1
|
Hajizadeh M, Hajizadeh F, Ghaffarei S, Amin Doustvandi M, Hajizadeh K, Yaghoubi SM, Mohammadnejad F, Khiabani NA, Mousavi P, Baradaran B. MicroRNAs and their vital role in apoptosis in hepatocellular carcinoma: miRNA-based diagnostic and treatment methods. Gene 2023; 888:147803. [PMID: 37716587 DOI: 10.1016/j.gene.2023.147803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies with high invasive and metastatic capability. Although significant advances have been made in the treatment of HCC, the overall survival rate of patients is still low. It is essential to explore accurate biomarkers for early diagnosis and prognosis along with therapeutic procedures to increase the survival rate of these patients. Anticancer therapies can contribute to induce apoptosis for the elimination of cancerous cells. However, dysregulated apoptosis and proliferation signaling pathways lead to treatment resistance, a significant challenge in improving efficient therapies. MiRNAs, short non-coding RNAs, play crucial roles in the progression of HCC, which regulate gene expression through post-transcriptional inhibition and targeting mRNA degradation in cancers. Dysregulated expression of multiple miRNAs is associated with numerous biological processes, including cell proliferation, apoptosis, invasion and metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug resistance in HCC. This review summarizes the role and potential efficacy of miRNAs in promoting and inhibiting cell proliferation and apoptosis in HCC, as well as the role of miRNAs in therapy resistance in HCC.
Collapse
Affiliation(s)
- Masoumeh Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Ghaffarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khadijeh Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mohammad Yaghoubi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Pegah Mousavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Li Y, Wei Y, Zhang H, Bai Y, Wang X, Li Q, Liu Y, Wang S, Wang J, Wen S, Li J, Zhao W. MicroRNA-154-5p suppresses cervical carcinoma growth and metastasis by silencing Cullin2 in vitro and in vivo. PeerJ 2023; 11:e15641. [PMID: 37397007 PMCID: PMC10312157 DOI: 10.7717/peerj.15641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background MicroRNA-154-5p (miR-154-5p) plays a role in tumorigenesis in diverse human malignancies. Nevertheless, little is known about the mechanism by which miR-154-5p alters the growth and metastasis of cervical cancer. This research aimed to analyze the role of miR-154-5p in the pathology of cervical cancer in vitro and in vivo. Methods The level of miR-154-5p in human papillomavirus 16 positive cervical cancer cells was examined by real-time quantitative polymerase chain reaction. Bioinformatics predicted the downstream targets and potential functions of miR-154-5p. Furthermore, lentiviral technology was used to construct SiHa cell lines with stable up- and down-expression levels of miR-154-5p. Its differential expression effects on the progress and metastasis of cervical cancer were analyzed using cell culture and animal models. Results MiR-154-5p showed low expression in cervical cancer cells. Overexpression of miR-154-5p could markedly inhibit the proliferation, migration, and colony formation ability of SiHa cells, concomitantly leading to G1 arrest of the cell cycle, while silencing miR-154-5p triggered the opposite results. Meanwhile, overexpression of miR-154-5p restrained the growth and metastasis of cervical cancer by silencing CUL2 in vivo. Additionally, miR-154-5p reduced CUL2 level, and overexpression of CUL2 influenced the effect of miR-154-5p in cervical cancer. In conclusion, miR-154-5p restrained the growth and metastasis of cervical cancer by directly silencing CUL2.
Collapse
Affiliation(s)
- Yaqin Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Yimiao Wei
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Honglei Zhang
- Department of Pathology and Pathophysiology,Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ying Bai
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiuting Wang
- Department of Biochemistry and Molecular Biology,Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qi Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yatao Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Shuling Wang
- Department of Epidemiology,School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jiapu Wang
- Scientific Research Experiment Center, Central laboratory, The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Songquan Wen
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jiarong Li
- Department of Epidemiology,School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Weihong Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
3
|
Eldosoky MA, Hammad R, Elmadbouly AA, Aglan RB, Abdel-Hamid SG, Alboraie M, Hassan DA, Shaheen MA, Rushdi A, Ahmed RM, Abdelbadea A, Abdelmageed NA, Elshafei A, Ali E, Abo-Elkheir OI, Zaky S, Hamdy NM, Lambert C. Diagnostic Significance of hsa-miR-21-5p, hsa-miR-192-5p, hsa-miR-155-5p, hsa-miR-199a-5p Panel and Ratios in Hepatocellular Carcinoma on Top of Liver Cirrhosis in HCV-Infected Patients. Int J Mol Sci 2023; 24:ijms24043157. [PMID: 36834570 PMCID: PMC9962339 DOI: 10.3390/ijms24043157] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Early hepatocellular carcinoma (HCC) diagnosis is challenging. Moreover, for patients with alpha-fetoprotein (AFP)-negative HCC, this challenge is augmented. MicroRNAs (miRs) profiles may serve as potential HCC molecular markers. We aimed to assess plasma homo sapiens-(hsa)-miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, and hsa-miR-199a-5p-expression levels as a panel of biomarkers for HCC in chronic hepatitis C virus (CHCV) patients with liver cirrhosis (LC), especially AFP-negative HCC cases, as a step toward non-protein coding (nc) RNA precision medicine. SUBJECTS AND METHODS 79 patients enrolled with CHCV infection with LC, subclassified into an LC group without HCC (n = 40) and LC with HCC (n = 39). Real-time quantitative PCR was used to measure plasma hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-192-5p, and hsa-miR-199a-5p. RESULTS Plasma hsa-miR-21-5p and hsa-miR-155-5p demonstrated significant upregulation, while hsa-miR-199a-5p demonstrated significant downregulation in the HCC group (n = 39) when compared to the LC group (n = 40). hsa-miR-21-5p expression was positively correlated with serum AFP, insulin, and insulin resistance (r = 0.5, p < 0.001, r = 0.334, p = 0.01, and r = 0.303, p = 0.02, respectively). According to the ROC curves, for differentiating HCC from LC, combining AFP with each of hsa-miR-21-5p, hsa-miR-155-5p, and miR199a-5p improved the diagnostic sensitivity to 87%, 82%, and 84%, respectively, vs. 69% for AFP alone, with acceptable specificities of 77.5%, 77.5%, and 80%, respectively, and AUC = 0.89, 0.85, and 0.90, respectively vs. 0.85 for AFP alone. hsa-miR-21-5p/hsa-miR-199a-5p and hsa-miR-155-5p/hsa-miR-199a-5p ratios discriminated HCC from LC at AUC = 0.76 and 0.71, respectively, with sensitivities = 94% and 92% and specificities = 48% and 53%, respectively. Upregulation of plasma hsa-miR-21-5p was considered as an independent risk factor for HCC development [OR = 1.198(1.063-1.329), p = 0.002]. CONCLUSIONS Combining each of hsa-miR-21-5p, hsa-miR-155-5p, and hsa-miR-199a-5p with AFP made it possible to identify HCC development in the LC patients' cohort with higher sensitivity than using AFP alone. hsa-miR-21-5p/hsa-miR-199a-5p and hsa-miR-155-5p/hsa-miR-199a-5p ratios are potential HCC molecular markers for AFP-negative HCC patients. hsa-miR-21-5p was linked, clinically and via in silico proof, to insulin metabolism, inflammation, dyslipidemia, and tumorigenesis in the HCC patients' group as well as for an upregulated independent risk factor for the emergence of HCC from LC in the CHCV patients.
Collapse
Affiliation(s)
- Mona A. Eldosoky
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City 11884, Egypt
| | - Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City 11884, Egypt
| | - Asmaa A. Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City 11884, Egypt
| | - Reda Badr Aglan
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shibin El-Kom 32514, Egypt
| | | | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Donia Ahmed Hassan
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Nasr City 11884, Egypt
| | - Mohamed A. Shaheen
- Clinical Pathology Department, Faculty of Medicine (for Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Areej Rushdi
- Microbiology and Immunology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Reem M. Ahmed
- Medical Biochemistry and Molecular Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Alzahra Abdelbadea
- Medical Biochemistry and Molecular Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11884, Egypt
| | - Neamat A. Abdelmageed
- Hepatology, Gastroenterology and Infectious Diseases Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Elham Ali
- Molecular Biology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Omaima I. Abo-Elkheir
- Community Medicine and Public Health, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Samy Zaky
- Hepatology, Gastroenterology and Infectious Diseases Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Correspondence:
| | - Claude Lambert
- Cytometry Unit, Immunology Laboratory, Saint-Etienne University Hospital, 42100 Saint-Etienne, France
| |
Collapse
|
4
|
Zhang X, Zhang D, Bu X, Zhang X, Cui L. Identification of a novel miRNA-based recurrence and prognosis prediction biomarker for hepatocellular carcinoma. BMC Bioinformatics 2022; 23:479. [PMID: 36376850 PMCID: PMC9664787 DOI: 10.1186/s12859-022-05040-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background A high recurrence rate has always been a serious problem for treatment of hepatocellular carcinoma (HCC). Exploring predictors of postoperative and posttransplantation recurrence in patients with HCC can guide treatment strategies for clinicians. Results In this study, logistic regression and multivariate Cox regression models were constructed with microRNA expression profile data from The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO). The accuracy of predictions was assessed using receiver operating characteristic curve (ROC) and Kaplan‒Meier survival curve analyses. The results showed that the combination of 10 miRNAs (including hsa-miR-509-3p, hsa-miR-769-3p, hsa-miR-671-3p, hsa-miR-296-5p, hsa-miR-767-5p, hsa-miR-421, hsa-miR-193a-3p, hsa-miR-139-3p, hsa-miR-342-3p, and hsa-miR-193a-5p) accurately predicted postoperative and posttransplantation malignancy recurrence in HCC patients and was also valuable for prognostic evaluation of HCC patients. The 10-miRNA prediction model might assist doctors in making prognoses for HCC patients who have a high probability of relapse following surgery and in offering additional, individualized treatment to lessen that risk.
Collapse
|
5
|
Liu H, Hei G, Zhang L, Jiang Y, Lu H. Identification of a novel ceRNA network related to prognosis and immunity in HNSCC based on integrated bioinformatic investigation. Sci Rep 2022; 12:17560. [PMID: 36266384 PMCID: PMC9584951 DOI: 10.1038/s41598-022-21473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/27/2022] [Indexed: 01/13/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by an immunosuppression environment and necessitates the development of new immunotherapy response predictors. The study aimed to build a prognosis-related competing endogenous RNA (ceRNA) network based on immune-related genes (IRGs) and analyze its immunological signatures. Differentially expressed IRGs were identified by bioinformatics analysis with Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and ImmPort databases. Finally, via upstream prognosis-related microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) prediction and co-expression analysis, we built an immune-related ceRNA network (LINC00052/hsa-miR-148a-3p/PLAU) related to HNSCC patient prognosis. CIBERSORT analysis demonstrated that there were substantial differences in 11 infiltrating immune cells in HNSCC, and PLAU was closely correlated with 10 type cells, including T cells CD8+ (R = - 0.329), T cells follicular helper (R = - 0.342) and macrophage M0 (R = 0.278). Methylation and Tumor Immune Dysfunction and Exclusion (TIDE) analyses revealed that PLAU upregulation was most likely caused by hypomethylation and that high PLAU expression may be associated with tumor immune evasion in HNSCC, respectively.
Collapse
Affiliation(s)
- Hongbo Liu
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Guoli Hei
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Lu Zhang
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Yanxia Jiang
- grid.412521.10000 0004 1769 1119Department of Pathology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Haijun Lu
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Han X, Wang F, Yang P, Di B, Xu X, Zhang C, Yao M, Sun Y, Lin Y. A Bioinformatic Approach Based on Systems Biology to Determine the Effects of SARS-CoV-2 Infection in Patients with Hypertrophic Cardiomyopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5337380. [PMID: 36203534 PMCID: PMC9532139 DOI: 10.1155/2022/5337380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
Abstract
Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide. While COVID-19 generally affects the lungs, it also damages other organs, including those of the cardiovascular system. Hypertrophic cardiomyopathy (HCM) is a common genetic cardiovascular disorder. Studies have shown that HCM patients with COVID-19 have a higher mortality rate; however, the reason for this phenomenon is not yet elucidated. Herein, we conducted transcriptomic analyses to identify shared biomarkers between HCM and COVID-19 to bridge this knowledge gap. Differentially expressed genes (DEGs) were obtained using the Gene Expression Omnibus ribonucleic acid (RNA) sequencing datasets, GSE147507 and GSE89714, to identify shared pathways and potential drug candidates. We discovered 30 DEGs that were common between these two datasets. Using a combination of statistical and biological tools, protein-protein interactions were constructed in response to these findings to support hub genes and modules. We discovered that HCM is linked to COVID-19 progression based on a functional analysis under ontology terms. Based on the DEGs identified from the datasets, a coregulatory network of transcription factors, genes, proteins, and microRNAs was also discovered. Lastly, our research suggests that the potential drugs we identified might be helpful for COVID-19 therapy.
Collapse
Affiliation(s)
- Xiao Han
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Fei Wang
- Department of Emergency Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Ping Yang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Di
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiangdong Xu
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chunya Zhang
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Man Yao
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yaping Sun
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yangyi Lin
- Department of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|