findings suggest that vaccine development will be challenging.
Collapse
Affiliation(s)
- Xiaowei Gong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingpo Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yuqian Shi
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Zhang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chaoyang Zhang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhangqi Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengjiao Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
González-Fernández A, Mencía-Ares O, García-Iglesias MJ, Petrocchi-Rilo M, Miguélez-Pérez R, Gutiérrez-Martín CB, Martínez-Martínez S. Virulence and Antimicrobial Resistance Characterization of Glaesserella parasuis Isolates Recovered from Spanish Swine Farms. Antibiotics (Basel) 2024; 13:741. [PMID: 39200041 PMCID: PMC11350796 DOI: 10.3390/antibiotics13080741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Glaesserella (Haemophilus) parasuis, the causative agent of Glässer's disease, is present in most pig farms as an early colonizer of the upper respiratory tract. It exhibits remarkable variability in virulence and antimicrobial resistance (AMR), with virulent strains capable of inducing respiratory or systemic disease. This study aimed to characterize the virulence and the AMR profiles in 65 G. parasuis isolates recovered from Spanish swine farms. Virulence was assessed using multiplex leader sequence (LS)-PCR targeting vtaA genes, with all isolates identified as clinical (presumed virulent). Pathotyping based on ten pangenome genes revealed the virulent HPS_22970 as the most frequent (83.1%). Diverse pathotype profiles were observed, with 29 unique gene combinations and two isolates carrying only potentially non-virulent pangenome genes. AMR phenotyping showed widespread resistance, with 63.3% classified as multidrug resistant, and high resistance to clindamycin (98.3%) and tylosin (93.3%). A very strong association was found between certain pathotype genes and AMR phenotypes, notably between the virulent HPS_22970 and tetracycline resistance (p < 0.001; Φ = 0.58). This study reveals the wide diversity and complexity of G. parasuis pathogenicity and AMR phenotype, emphasizing the need for the targeted characterization of clinical isolates to ensure appropriate antimicrobial treatments and the implementation of prophylactic measures against virulent strains.
Collapse
|
4
|
Bonillo-Lopez L, Obregon-Gutierrez P, Huerta E, Correa-Fiz F, Sibila M, Aragon V. Intensive antibiotic treatment of sows with parenteral crystalline ceftiofur and tulathromycin alters the composition of the nasal microbiota of their offspring. Vet Res 2023; 54:112. [PMID: 38001497 PMCID: PMC10675909 DOI: 10.1186/s13567-023-01237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
The nasal microbiota plays an important role in animal health and the use of antibiotics is a major factor that influences its composition. Here, we studied the consequences of an intensive antibiotic treatment, applied to sows and/or their offspring, on the piglets' nasal microbiota. Four pregnant sows were treated with crystalline ceftiofur and tulathromycin (CTsows) while two other sows received only crystalline ceftiofur (Csows). Sow treatments were performed at D-4 (four days pre-farrowing), D3, D10 and D17 for ceftiofur and D-3, D4 and D11 for tulathromycin. Half of the piglets born to CTsows were treated at D1 with ceftiofur. Nasal swabs were taken from piglets at 22-24 days of age and bacterial load and nasal microbiota composition were defined by 16 s rRNA gene qPCR and amplicon sequencing. Antibiotic treatment of sows reduced their nasal bacterial load, as well as in their offspring, indicating a reduced bacterial transmission from the dams. In addition, nasal microbiota composition of the piglets exhibited signs of dysbiosis, showing unusual taxa. The addition of tulathromycin to the ceftiofur treatment seemed to enhance the deleterious effect on the microbiota diversity by diminishing some bacteria commonly found in the piglets' nasal cavity, such as Glaesserella, Streptococcus, Prevotella, Staphylococcus and several members of the Ruminococcaceae and Lachnospiraceae families. On the other hand, the additional treatment of piglets with ceftiofur resulted in no further effect beyond the treatment of the sows. Altogether, these results suggest that intensive antibiotic treatments of sows, especially the double antibiotic treatment, disrupt the nasal microbiota of their offspring and highlight the importance of sow-to-piglet microbiota transmission.
Collapse
Affiliation(s)
- Laura Bonillo-Lopez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Pau Obregon-Gutierrez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Eva Huerta
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Florencia Correa-Fiz
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Marina Sibila
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain.
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain.
| | - Virginia Aragon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
5
|
Blanco-Fuertes M, Sibila M, Franzo G, Obregon-Gutierrez P, Illas F, Correa-Fiz F, Aragón V. Ceftiofur treatment of sows results in long-term alterations in the nasal microbiota of the offspring that can be ameliorated by inoculation of nasal colonizers. Anim Microbiome 2023; 5:53. [PMID: 37864263 PMCID: PMC10588210 DOI: 10.1186/s42523-023-00275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The nasal microbiota of the piglet is a reservoir for opportunistic pathogens that can cause polyserositis, such as Glaesserella parasuis, Mycoplasma hyorhinis or Streptococcus suis. Antibiotic treatment is a strategy to control these diseases, but it has a detrimental effect on the microbiota. We followed the piglets of 60 sows from birth to 8 weeks of age, to study the effect of ceftiofur on the nasal microbiota and the colonization by pathogens when the treatment was administered to sows or their litters. We also aimed to revert the effect of the antibiotic on the nasal microbiota by the inoculation at birth of nasal colonizers selected from healthy piglets. Nasal swabs were collected at birth, and at 7, 15, 21 and 49 days of age, and were used for pathogen detection by PCR and bacterial culture, 16S rRNA amplicon sequencing and whole shotgun metagenomics. Weights, clinical signs and production parameters were also recorded during the study. RESULTS The composition of the nasal microbiota of piglets changed over time, with a clear increment of Clostridiales at the end of nursery. The administration of ceftiofur induced an unexpected temporary increase in alpha diversity at day 7 mainly due to colonization by environmental taxa. Ceftiofur had a longer impact on the nasal microbiota of piglets when administered to their sows before farrowing than directly to them. This effect was partially reverted by the inoculation of nasal colonizers to newborn piglets and was accompanied by a reduction in the number of animals showing clinical signs (mainly lameness). Both interventions altered the colonization pattern of different strains of the above pathogens. In addition, the prevalence of resistance genes increased over time in all the groups but was significantly higher at weaning when the antibiotic was administered to the sows. Also, ceftiofur treatment induced the selection of more beta-lactams resistance genes when it was administered directly to the piglets. CONCLUSIONS This study shed light on the effect of the ceftiofur treatment on the piglet nasal microbiota over time and demonstrated for the first time the possibility of modifying the piglets' nasal microbiota by inoculating natural colonizers of the upper respiratory tract.
Collapse
Affiliation(s)
- Miguel Blanco-Fuertes
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
- Ciber in Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, PD, Italy
| | - Pau Obregon-Gutierrez
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Francesc Illas
- Selección Batallé, Avinguda dels Segadors, 17421, Riudarenes, Spain
| | - Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| | - Virginia Aragón
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
6
|
Wu CF, Hsu CY, Chou CC, Wang CM, Huang SW, Kuo HC. Serotypes, virulence factors and multilocus sequence typing of Glaesserella parasuis from diseased pigs in Taiwan. PeerJ 2023; 11:e15823. [PMID: 37790626 PMCID: PMC10544350 DOI: 10.7717/peerj.15823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/10/2023] [Indexed: 10/05/2023] Open
Abstract
Background Glaesserella parasuis (G. parasuis) belongs to the normal microbiota of the upper respiratory tract in the swine, but virulent strains can cause systemic infections commonly known as Glässer's disease that leads to significant economic loss in the swine industry. Fifteen serotypes of G. parasuis have been classified by gel immunodiffusion test while the molecular serotyping based on variation within the capsule loci have further improved the serotype determination of unidentified field strains. Serovar has been commonly used as an indicator of virulence; however, virulence can be significantly differ in the field isolates with the same serotype. To date, investigations of G. parasuis isolated in Taiwan regarding antimicrobial resistance, serotypes, genotypes and virulence factors remain unclear. Methods A total of 276 G.parasuis field isolates were collected from 263 diseased pigs at the Animal Disease Diagnostic Center of National Chiayi University in Taiwan from January 2013 to July 2021. Putative virulence factors and serotypes of the isolates were identified by polymerase chain reaction (PCR) and antimicrobial susceptibility testing was performed by microbroth dilution assay. Additionally, the epidemiology of G. parasuis was characterized by multilocus sequence typing (MLST). Results Serotype 4 (33.3%) and 5 (21.4%) were the most prevalent, followed by nontypable isolates (15.9%), serotype 13 (9.4%), 12 (6.5%), 14 (6.2%), 7 (3.3%), 1 (1.8%), 9 (1.1%), 11 (0.7%) and 6 (0.4%). Nine out of 10 putative virulence factors showed high positive rates, including group 1 vtaA (100%), fhuA (80.4%), hhdA (98.6%), hhdB (96.0%), sclB7 (99.6%), sclB11 (94.9%), nhaC (98.2%), HAPS_0254 (85.9%), and cirA (99.3%). According to the results of antimicrobial susceptibility testing, ceftiofur and florfenicol were highly susceptible (>90%). Notably, 68.8% isolates showed multidrug resistance. MLST revealed 16 new alleles and 67 new sequence types (STs). STs of these isolated G. parasuis strains were classified into three clonal complexes and 45 singletons by Based Upon Related Sequence Types (BURST) analysis. All the G. parasuis strains in PubMLST database, including strains from the diseased pigs in the study, were defined into two main clusters by Unweighted Pair Group Method with Arithmetic Mean (UPGMA). Most isolates in this study and virulent isolates from the database were mainly located in cluster 2, while cluster 1 included a high percentage of nasal isolates from asymptomatic carriers. In conclusion, this study provides current prevalence and antimicrobial susceptibility of G. parasuis in Taiwan, which can be used in clinical diagnosis and treatment of Glässer's disease.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Chia-Yu Hsu
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taichung, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Szu-Wei Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Hung-Chih Kuo
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
7
|
Neila-Ibáñez C, Napp S, Pailler-García L, Franco-Martínez L, Cerón JJ, Aragon V, Casal J. Risk factors associated with Streptococcus suis cases on pig farms in Spain. Vet Rec 2023; 193:e3056. [PMID: 37269537 DOI: 10.1002/vetr.3056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Streptococcus suis can cause meningitis, polyarthritis and acute death in piglets. However, the risk factors associated with S. suis infection remain incompletely understood. Therefore, a longitudinal study was carried out, in which six batches from two Spanish pig farms with S. suis problems were repeatedly examined to determine possible risk factors. METHODS A prospective case-control study was conducted, and potential risk factors were evaluated using mixed-effects logistic regression models. The explanatory variables included: (a) concomitant pathogens; (b) biomarkers associated with stress, inflammation and oxidative status; (c) farm environmental factors; and (d) parity and S. suis presence in sows. Three models were built to study the effect of these variables, including two to assess the risk factors involved in the subsequent development of disease. RESULTS Risk factors for S. suis-associated disease included porcine reproductive and respiratory syndrome virus co-infection at weaning (odds ratio [OR] = 6.69), sow parity (OR = 0.71), haptoglobin level before weaning (OR = 1.01), relative humidity (OR = 1.11) and temperature (OR = 0.13). LIMITATIONS Laboratory diagnosis was done at the batch level, with individual diagnosis based on clinical signs only. CONCLUSIONS This study confirms the multifactorial nature of S. suis-associated disease, with both environmental factors and factors related to the host involved in disease development. Controlling these factors may, therefore, help prevent the appearance of disease.
Collapse
Affiliation(s)
- Carlos Neila-Ibáñez
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Sebastián Napp
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Lola Pailler-García
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Espinardo, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Espinardo, Spain
| | - Virginia Aragon
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe, Bellaterra, Spain
| | - Jordi Casal
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
8
|
Mugabi R, Silva APSP, Hu X, Gottschalk M, Aragon V, Macedo NR, Sahin O, Harms P, Main R, Tucker AW, Li G, Clavijo MJ. Molecular characterization of Glaesserella parasuis strains circulating in North American swine production systems. BMC Vet Res 2023; 19:135. [PMID: 37641044 PMCID: PMC10464461 DOI: 10.1186/s12917-023-03698-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Glaesserella parasuis is the causative agent of Glässer's disease in pigs. Serotyping is the most common method used to type G. parasuis isolates. However, the high number of non-typables (NT) and low discriminatory power make serotyping problematic. In this study, 218 field clinical isolates and 15 G. parasuis reference strains were whole-genome sequenced (WGS). Multilocus sequence types (MLST), serotypes, core-genome phylogeny, antimicrobial resistance (AMR) genes, and putative virulence gene information was extracted. RESULTS In silico WGS serotyping identified 11 of 15 serotypes. The most frequently detected serotypes were 7, 13, 4, and 2. MLST identified 72 sequence types (STs), of which 66 were novel. The most predominant ST was ST454. Core-genome phylogeny depicted 3 primary lineages (LI, LII, and LIII), with LIIIA sublineage isolates lacking all vtaA genes, based on the structure of the phylogenetic tree and the number of virulence genes. At least one group 1 vtaA virulence genes were observed in most isolates (97.2%), except for serotype 8 (ST299 and ST406), 15 (ST408 and ST552) and NT (ST448). A few group 1 vtaA genes were significantly associated with certain serotypes or STs. The putative virulence gene lsgB, was detected in 8.3% of the isolates which were predominantly of serotype 5/12. While most isolates carried the bcr, ksgA, and bacA genes, the following antimicrobial resistant genes were detected in lower frequency; blaZ (6.9%), tetM (3.7%), spc (3.7%), tetB (2.8%), bla-ROB-1 (1.8%), ermA (1.8%), strA (1.4%), qnrB (0.5%), and aph3''Ia (0.5%). CONCLUSION: This study showed the use of WGS to type G. parasuis isolates and can be considered an alternative to the more labor-intensive and traditional serotyping and standard MLST. Core-genome phylogeny provided the best strain discrimination. These findings will lead to a better understanding of the molecular epidemiology and virulence in G. parasuis that can be applied to the future development of diagnostic tools, autogenous vaccines, evaluation of antibiotic use, prevention, and disease control.
Collapse
Affiliation(s)
- Robert Mugabi
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Ana Paula S Poeta Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Xiao Hu
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Marcelo Gottschalk
- Groupe de Recherche Sur Les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Montréal, Canada
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, UniversitatAutònoma de Barcelona (UAB), Campus, Bellaterra, Barcelona, Spain
- Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), IRTA, UniversitatAutònoma de Barcelona (UAB), Campus, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Nubia R Macedo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | - Rodger Main
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Maria J Clavijo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA.
- PIC North America, Hendersonville, TN, USA.
| |
Collapse
|
9
|
López-Serrano S, Mahmmod YS, Christensen D, Ebensen T, Guzmán CA, Rodríguez F, Segalés J, Aragón V. Immune responses following neonatal vaccination with conserved F4 fragment of VtaA proteins from virulent Glaesserella parasuis adjuvanted with CAF®01 or CDA. Vaccine X 2023; 14:100330. [PMID: 37361051 PMCID: PMC10285277 DOI: 10.1016/j.jvacx.2023.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Glaesserella parasuis is a Gram-negative bacterium that colonizes the upper airways of swine, capable of causing a systemic infection called Glässer's disease. This disease is more frequent in young post-weaning piglets. Current treatments against G. parasuis infection are based on the use of antimicrobials or inactivated vaccines, which promote limited cross-protection against different serovars. For this reason, there is an interest in developing novel subunit vaccines with the capacity to confer effective protection against different virulent strains. Herein, we characterize the immunogenicity and the potential benefits of neonatal immunization with two different vaccine formulations based on the F4 polypeptide, a conserved immunogenic protein fragment from the virulence-associated trimeric autotransporters of virulent G. parasuis strains. With this purpose, we immunized two groups of piglets with F4 combined with cationic adjuvant CAF®01 or cyclic dinucleotide CDA. Piglets immunized with a commercial bacterin and non-immunized animals served as control groups. The vaccinated piglets received two doses of vaccine, at 14 days old and 21 days later. The immune response induced against the F4 polypeptide varied depending on the adjuvant used. Piglets vaccinated with the F4+CDA vaccine developed specific anti-F4 IgGs, biased towards the induction of IgG1 responses, whereas no anti-F4 IgGs were de novo induced after immunization with the CAF®01 vaccine. Piglets immunized with both formulations displayed balanced memory T-cell responses, evidenced upon in vitro re-stimulation of peripheral blood mononuclear cells with F4. Interestingly, pigs immunized with F4+CAF®01 controlled more efficiently a natural nasal colonization by a virulent serovar 4 G. parasuis that spontaneously occurred during the experimental procedure. According to the results, the immunogenicity and the protection afforded by F4 depend on the adjuvant used. F4 may represent a candidate to consider for a Glässer's disease vaccine and could contribute to a better understanding of the mechanisms involved in protection against virulent G. parasuis colonization.
Collapse
Affiliation(s)
- Sergi López-Serrano
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Catalonia, Spain
| | - Yasser S. Mahmmod
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Section of Veterinary Sciences, Health Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Fernando Rodríguez
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
- Departament de Sanitat i Anatomia animals. Facultat de Veterinària. Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
| | - Virginia Aragón
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
10
|
Scherrer S, Schmitt S, Rademacher F, Kuhnert P, Ghielmetti G, Peterhans S, Stephan R. Development of a new multiplex quantitative PCR for the detection of Glaesserella parasuis, Mycoplasma hyorhinis, and Mycoplasma hyosynoviae. Microbiologyopen 2023; 12:e1353. [PMID: 37379423 PMCID: PMC10186005 DOI: 10.1002/mbo3.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023] Open
Abstract
Glaesserella parasuis, Mycoplasma hyorhinis, and Mycoplasma hyosynoviae are important porcine pathogens responsible for polyserositis, polyarthritis, meningitis, pneumonia, and septicemia causing significant economic losses in the swine industry. A new multiplex quantitative polymerase chain reaction (qPCR) was designed on one hand for the detection of G. parasuis and the virulence marker vtaA to distinguish between highly virulent and non-virulent strains. On the other hand, fluorescent probes were established for the detection and identification of both M. hyorhinis and M. hyosynoviae targeting 16S ribosomal RNA genes. The development of the qPCR was based on reference strains of 15 known serovars of G. parasuis, as well as on the type strains M. hyorhinis ATCC 17981T and M. hyosynoviae NCTC 10167T . The new qPCR was further evaluated using 21 G. parasuis, 26 M. hyorhinis, and 3 M. hyosynoviae field isolates. Moreover, a pilot study including different clinical specimens of 42 diseased pigs was performed. The specificity of the assay was 100% without cross-reactivity or detection of other bacterial swine pathogens. The sensitivity of the new qPCR was demonstrated to be between 11-180 genome equivalents (GE) of DNA for M. hyosynoviae and M. hyorhinis, and 140-1200 GE for G. parasuis and vtaA. The cut-off threshold cycle was found to be at 35. The developed sensitive and specific qPCR assay has the potential to become a useful molecular tool, which could be implemented in veterinary diagnostic laboratories for the detection and identification of G. parasuis, its virulence marker vtaA, M. hyorhinis, and M. hyosynoviae.
Collapse
Affiliation(s)
- Simone Scherrer
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Sarah Schmitt
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Fenja Rademacher
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Giovanni Ghielmetti
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Sophie Peterhans
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Roger Stephan
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Institute for Food Safety and Hygiene, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
11
|
Upregulation of TLR4-Dependent ATP Production Is Critical for Glaesserella parasuis LPS-Mediated Inflammation. Cells 2023; 12:cells12050751. [PMID: 36899887 PMCID: PMC10001010 DOI: 10.3390/cells12050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Glaesserella parasuis (G. parasuis), an important pathogenic bacterium, cause Glässer's disease, and has resulted in tremendous economic losses to the global swine industry. G. parasuis infection causes typical acute systemic inflammation. However, the molecular details of how the host modulates the acute inflammatory response induced by G. parasuis are largely unknown. In this study, we found that G. parasuis LZ and LPS both enhanced the mortality of PAM cells, and at the same time, the level of ATP was enhanced. LPS treatment significantly increased the expressions of IL-1β, P2X7R, NLRP3, NF-κB, p-NF-κB, and GSDMD, leading to pyroptosis. Furthermore, these proteins' expression was enhanced following extracellular ATP further stimulation. When reduced the production of P2X7R, NF-κB-NLRP3-GSDMS inflammasome signaling pathway was inhibited, and the mortality of cells was reduced. MCC950 treatment repressed the formation of inflammasome and reduced mortality. Further exploration found that the knockdown of TLR4 significantly reduced ATP content and cell mortality, and inhibited the expression of p-NF-κB and NLRP3. These findings suggested upregulation of TLR4-dependent ATP production is critical for G. parasuis LPS-mediated inflammation, provided new insights into the molecular pathways underlying the inflammatory response induced by G. parasuis, and offered a fresh perspective on therapeutic strategies.
Collapse
|
12
|
Lee CY, Ong HX, Tan CY, Low SE, Phang LY, Lai J, Ooi PT, Fong MWC. Molecular Characterization and Phylogenetic Analysis of Outer membrane protein P2 ( OmpP2) of Glaesserella ( Haemophilus) parasuis Isolates in Central State of Peninsular Malaysia. Pathogens 2023; 12:pathogens12020308. [PMID: 36839580 PMCID: PMC9966854 DOI: 10.3390/pathogens12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Glaesserella (Haemophilus) parasuis, the etiological agent of Glässer's disease, is an economically significant pathogen commonly associated with serofibrinous polyserositis, arthritis, fibrinous bronchopneumonia and/or meningitis. This study is the first attempt to molecularly characterize and provide a detailed overview of the genetic variants of G. parasuis present in Malaysia, in reference to its serotype, virulence-associated trimeric autotransporters (vtaA) gene and outer membrane protein P2 (OmpP2) gene. The G. parasuis isolates (n = 11) from clinically sick field samples collected from two major pig producing states (Selangor and Perak) were selected for analysis. Upon multiplex PCR, the majority of the isolates (eight out of 11) were identified to be serotype 5 or 12, and interestingly, serotypes 3, 8 and 15 were also detected, which had never been reported in Malaysia prior to this. Generally, virulent vtaA was detected for all isolates, except for one, which displayed a nonvirulent vtaA. A phylogenetic analysis of the OmpP2 gene revealed that the majority of Malaysian isolates were clustered into genotype 1, which could be further divided into Ia and Ib, while only one isolate was clustered into genotype 2.
Collapse
Affiliation(s)
- Chee Yien Lee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Hui Xin Ong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Chew Yee Tan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Suet Ee Low
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Jyhmirn Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi City 60004, Taiwan
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
- Correspondence: (P.T.O.); (M.W.C.F.)
| | - Michelle Wai Cheng Fong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
- Correspondence: (P.T.O.); (M.W.C.F.)
| |
Collapse
|
13
|
Dellagostin D, Klein RL, Giacobbo I, Guizzo JA, Dazzi CC, Prigol SR, Martín CBG, Kreutz LC, Schryvers AB, Frandoloso R. TbpB Y167A-based vaccine is safe in pregnant sows and induces high titers of maternal derived antibodies that reduce Glaesserella parasuis colonization in piglets. Vet Microbiol 2023; 276:109630. [PMID: 36525718 DOI: 10.1016/j.vetmic.2022.109630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/27/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Glässer's disease is one of the main diseases affecting young piglets, particularly during the nursery phase, that can significantly impact pork production. Vaccination of sows has the potential to prevent Glaesserella parasuis infection during the first weeks of life that is to a substantial degree due to the transfer of maternal derived antibodies (MDA) in colostrum. In this study we compare the antibody response to two vaccines administered to pregnant sows. A subunit vaccine containing the mutant transferrin-binding protein, TbpBY167A, and an autogenous vaccine formulated with the LM96/20 strain of G. parasuis (SV4) administered on days 65 and 86 of the gestational period were safe and induced high titers of antibodies in sows. The IgG peak was reached on day 100 of gestation, and the translocation of IgG to the mammary gland was confirmed in colostrum at the time of delivery. Piglets born from vaccinated sows maintained positive IgG titers against TbpBY167A or G. parasuis SV4 for the duration of the experiment (35 days of life). Piglets born from sows vaccinated with the TbpBY167A-based vaccine had a significantly (p = 0.001) lower load of G. parasuis in the respiratory tract compared to those born from sows vaccinated with the autogenous vaccine. Finally, we demonstrate that the LM96/20 (SV4) strain is highly virulent and a primary agent of Glässer's disease.
Collapse
Affiliation(s)
- Diego Dellagostin
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, RS 99052-900, Brazil
| | - Rafaela Luiza Klein
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, RS 99052-900, Brazil
| | - Igor Giacobbo
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, RS 99052-900, Brazil
| | - João Antônio Guizzo
- Setor de Bacteriologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | | | | | | | - Luiz Carlos Kreutz
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, RS 99052-900, Brazil
| | - Anthony Bernard Schryvers
- Department of Microbiology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Rafael Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, RS 99052-900, Brazil.
| |
Collapse
|
14
|
TbpBY167A-Based Vaccine Can Protect Pigs against Glässer’s Disease Triggered by Glaesserella parasuis SV7 Expressing TbpB Cluster I. Pathogens 2022; 11:pathogens11070766. [PMID: 35890011 PMCID: PMC9323293 DOI: 10.3390/pathogens11070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Glaesserella parasuis is the etiological agent of Glässer’s disease (GD), one of the most important diseases afflicting pigs in the nursery phase. We analyzed the genetic and immunological properties of the TbpB protein naturally expressed by 27 different clinical isolates of G. parasuis that were typed as serovar 7 and isolated from pigs suffering from GD. All the strains were classified as virulent by LS-PCR. The phylogenetic analyses demonstrated high similarity within the amino acid sequence of TbpB from 24 clinical strains all belonging to cluster III of TbpB, as does the protective antigen TbpBY167A. Three G. parasuis isolates expressed cluster I TbpBs, indicating antigenic diversity within the SV7 group of G. parasuis. The antigenic analysis demonstrated the presence of common epitopes on all variants of the TbpB protein, which could be recognized by an in vitro analysis using pig IgG induced by a TbpBY167A-based vaccine. The proof of concept of the complete cross-protection between clusters I and III was performed in SPF pigs immunized with the TbpBY167A-based vaccine (cluster III) and challenged with G. parasuis SV7, strains LM 360.18 (cluster I). Additionally, pigs immunized with a whole-cell inactivated vaccine based on G. parasuis SV5 (Nagasaki strain) did not survive the challenge performed with SV7 (strain 360.18), demonstrating the absence of cross-protection between these two serovars. Based on these results, we propose that a properly formulated TbpBY167A-based vaccine may elicit a protective antibody response against all strains of G. parasuis SV7, despite TbpB antigenic diversity, and this might be extrapolated to other serovars. This result highlights the promising use of the TbpBY167A antigen in a future commercial vaccine for GD prevention.
Collapse
|
15
|
Identification of Glaesserella parasuis and Differentiation of Its 15 Serovars Using High-Resolution Melting Assays. Pathogens 2022; 11:pathogens11070752. [PMID: 35889997 PMCID: PMC9323117 DOI: 10.3390/pathogens11070752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glaesserella parasuis is the etiological agent of Glässer’s disease, which is associated with polyserositis and arthritis and has a significant impact on the economy of the pig production industry. For the optimal surveillance of this pathogen, as well as for the investigation of G. parasuis-associated diseases, it is crucial to identify G. parasuis at the serovar level. In this work, we designed and developed new high-resolution melting (HRM) approaches, namely, the species-specific GPS-HRM1 and two serovar-specific HRM assays (GPS-HRM2 and GPS-HRM3), and evaluated the sensitivity and specificity of the assays. The HRM assays demonstrated good sensitivity, with 12.5 fg–1.25 pg of input DNA for GPS-HRM1 and 125 fg–12.5 pg for GPS-HRM2 and GPS-HRM3, as well as a specificity of 100% for the identification of all recognized 15 G. parasuis serovars. Eighteen clinical isolates obtained between 2014 and 2022 in Switzerland were tested by applying the developed HRM assays, which revealed a heterogeneous distribution of serovars 2, 7, 4, 13, 1, and 14. The combination with virulence marker vtaA (virulence-associated trimeric autotransporters) allows for the prediction of potentially virulent strains. The assays are simple to execute and enable a reliable low-cost approach, thereby refining currently available diagnostic tools.
Collapse
|
16
|
Temporal Patterns of Phenotypic Antimicrobial Resistance and Coinfecting Pathogens in Glaesserella parasuis Strains Isolated from Diseased Swine in Germany from 2006 to 2021. Pathogens 2022; 11:pathogens11070721. [PMID: 35889967 PMCID: PMC9316560 DOI: 10.3390/pathogens11070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Glaesserella parasuis (Gps) causes high economic losses in pig farms worldwide. So far no vaccine provides cross-protection for different serotypes, so antibiotic treatment is widely used to cope with this pathogen. In this study, routine diagnostic data from 2046 pigs with Gps related diseases sent for necropsy to a German laboratory in the time period 2006–2021 were analysed retrospectively. In the time period 2018–2021, the most frequent serotypes (ST) detected were ST4 (30%) and ST13 (22%). A comparison of the reference period 2006–2013 prior to obligatory routine recording of antimicrobial usage in livestock with the period 2014–2021 resulted in a statistically significant decrease of frequencies of resistant Gps isolates for ceftiofur, enrofloxacin, erythromycin, spectinomycin, tiamulin and tilmicosin. While in 2006–2013 all isolates were resistant for tetracyclin and cephalothin, frequencies of resistant isolates decreased in the second time period to 28% and 62%, respectively. Parallel to the reduction of antimicrobial usage, during recent years a reduction in resistant Gps isolates has been observed, so only a low risk of treatment failure exists. Most frequently, pigs positive for Gps were also positive for S.suis (25.4%), PRRSV-EU (25.1%) and influenza virus (23%). The viral pathogens may act as potential trigger factors.
Collapse
|
17
|
Qi B, Li F, Chen K, Ding W, Xue Y, Wang Y, Wang H, Ding K, Zhao Z. Comparison of the Glaesserella parasuis Virulence in Mice and Piglets. Front Vet Sci 2021; 8:659244. [PMID: 34250058 PMCID: PMC8265781 DOI: 10.3389/fvets.2021.659244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we compared the virulence of the most common serovars of Glaesserella parasuis in China, serovars 4, 5, 12, and 13 (36 strains in total) in BALB/c mice and piglets. In mice, the median lethal doses (LD50s) of the four serovars were roughly 9.80 × 107–4.60 × 109 CFU, 2.10 × 108–8.85 × 109 CFU, 4.81 × 107–7.01 × 109 CFU, and 1.75 × 108–8.45 × 108 CFU, respectively. Serovar 13 showed the strongest virulence, followed by serovar 4, serovar 12, and serovar 5, but a significant difference in virulence was only observed between serovars 5 and 13. The virulence of strains of the same serovars differed significantly in piglets. Virulent and attenuated strains were present in all serovars, but serovar 5 was the most virulent in piglets, followed by serovars 13, 4, and 12. A significant difference in virulence was observed between serovars 5 and 4 and between serovars 5 and 12. However, the virulence of serovars 5 and 13 did not differ significantly. This comprehensive analysis of G. parasuis virulence in mice and piglets demonstrated that: (1) the order of virulence of the four domestic epidemic serovars (from strongest to weakest) in piglets was serovars 5, 13, 4, and 12; (2) both virulent and attenuated strains were present in all serovars, so virulence did not necessarily correlate with serovar; (3) Although G. parasuis was fatal in BALB/c mice, its virulence is inconsistent with that in piglets, indicating that BALB/c mice are inadequate as an alternative model of G. parasuis infection.
Collapse
Affiliation(s)
- Baichuan Qi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Feiyue Li
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Kunpeng Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Wenwen Ding
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yun Xue
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yang Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Hongwei Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Ke Ding
- Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Zhanqin Zhao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
18
|
López-Serrano S, Neila-Ibáñez C, Costa-Hurtado M, Mahmmod Y, Martínez-Martínez J, Galindo-Cardiel IJ, Darji A, Rodríguez F, Sibila M, Aragon V. Sow Vaccination with a Protein Fragment against Virulent Glaesserella (Haemophilus) parasuis Modulates Immunity Traits in Their Offspring. Vaccines (Basel) 2021; 9:vaccines9050534. [PMID: 34065547 PMCID: PMC8160652 DOI: 10.3390/vaccines9050534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Glaesserella (Haemophilus) parasuis, an early colonizer of the nasal cavity in piglets, is a highly heterogeneous species, comprising both commensal and virulent strains. Virulent G. parasuis strains can cause fibrinous polyserositis called Glässer’s disease. Colostrum is a source of passive immunity for young piglets. When vaccinating sows, protective antibodies are transferred to their offspring through the colostrum. Here, sow vaccination was performed with a protein fragment, F4, from the outer membrane trimeric autotransporters VtaAs exclusively found in virulent G. parasuis. Piglets were allowed to suckle for 3 weeks, following which a challenge with two virulent strains of G. parasuis was performed. A group of nonvaccinated sows and their piglets were included as a control. Antibodies against F4 were confirmed using ELISA in the vaccinated sows and their offspring before the G. parasuis challenge. Compared to the control group, F4-vaccination also resulted in an increased level of serum TGF-β both in vaccinated sows and in their offspring at early time points of life. After the challenge, a lower body temperature and a higher weight were observed in the group of piglets from vaccinated sows. One piglet from the non-vaccinated group succumbed to the infection, but no other significant differences in clinical signs were noticed. At necropsy, performed 2 weeks after the virulent challenge, the level of surfactant protein D (SP-D) in bronchoalveolar lavage was higher in the piglets from vaccinated sows. Vaccination did not inhibit the nasal colonization of the piglets by the challenge strains.
Collapse
Affiliation(s)
- Sergi López-Serrano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
| | - Carlos Neila-Ibáñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
| | - Mar Costa-Hurtado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
| | - Yasser Mahmmod
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Section of Veterinary Sciences, Health Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Jorge Martínez-Martínez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Spain
| | | | - Ayub Darji
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
19
|
Blanco-Fuertes M, Correa-Fiz F, Fraile L, Sibila M, Aragon V. Altered Nasal Microbiota Composition Associated with Development of Polyserositis by Mycoplasma hyorhinis. Pathogens 2021; 10:603. [PMID: 34069250 PMCID: PMC8156107 DOI: 10.3390/pathogens10050603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/04/2023] Open
Abstract
Fibrinous polyserositis in swine farming is a common pathological finding in nursery animals. The differential diagnosis of this finding should include Glaesserella parasuis (aetiological agent of Glässer's disease) and Mycoplasma hyorhinis, among others. These microorganisms are early colonizers of the upper respiratory tract of piglets. The composition of the nasal microbiota at weaning was shown to constitute a predisposing factor for the development of Glässer's disease. Here, we unravel the role of the nasal microbiota in the subsequent systemic infection by M. hyorhinis, and the similarities and differences with Glässer's disease. Nasal samples from farms with recurrent problems with polyserositis associated with M. hyorhinis (MH) or Glässer's disease (GD) were included in this study, together with healthy control farms (HC). Nasal swabs were taken from piglets in MH farms at weaning, before the onset of the clinical outbreaks, and were submitted to 16S rRNA gene amplicon sequencing (V3-V4 region). These sequences were analyzed together with sequences from similar samples previously obtained in GD and HC farms. Animals from farms with disease (MH and GD) had a nasal microbiota with lower diversity than those from the HC farms. However, the composition of the nasal microbiota of the piglets from these disease farms was different, suggesting that divergent microbiota imbalances may predispose the animals to the two systemic infections. We also found variants of the pathogens that were associated with the farms with the corresponding disease, highlighting the importance of studying the microbiome at strain-level resolution.
Collapse
Affiliation(s)
- Miguel Blanco-Fuertes
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.B.-F.); (M.S.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.B.-F.); (M.S.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Lorenzo Fraile
- Departamento de Ciencia Animal, Escuela Técnica Superior de Ingeniería Agraria (ETSEA), Universidad de Lleida, 25198 Lleida, Spain;
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.B.-F.); (M.S.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.B.-F.); (M.S.); (V.A.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| |
Collapse
|
20
|
Macedo N, Gottschalk M, Strutzberg-Minder K, Van CN, Zhang L, Zou G, Zhou R, Marostica T, Clavijo MJ, Tucker A, Aragon V. Molecular characterization of Glaesserella parasuis strains isolated from North America, Europe and Asia by serotyping PCR and LS-PCR. Vet Res 2021; 52:68. [PMID: 33980312 PMCID: PMC8117636 DOI: 10.1186/s13567-021-00935-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Glaesserella parasuis strains were characterized by serotyping PCR, vtaA virulence marker Leader Sequence (LS)-PCR, clinical significance, and geographic region. Overall, the serovars 4, 5/12, 7, 1, and 13 were the most commonly detected. Serovars of greatest clinical relevance were systemic isolates that had a higher probability of being serovar 5/12, 13, or 7. In comparison, pulmonary isolates had a higher likelihood of being serovars 2, 4, 7, or 14. Serovars 5/12 and 13 have previously been considered disease-associated, but this study agrees with other recent studies showing that serovar 7 is indeed associated with systemic G. parasuis disease. Serovar 4 strains illustrated how isolates can have varying degrees of virulence and be obtained from pulmonary, systemic, or nasal sites. Serovars 8, 9, 15, and 10 were predominantly obtained from nasal samples, which indicates a limited clinical significance of these serovars. Additionally, most internal G. parasuis isolates were classified as virulent by LS-PCR and were disease-associated isolates, including serovars 1, 2, 4, 5/12, 7, 13, and 14. Isolates from the nasal cavity, including serovars 6, 9, 10, 11, and 15, were classified as non-virulent by LS-PCR. In conclusion, the distribution of G. parasuis serovars remains constant, with few serovars representing most of the strains isolated from affected pigs. Moreover, it was confirmed that the LS-PCR can be used for G. parasuis virulence prediction of field strains worldwide.
Collapse
Affiliation(s)
- Nubia Macedo
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA.
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Montreal, Canada
| | | | - Chao Nguyen Van
- Faculty of Animal Science and Veterinary Medicine, University of Agricultural and Forestry, Hue University, Hue, 53000, Vietnam.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, 430070, China
| | - Lijun Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, 430070, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, 430070, China
| | - Thaire Marostica
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA.,Department of Veterinary Clinic and Surgery, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Maria Jose Clavijo
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA.,PIC North America, Hendersonville, TN, USA
| | - Alexander Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| |
Collapse
|
21
|
Cui Y, Guo F, Cai X, Cao X, Guo J, Wang H, Yang B, Zhou H, Su X, Blackall PJ, Xu F. Ct value-based real time PCR serotyping of Glaesserella parasuis. Vet Microbiol 2021; 254:109011. [PMID: 33610013 DOI: 10.1016/j.vetmic.2021.109011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022]
Abstract
Glaesserella parasuis is the causative agent of Glässer's disease in swine. Serotyping plays an essential role in prevalence investigations and in the development of vaccination strategies for the prevention of this disease. Molecular serotyping based on variation within the capsule loci of the 15 serovars is more accurate and efficient than traditional serological serotyping. To reduce the running time and facilitate ease of data interpretation, we developed a simple and rapid cycle threshold (Ct) value-based real time PCR (qPCR) method for the identification and serotyping of G. parasuis. The qPCR method distinguished between all 15 serovar reference strains of G. parasuis with efficiency values ranging between 85.5 % and 110.4 % and, R2 values > 0.98. The qPCR serotyping was evaluated using 83 clinical isolates with 43 of the isolates having been previously assigned to a serovar by the gel immuno-diffusion (GID) assay and 40 non-typeable isolates. The qPCR results of 41/43 (95.3 %) isolates were concordant with the GID assay except two isolates of serovar 12 were assigned to serovar 5. In addition, the qPCR serotyping assigned a serovar to each of the 40 non-typeable isolates. Of the 83 isolates tested to assign a serovar, a concordance rate of 98.8 % (82/83) was determined between the qPCR and the previously reported multiplex PCR of Howell et al. (2015) (including those that were either serovars 5 or 12). Despite the inability to differentiate between serovars 5 and 12, the Ct value-based qPCR serotyping represents an attractive alternative to current molecular serotyping method for G. parasuis and could be used for both epidemiological monitoring and the guidance of vaccination programs.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jie Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hongjun Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
22
|
Correa-Fiz F, Neila-Ibáñez C, López-Soria S, Napp S, Martinez B, Sobrevia L, Tibble S, Aragon V, Migura-Garcia L. Feed additives for the control of post-weaning Streptococcus suis disease and the effect on the faecal and nasal microbiota. Sci Rep 2020; 10:20354. [PMID: 33230191 PMCID: PMC7683732 DOI: 10.1038/s41598-020-77313-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Medicated feed is a common strategy to control the occurrence of Streptococcus suis disease in swine production, but feed additives may constitute an alternative to metaphylaxis. In a farm with post-weaning S. suis disease, the following additives were tested: lysozyme (Lys), medium chain fatty acids plus lysozyme (FA + Lys), FA plus a natural anti-inflammatory (FA + antiinf) and amoxicillin (Amox). During the course of the study, FA + antiinf and Amox groups showed lower prevalence of clinical signs compatible with S. suis disease than the rest of the groups. Piglets from the FA + antiinf group showed high diversity and richness in their nasal and faecal microbiota. Diet supplements did not have major effects on the faecal microbiota, where the genus Mitsuokella was the only differentially present in the FA + Lys group. In the nasal microbiota, piglets from FA + antiinf presented higher differential abundance of a sequence variant from Ruminococcaceae and lower abundance of an unclassified genus from Weeksellaceae. In general, we detected more significant changes in the nasal than in the feacal microbiota, and found that parity of the dams affected the microbiota composition of their offspring, with piglets born to gilts exhibiting lower richness and diversity. Our results suggest that additives could be useful to control post-weaning disease when removing antimicrobials in farms.
Collapse
Affiliation(s)
- Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Carlos Neila-Ibáñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Sergio López-Soria
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Sebastian Napp
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | | | - Laia Sobrevia
- ASN SL, Calle de Murcia, PL Fraga, 22520, Huesca, Spain
| | - Simon Tibble
- ASN SL, Calle de Murcia, PL Fraga, 22520, Huesca, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Lourdes Migura-Garcia
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| |
Collapse
|
23
|
Schuwerk L, Hoeltig D, Waldmann KH, Strutzberg-Minder K, Valentin-Weigand P, Rohde J. Serotyping and pathotyping of Glaesserella parasuis isolated 2012-2019 in Germany comparing different PCR-based methods. Vet Res 2020; 51:137. [PMID: 33203465 PMCID: PMC7673094 DOI: 10.1186/s13567-020-00862-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023] Open
Abstract
Glaesserella parasuis is an important pathogen in swine production. It acts as a primary pathogen in systemic Glässer´s disease and as a secondary pathogen in Porcine Respiratory Disease Complex. In this study, a collection of 308 isolates from carrier animals and individuals with respiratory or Glässer´s disease isolated 2012–2019 in Germany was analysed. Isolates were characterized for serovar implementing two different PCR methods. Additionally, two different PCR methods for pathotyping isolates were applied to the collection and results compared. Serovar 6 (p < 0.0001) and 9 (p = 0.0007) were correlated with carrier isolates and serovar 4 was associated with isolates from animals with respiratory disease (p = 0.015). In systemic isolates, serovar 13 was most frequently detected (18.9%). Various other serovars were isolated from all sites and the ratio of serovar 5 to serovar 12 was approximately 1:2. These two serovars together represented 14.3% of the isolates; only serovar 4 was isolated more frequently (24.7%). The pathotyping method based on the leader sequence (LS = ESPR of vta) was easy to perform and corresponded well to the clinical background information. Of the carrier isolates 72% were identified as non-virulent while 91% of the systemic isolates were classified as virulent (p < 0.0001). Results of the pathotyping PCR based on 10 different marker genes overall were in good agreement with clinical metadata as well as with results of the LS-PCR. However, the pathotyping PCR was more complicated to perform and analyze. In conclusion, a combination of the serotyping multiplex-PCR and the LS-PCR could improve identification of clinically relevant G. parasuis isolates, especially from respiratory samples.
Collapse
Affiliation(s)
- Lukas Schuwerk
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Doris Hoeltig
- Clinic for Swine and Small Ruminants and Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karl-Heinz Waldmann
- Clinic for Swine and Small Ruminants and Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Judith Rohde
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation, Hannover, Germany.
| |
Collapse
|
24
|
Current Swine Respiratory Diseases Morphology in Intensive Swine Production in Serbia. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Swine respiratory diseases represent one of the most frequent health issues in pig production worldwide. Despite the great progress that has been made in the field of diagnostics, control and prophylaxis, respiratory diseases still remain the most challenging health problem in modern commercial pig production. The list of infectious agents that cause respiratory diseases in swine is extensive and includes both, bacterial and viral pathogens. In Serbia, more than fifteen years after the introduction of modern vaccines, the list of bacterial pathogens related to swine respiratory infections still include Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida. On the other hand, most commonly involved viral pathogens are Porcine Reproductive and Respiratory Syndrome Virus, Swine influenza virus, Porcine circovirus type 2 and Pseudorabies virus. The morphological features of pneumonia where several agents are involved, depend on the predominant etiological agent. Expanding knowledge of the main pathogens associated with swine respiratory diseases and the effects of their interactions on the disease outcome is important for further investigations of lung diseases and implementation of control strategies in commercial pig populations in Serbia. This review discusses the latest findings on swine respiratory disease and current trends in Serbian pig production.
Collapse
|
25
|
Mahmmod YS, Correa-Fiz F, Aragon V. Variations in association of nasal microbiota with virulent and non-virulent strains of Glaesserella (Haemophilus) parasuis in weaning piglets. Vet Res 2020; 51:7. [PMID: 32014043 PMCID: PMC6996185 DOI: 10.1186/s13567-020-0738-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Glaesserella (formerly Haemophilus) parasuis causes Glässer’s disease, which results in high economic loss in the swine industry. To understand the polymicrobial interactions of G. parasuis and the nasal microbiota, the statistical association patterns of nasal colonizing bacteria with virulent and non-virulent strains of G. parasuis were studied accounting for the farm management practices as potential risk factors for the occurrence of Glässer’s disease. The nasal microbiota from 51 weaned-piglets from four farms with Glässer’s disease and three farms with no respiratory diseases was previously characterized and included in this study. The presence of virulent and/or non-virulent G. parasuis strains in the nasal cavities was determined in order to establish the potential association with other members of the nasal microbiota. Multivariate logistic and linear regression models were performed among the various members of nasal microbiota and G. parasuis. The multi-site production system and disease presence in the farm were both significantly associated with the presence of G. parasuis virulent strains in the nose of the piglets. Differential bacterial associations were observed with virulent or non-virulent G. parasuis. Chitinophagaceae, Corynebacteriaceae and Corynebacterium were positively associated with the virulent G. parasuis strains, while Enterobacteriaceae, Peptostreptococcaceae, Clostridium XI, and Escherichia/Shigella were negatively associated with virulent G. parasuis. On the other hand, Flavobacteriaceae, Planobacterium, and Phascolarctobacterium were positively associated with the non-virulent G. parasuis strains, while Rikenellaceae, Enterococcaceae, Odoribacter, and Corynebacterium were negatively associated with non-virulent G. parasuis. In conclusion, the nasal microbiota communities showed variations in the association with the G. parasuis strains type.
Collapse
Affiliation(s)
- Yasser S Mahmmod
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Bellaterra, Barcelona, Spain. .,Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt.
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| |
Collapse
|
26
|
Costa-Hurtado M, Barba-Vidal E, Maldonado J, Aragon V. Update on Glässer's disease: How to control the disease under restrictive use of antimicrobials. Vet Microbiol 2020; 242:108595. [PMID: 32122599 DOI: 10.1016/j.vetmic.2020.108595] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/27/2023]
Abstract
Antimicrobials have been commonly used to control bacterial diseases in farm animals. The efficacy of these drugs deterred the development of other control measures, such as vaccines, which are currently getting more attention due to the increased concern about antimicrobial resistance. Glässer's disease is caused by Glaesserella (Haemophilus) parasuis and affects pork production around the world. Balance between colonization and immunity seems to be essential in disease control. Reduction in antimicrobial use in veterinary medicine requires the implementation of preventive measures, based on alternative tools such as vaccination and other strategies to guarantee a beneficial microbial colonization of the animals. The present review summarizes and discusses the current knowledge on diagnosis and control of Glässer's disease, including prospects on alternatives to antimicrobials.
Collapse
Affiliation(s)
- Mar Costa-Hurtado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | | | | | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| |
Collapse
|
27
|
Costa-Hurtado M, Garcia-Rodriguez L, Lopez-Serrano S, Aragon V. Haemophilus parasuis VtaA2 is involved in adhesion to extracellular proteins. Vet Res 2019; 50:69. [PMID: 31547880 PMCID: PMC6755704 DOI: 10.1186/s13567-019-0687-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Haemophilus parasuis is part of the microbiota of the upper respiratory tract in swine. However, virulent strains can cause a systemic disease known as Glässer’s disease. Several virulence factors have been described in H. parasuis including the virulence-associated trimeric autotransporters (VtaAs). VtaA2 is up-regulated during infection and is only found in virulent strains. In order to determine its biological function, the vtaA2 gene was cloned with its native promotor region in pACYC184, and the transformed Escherichia coli was used to perform functional in vitro assays. VtaA2 was found to have a role in attachment to plastic, mucin, BSA, fibronectin and collagen. As other VtaAs from H. parasuis, the passenger domain of VtaA2 contains collagen domains. In order to examine the contribution of the collagen repeats to VtaA2 function, a recombinant vtaA2 without the central collagen domains was obtained and named vtaA2OL. VtaA2OL showed similar capacity than VtaA2 to adhere to plastic, mucin, BSA, fibronectin and plasma but a reduced capacity to adhere to collagen, suggesting that the collagen domains of VtaA2 are involved in collagen attachment. No function in cell adhesion and invasion to epithelial alveolar cell line A549 or unspecific binding to primary alveolar macrophages was found. Likewise VtaA2 had no role in serum or phagocytosis resistance. We propose that VtaA2 mediates adherence to the host by binding to the mucin, found in the upper respiratory tract mucus, and to the extracellular matrix proteins, present in the connective tissue of systemic sites, such as the serosa.
Collapse
Affiliation(s)
- Mar Costa-Hurtado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Laura Garcia-Rodriguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sergi Lopez-Serrano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
28
|
Zhang TT, Liu MZ, Yin RH, Yao LQ, Liu BS, Chen ZL. Rapid and simple detection of Glaesserella parasuis in synovial fluid by recombinase polymerase amplification and lateral flow strip. BMC Vet Res 2019; 15:294. [PMID: 31412870 PMCID: PMC6694577 DOI: 10.1186/s12917-019-2039-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/02/2019] [Indexed: 01/02/2023] Open
Abstract
Background Glaesserella parasuis (G. parasuis) is an influential pathogen of the pig, which induces high morbidity and mortality in naive pig populations in the pig industry. Accurate and rapid detection of the agent is important for disease control. In this study, a simple recombinase polymerase amplification (RPA) with a Lateral flow (LF) strip (RPA-LF-GPS) was developed to detect G. parasuis. Results The RPA-LF-GPS can specifically detect G. parasuis a limit of 100 CFU from other common related pathogens causing arthritis in the pig. The RPA-LF-GPS assay can use boiled synovial fluid samples as a template with the same sensitivity as other DNA extraction methods. In the detection of clinic positive synovial fluid sample, RPA-LF-GPS is equally sensitive (98.1%) compared with that of PCR (90.4%) (P > 0.05). The whole procedure of the RPA-LF-GPS assay could be finished in 1 hour without professional equipment. Conclusions RPA-LF-GPS assay is a rapid and simple method for point-of-care diagnostic testing for G. parasuis infection.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling road, Shenyang, 110866, China
| | - Meng-Zhi Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling road, Shenyang, 110866, China
| | - Rong-Huan Yin
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling road, Shenyang, 110866, China
| | - Long-Quan Yao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling road, Shenyang, 110866, China
| | - Bao-Shan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling road, Shenyang, 110866, China.
| | - Ze-Liang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120 Dongling road, Shenyang, 110866, China.
| |
Collapse
|
29
|
Li J, Xu L, Su F, Yu B, Yuan X. Association between iscR-based phylogeny, serovars and potential virulence markers of Haemophilus parasuis. PeerJ 2019; 7:e6950. [PMID: 31143554 PMCID: PMC6524630 DOI: 10.7717/peerj.6950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/09/2019] [Indexed: 12/03/2022] Open
Abstract
Haemophilus parasuis is an economically important bacterial pathogen of swine. Extensive genetic and phenotypic heterogeneity among H. parasuis strains have been observed, which hinders the deciphering of the population structure and its association with clinical virulence. In this study, two highly divergent clades were defined according to iron-sulphur cluster regulator (iscR)-based phylogeny analysis of 148 isolates. Clear separation of serovars and potential virulence markers (PVMs) were observed between the two clades, which are indicative of independent evolution of the two lineages. Previously suggested virulence factors showed no correlation with clinical virulence, and were probably clade or serovar specific genes emerged during different stage of evolution. PVMs profiles varied widely among isolates in the same serovar. Higher strain diversity in respect of PVMs was found for isolates from multi-strain infected farms than those from single strain infected ones, which indicates that multi-strain infection in one farm may increase the frequency of gene transfer in H. parasuis. Systemic isolates were more frequently found in serovar 13 and serovar 12, while no correlation between clinical virulence and iscR-based phylogeny was observed. It shows that iscR is a reliable marker for studying population structure of H. parasuis, while other factors should be included to avoid the interference of gene exchange of iscR between isolates. The two lineages of H. parasuis may have undergone independent evolution, but show no difference in clinical virulence. Wide distribution of systemic isolates across the entire population poses new challenge for development of vaccine with better cross-protection. Our study provides new information for better deciphering the population structure of H. parasuis, which helps understanding the extreme diversity within this pathogenic bacterium.
Collapse
Affiliation(s)
- Junxing Li
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Lihua Xu
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Fei Su
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Bin Yu
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xiufang Yuan
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Investigation of Haemophilus parasuis from healthy pigs in China. Vet Microbiol 2019; 231:40-44. [PMID: 30955821 DOI: 10.1016/j.vetmic.2019.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 11/21/2022]
Abstract
Haemophilus parasuis is a common colonizer of the upper respiratory tract of swine and frequently causes disease, especially in weaner pigs. To date, limited epidemiological data was available for H. parasuis from healthy pigs, which might be carriers of potential pathogenic strains. In this study, from September 2016 to October 2017, we investigated the prevalence and characteristics of H. parasuis from healthy pigs in China. Totally, we obtained 244 isolates from 1675 nasal samples from 6 provinces. H. parasuis isolation was more successful in weaner pigs (22.6%, 192/849), followed by finisher pigs (9.3%, 43/463), and sows (2.5%, 9/363). The most prevalent serovars were 7 (20.1%, 49/244), followed by 3 (14.8%, 36/244), 2 (14.3%, 35/244), 11 (12.7%, 31/244), 5/12 (5.7%, 14/244) and 4 (2.5%, 6/244). Bimodal or multimodal distributions of MICs were observed for most of the tested drugs, which suggested the presence of non-wild type populations. It was noted that the MIC90 values of tilmicosin (64 μg/ml) was relatively higher than that reported in previous studies. Our results suggest that: 1) potentially pathogenic serovars of H. parasuis are identified in healthy pigs, and 2) elevated MICs and presence of mechanisms of resistance not yet described for clinically important antimicrobial agents would increase the burden of disease caused by H. parasuis.
Collapse
|
31
|
Turni C, Singh R, Blackall PJ. Virulence-associated gene profiling, DNA fingerprinting and multilocus sequence typing ofHaemophilus parasuisisolates in Australia. Aust Vet J 2018; 96:196-202. [DOI: 10.1111/avj.12705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 12/01/2022]
Affiliation(s)
- C Turni
- Queensland Alliance for Agriculture and Food Innovation, Level 2A EcoSciences Precinct; The University of Queensland, Boggo Road; Dutton Park Queensland 4102 Australia
| | - R Singh
- Queensland Alliance for Agriculture and Food Innovation, Level 2A EcoSciences Precinct; The University of Queensland, Boggo Road; Dutton Park Queensland 4102 Australia
| | - PJ Blackall
- Queensland Alliance for Agriculture and Food Innovation, Level 2A EcoSciences Precinct; The University of Queensland, Boggo Road; Dutton Park Queensland 4102 Australia
| |
Collapse
|
32
|
Limited Interactions between Streptococcus Suis and Haemophilus Parasuis in In Vitro Co-Infection Studies. Pathogens 2018; 7:pathogens7010007. [PMID: 29316613 PMCID: PMC5874733 DOI: 10.3390/pathogens7010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 01/14/2023] Open
Abstract
Streptococcus suis and Haemophilus parasuis are normal inhabitants of the porcine upper respiratory tract but are also among the most frequent causes of disease in weaned piglets worldwide, causing inflammatory diseases such as septicemia, meningitis and pneumonia. Using an in vitro model of infection with tracheal epithelial cells or primary alveolar macrophages (PAMs), it was possible to determine the interaction between S. suis serotype 2 and H. parasuis strains with different level of virulence. Within H. parasuis strains, the low-virulence F9 strain showed higher adhesion levels to respiratory epithelial cells and greater association levels to PAMs than the high-virulence Nagasaki strain. Accordingly, the low-virulence F9 strain induced, in general, higher levels of pro-inflammatory cytokines than the virulent Nagasaki strain from both cell types. In general, S. suis adhesion levels to respiratory epithelial cells were similar to H. parasuis Nagasaki strain. Yet, S. suis strains induced a significantly lower level of pro-inflammatory cytokine expression from epithelial cells and PAMs than those observed with both H. parasuis strains. Finally, this study has shown that, overall and under the conditions used in the present study, S. suis and H. parasuis have limited in vitro interactions between them and use probably different host receptors, regardless to their level of virulence.
Collapse
|
33
|
Molecular study of an outer fragment of Haemophilus parasuis neuraminidase and utility with diagnostic and immunogen purposes. Res Vet Sci 2017; 115:463-469. [DOI: 10.1016/j.rvsc.2017.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 11/18/2022]
|
34
|
"Pathotyping" Multiplex PCR Assay for Haemophilus parasuis: a Tool for Prediction of Virulence. J Clin Microbiol 2017; 55:2617-2628. [PMID: 28615466 DOI: 10.1128/jcm.02464-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/28/2017] [Indexed: 11/20/2022] Open
Abstract
Haemophilus parasuis is a diverse bacterial species that is found in the upper respiratory tracts of pigs and can also cause Glässer's disease and pneumonia. A previous pangenome study of H. parasuis identified 48 genes that were associated with clinical disease. Here, we describe the development of a generalized linear model (termed a pathotyping model) to predict the potential virulence of isolates of H. parasuis based on a subset of 10 genes from the pangenome. A multiplex PCR (mPCR) was constructed based on these genes, the results of which were entered into the pathotyping model to yield a prediction of virulence. This new diagnostic mPCR was tested on 143 field isolates of H. parasuis that had previously been whole-genome sequenced and a further 84 isolates from the United Kingdom from cases of H. parasuis-related disease in pigs collected between 2013 and 2014. The combination of the mPCR and the pathotyping model predicted the virulence of an isolate with 78% accuracy for the original isolate collection and 90% for the additional isolate collection, providing an overall accuracy of 83% (81% sensitivity and 93% specificity) compared with that of the "current standard" of detailed clinical metadata. This new pathotyping assay has the potential to aid surveillance and disease control in addition to serotyping data.
Collapse
|