1
|
Shoushtari M, Salehi-Vaziri M, Kadkhodazadeh M, Teimoori A, Arashkia A, Roohvand F, Teimoori-Toolabi L, Pouriayevali MH, Azadmanesh K. HeterologousPrime-Boost immunizationwithAdenoviral vector and recombinant subunit vaccines strategies against dengue virus type2. Int Immunopharmacol 2025; 148:114032. [PMID: 39832457 DOI: 10.1016/j.intimp.2025.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/17/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Dengue virus (DENV) remains a significant public health threat in tropical and subtropical regions, with effective antiviral treatments and vaccines still not fully established despite extensive research. A critical aspect of vaccine development for DENV involves selecting proteins from both structural and non-structural regions of the virus to activate humoral and cellular immune responses effectively. In this study, we developed a novel vaccine for dengue virus serotype 2 (DENV2) using a heterologous Prime-Boost strategy that combines an adenoviral vector (Ad) with subunit vaccines. The vaccine design included non-structural protein 1 (NS1), envelope protein domain III (EDIII), and the bc-loop of envelope domain II (EDII) as conserved epitopes. These antigens were fused into a single construct P1 and inserted into the pAdTrack-CMV vector to produce a recombinant adenovirus (rAd5-P1) via homologous recombination in E. coli. The examination of the immune response indicated that strong humoral and cellular immunity was generated in various groups of mice. Additionally, the group receiving a heterologous regimen of recombinant adenovirus and protein showed a superior balance of humoral and cellular immunity in terms of IgG2a/IgG1 and INF-γ /IL-4 ratios. These findings validate the vaccine design's ability to utilize both structural and non-structural proteins to generate strong immune responses on two platforms. The promising results from the heterologous regimen highlight its potential as an effective DENV2 vaccine candidate. This research offers significant insights into developing safe and effective DEN vaccines, contributing to efforts to control DENV infections.
Collapse
Affiliation(s)
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory) Pasteur Institute of Iran Tehran Iran
| | - Maryam Kadkhodazadeh
- Department of Virology Pasteur Institute of Iran Tehran Iran; ATMP Department Breast Cancer Research Center Motamed Cancer Institute ACECR Tehran Iran
| | - Ali Teimoori
- Department of Virology School of Medicine Hamadan University of Medical Sciences Hamadan Iran
| | - Arash Arashkia
- Department of Virology Pasteur Institute of Iran Tehran Iran
| | - Farzin Roohvand
- Department of Virology Pasteur Institute of Iran Tehran Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center Pasteur Institute of Iran Tehran Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory) Pasteur Institute of Iran Tehran Iran
| | | |
Collapse
|
2
|
Hanson G, Adams J, Kepgang DIB, Zondagh LS, Tem Bueh L, Asante A, Shirolkar SA, Kisaakye M, Bondarwad H, Awe OI. Machine learning and molecular docking prediction of potential inhibitors against dengue virus. Front Chem 2024; 12:1510029. [PMID: 39776767 PMCID: PMC11703810 DOI: 10.3389/fchem.2024.1510029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, Aedes aegypti and Aedes albopictus. While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques. Method Utilizing a dataset of 21,250 bioactive compounds from PubChem (AID: 651640), alongside a total of 1,444 descriptors generated using PaDEL, we trained various models such as Support Vector Machine, Random Forest, k-nearest neighbors, Logistic Regression, and Gaussian Naïve Bayes. The top-performing model was used to predict active compounds, followed by molecular docking performed using AutoDock Vina. The detailed interactions, toxicity, stability, and conformational changes of selected compounds were assessed through protein-ligand interaction studies, molecular dynamics (MD) simulations, and binding free energy calculations. Results We implemented a robust three-dataset splitting strategy, employing the Logistic Regression algorithm, which achieved an accuracy of 94%. The model successfully predicted 18 known DENV inhibitors, with 11 identified as active, paving the way for further exploration of 2683 new compounds from the ZINC and EANPDB databases. Subsequent molecular docking studies were performed on the NS2B/NS3 protease, an enzyme essential in viral replication. ZINC95485940, ZINC38628344, 2',4'-dihydroxychalcone and ZINC14441502 demonstrated a high binding affinity of -8.1, -8.5, -8.6, and -8.0 kcal/mol, respectively, exhibiting stable interactions with His51, Ser135, Leu128, Pro132, Ser131, Tyr161, and Asp75 within the active site, which are critical residues involved in inhibition. Molecular dynamics simulations coupled with MMPBSA further elucidated the stability, making it a promising candidate for drug development. Conclusion Overall, this integrative approach, combining machine learning, molecular docking, and dynamics simulations, highlights the strength and utility of computational tools in drug discovery. It suggests a promising pathway for the rapid identification and development of novel antiviral drugs against DENV. These in silico findings provide a strong foundation for future experimental validations and in-vitro studies aimed at fighting DENV.
Collapse
Affiliation(s)
- George Hanson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Joseph Adams
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Daveson I. B. Kepgang
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Luke S. Zondagh
- Pharmaceutical Chemistry, School of Pharmacy, University of Western Cape Town, Cape Town, South Africa
| | - Lewis Tem Bueh
- Department of Computer Engineering, Faculty of Engineering and Technology, University of Buea, Buea, Cameroon
| | - Andy Asante
- Department of Immunology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Soham A. Shirolkar
- College of Engineering, University of South Florida, Florida, United States
| | - Maureen Kisaakye
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Hem Bondarwad
- Department of Biotechnology and Bioinformatics, Deogiri College, Dr. Babasaheb Ambedkar Marathwada University, Sambhajinagar, India
| | - Olaitan I. Awe
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
| |
Collapse
|
3
|
Komarudin AG, Adharis A, Sasmono RT. Natural Compounds and Their Analogs as Antivirals Against Dengue Virus: A Review. Phytother Res 2024. [PMID: 39697048 DOI: 10.1002/ptr.8408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 12/20/2024]
Abstract
Dengue virus (DENV) continues to pose a significant global health challenge, causing diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. While efforts in vaccine development and antiviral drug discovery are ongoing, effective therapeutic options remain limited. In this review, we highlight natural compounds and the analogs that demonstrated antiviral activity against DENV in in vitro and in vivo studies. Specifically, these studies examine alkaloids, phenolic acids, phenols, flavonoids, terpenoids, and glycosides which have shown potential in inhibiting DENV entry, replication, and reducing the cytokine storm. By focusing on these bioactive compounds and the analogs, a comprehensive overview of their promising roles is provided to advance therapeutic strategies for combating DENV infection.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Kabupaten Bogor, Jawa Barat, Indonesia
| | - Azis Adharis
- Department of Chemistry, Faculty of Science and Computer Science, Universitas Pertamina (UPER), Jakarta, Indonesia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Kabupaten Bogor, Jawa Barat, Indonesia
| |
Collapse
|
4
|
Ding J, Mairiang D, Prayongkul D, Puttikhunt C, Noisakran S, Kaewjiw N, Songjaeng A, Prommool T, Tangthawornchaikul N, Angkasekwinai N, Suputtamongkol Y, Lapphra K, Chokephaibulkit K, White NJ, Avirutnan P, Tarning J. In-host modeling of dengue virus and non-structural protein 1 and the effects of ivermectin in patients with acute dengue fever. CPT Pharmacometrics Syst Pharmacol 2024; 13:2196-2209. [PMID: 39308445 DOI: 10.1002/psp4.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 12/17/2024] Open
Abstract
The increased incidence of dengue poses a substantially global public health challenge. There are no approved antiviral drugs to treat dengue infections. Ivermectin, an old anti-parasitic drug, had no effect on dengue viremia, but reduced the dengue non-structural protein 1 (NS1) in a clinical trial. This is potentially important, as NS1 may play a causal role in the pathogenesis of severe dengue. This study established an in-host model to characterize the plasma kinetics of dengue virus and NS1 with host immunity and evaluated the effects of ivermectin, using a population pharmacokinetic-pharmacodynamic (PK-PD) modeling approach, based on two studies in acute dengue fever: a placebo-controlled ivermectin study in 250 adult patients and an ivermectin PK-PD study in 24 pediatric patients. The proposed model described adequately the observed ivermectin pharmacokinetics, viral load, and NS1 data. Bodyweight was a significant covariate on ivermectin pharmacokinetics. We found that ivermectin reduced NS1 with an EC50 of 67.5 μg/mL. In silico simulations suggested that ivermectin should be dosed within 48 h after fever onset, and that a daily dosage of 800 μg/kg could achieve substantial NS1 reduction. The in-host dengue model is useful to assess the drug effect in antiviral drug development for dengue fever.
Collapse
Affiliation(s)
- Junjie Ding
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dumrong Mairiang
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Dararat Prayongkul
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Sansanee Noisakran
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nattapong Kaewjiw
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Songjaeng
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanapan Prommool
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nattaya Tangthawornchaikul
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nasikarn Angkasekwinai
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yupin Suputtamongkol
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Keswadee Lapphra
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Panisadee Avirutnan
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Infectious Diseases Data Observatory, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Apoorva, Kumar A, Singh SK. Dengue virus NS1 hits hard at the barrier integrity of human cerebral microvascular endothelial cells via cellular microRNA dysregulations. Tissue Barriers 2024:2424628. [PMID: 39508307 DOI: 10.1080/21688370.2024.2424628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
Dengue virus (DENV) infections are commonly reported in the tropical and subtropical regions of the world. DENV is reported to exploit various strategies to cross the blood-brain barrier. The NS1 protein of DENV plays an important role in viral neuropathogenesis, resulting in endothelial hyperpermeability and cytokine-induced vascular leak. miRNAs are short non-coding RNAs that play an important role in post-transcriptional gene regulations. However, no comprehensive information about the involvement of miRNAs in DENV-NS1-mediated neuropathogenesis has been explored to date. We observed that DENV-NS1 significantly alters the cellular miRNome of human cerebral microvascular endothelial cells in a bystander fashion. Subsequent target prediction and pathway enrichment analysis indicated that these microRNAs and their corresponding target genes are involved in pathways associated with blood-brain barrier dysfunction such as "Adherens junction" and "Tight junction". Additionally, several miRNA-mRNA pairs were also found to be involved in cellular signaling pathways related to cytokine production, for instance, "Jak-STAT signaling pathway", "Chemokine signaling pathway", "IL-17 signaling pathway", "NF-κB signaling pathway", and "Viral protein interaction with cytokine and cytokine receptor". The dysregulated production of inflammatory cytokines is reported to compromise BBB permeability. This study is the first report to demonstrate that DENV-NS1-mediated miRNA perturbations are crucial in compromising endothelial barrier integrity. It also offers insights into potential therapeutic targets to mitigate DENV-NS1-induced vascular permeability and inflammation.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Atul Kumar
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi, India
- Delhi School of Public Health, University of Delhi, New Delhi, India
| |
Collapse
|
6
|
Musatat AB, Durmuş T, Atahan A. Harnessing high potential benzothiazole chalcones against dengue virus NS5 protein: A multi-faceted theoretical study through molecular docking, ADME, and DFT. Arch Biochem Biophys 2024; 761:110171. [PMID: 39366630 DOI: 10.1016/j.abb.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Chalcones bearing tetralone, indanone and benzothiazole cores were synthesized successfully using a general Claisen-Schmidt condensation protocol. The prepared compounds were purified and structurally analyzed by 1H, 13C NMR, and FT-IR techniques. A multi-faceted theoretical approach, combining Density Functional Theory (DFT), molecular docking, and ADME predictions, was employed to evaluate their therapeutic potential. DFT calculations at the B3LYP/def2-TZVP level revealed key electronic properties, with TD3 compound demonstrating the highest chemical reactivity. Molecular Electrostatic Potential (MEP) and Reduced Density Gradient (RDG) analyses provided insights into the compounds' non-covalent interactions and charge distributions. Molecular docking studies against the NS5 protein (PDB: 6KR2) showed superior binding affinities for all three compounds compared to the control ligand SAH, with TD3 exhibiting the lowest binding energy (-8.41 kcal/mol) and theoretical inhibition constant (689.31 nM). ADME predictions indicated favorable drug-like properties with concerns regarding aqueous solubility and potential P-glycoprotein interactions. Toxicity evaluations highlighted challenges, particularly in hepatotoxicity and carcinogenicity. The study identified TD3 as a promising lead compound for Dengue Virus NS5 inhibition, while also emphasizing the need for targeted modifications to address toxicity concerns. This research not only contributes to anti-dengue drug discovery efforts but also provides a robust methodological framework for the theoretical evaluation of similar small compounds in future investigations.
Collapse
Affiliation(s)
| | - Tülay Durmuş
- Department of Chemistry, Faculty of Art and Sciences, Düzce University, 81100, Düzce, Turkiye
| | - Alparslan Atahan
- Department of Chemistry, Faculty of Art and Sciences, Düzce University, 81100, Düzce, Turkiye
| |
Collapse
|
7
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
8
|
Roy A, Paul I, Paul T, Hazarika K, Dihidar A, Ray S. An in-silico receptor-pharmacophore based multistep molecular docking and simulation study to evaluate the inhibitory potentials against NS1 of DENV-2. J Biomol Struct Dyn 2024; 42:6136-6164. [PMID: 37517062 DOI: 10.1080/07391102.2023.2239925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/25/2023] [Indexed: 08/01/2023]
Abstract
DENV-2 strain is the most fatal and infectious of the five dengue virus serotypes. The non-structural protein NS1 encoded by its genome is the most significant protein required for viral pathogenesis and replication inside the host body. Thus, targeting the NS1 protein and designing an inhibitor to limit its stability and secretion is a propitious attempt in our fight against dengue. Four novel inhibitors are designed to target the conserved cysteine residues (C55, C313, C316, and C329) and glycosylation sites (N130 and N207) of the NS1 protein in an attempt to halt the spread of the dengue infection in the host body altogether. Numerous computer-aided drug designing techniques including molecular docking, molecular dynamics simulation, virtual screening, principal component analysis, and dynamic cross-correlation matrix were employed to determine the structural and functional activity of the NS1-inhibitor complexes. From our analysis, it was evident that the extent of structural and atomic level fluctuations of the ligand-bound protein exhibited a declining trend in contrast to unbound protein which was prominently noticeable through the RMSD, RMSF, Rg, and SASA graphs. The ADMET analysis of the four ligands revealed a promising pharmacokinetics and pharmacodynamic profile, along with good bioavailability and toxicity properties. The proposed drugs when bound to the targeted cavities resulted in stable conformations in comparison to their unbound state, implying they have good affinity promising effective drug action. Thus, they can be tested in vitro and used as potential anti-dengue drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Tanwi Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | | | - Aritrika Dihidar
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
9
|
Morgan RN, Ismail NSM, Alshahrani MY, Aboshanab KM. Multi-epitope peptide vaccines targeting dengue virus serotype 2 created via immunoinformatic analysis. Sci Rep 2024; 14:17645. [PMID: 39085250 PMCID: PMC11291903 DOI: 10.1038/s41598-024-67553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
The Middle East has witnessed a greater spread of infectious Dengue viruses, with serotype 2 (DENV-2) being the most prevalent form. Through this work, multi-epitope peptide vaccines against DENV-2 that target E and nonstructural (NS1) proteins were generated through an immunoinformatic approach. MHC class I and II and LBL epitopes among NS1 and envelope E proteins sequences were predicted and their antigenicity, toxicity, and allergenicity were investigated. Studies of the population coverage denoted the high prevalence of NS1 and envelope-E epitopes among different countries where DENV-2 endemic. Further, both the CTL and HTL epitopes retrieved from NS1 epitopes exhibited high conservancies' percentages with other DENV serotypes (1, 3, and 4). Three vaccine constructs were created and the expected immune responses for the constructs were estimated using C-IMMSIM and HADDOCK (against TLR 2,3,4,5, and 7). Molecular dynamics simulation for vaccine construct 2 with TLR4 denoted high binding affinity and stability of the construct with the receptor which might foretell favorable in vivo interaction and immune responses.
Collapse
Affiliation(s)
- Radwa N Morgan
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nasser S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, 11566, Egypt.
| |
Collapse
|
10
|
Chaudhuri D, Ghosh M, Majumder S, Giri K. Repurposing of FDA-approved drugs against oligomerization domain of dengue virus NS1 protein: a computational approach. Mol Divers 2024:10.1007/s11030-024-10936-3. [PMID: 39017952 DOI: 10.1007/s11030-024-10936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Dengue fever is a serious health hazard on a global scale and its primary causative agent is the dengue virus (DENV). The non-structural protein 1 (NS1) of DENV plays a pivotal role in pathogenesis. It is associated with several autoimmune events, endothelial cell apoptosis, and vascular leakage, which increase mainly during the critical phase of infection. In this study, important residues of the oligomerization domain of NS1 protein were identified by literature searches. Virtual screening has been conducted using the entire dataset of the DrugBank database and the potential small-molecule inhibitors against the NS1 protein have been chosen on the basis of binding energy values. This is succeeded by molecular dynamics (MD) simulations of the shortlisted compounds, ultimately giving rise to five compounds. These five compounds were further subjected to RAMD simulations by applying a random direction force of specific magnitude on the ligand center of mass in order to push the ligand out of the protein-binding pocket, for the quantitative estimation of their binding energy values to determine the interaction strength between protein and ligand which prevents ligand unbinding from its binding site, ultimately leading to the selection of three major compounds, DB00826 (Natamycin), DB11274 (Dihydro-alphaergocryptine), and DB11275 (Epicriptine), with the DB11274 having a role against idiopathic Parkinson's disease, and thus may have possible important roles in the prevention of dengue-associated Parkinsonism. These compounds may act as prospective drugs against dengue, by preventing the oligomerization of the NS1 protein, thereby preventing disease progression and pathogenesis.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Medha Ghosh
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
11
|
Banjan B, Krishnan D, Koshy AJ, Soman S, Leelamma A, Raju R, Revikumar A. In-silico screening and identification of potential drug-like compounds for dengue-associated thrombocytopenia from Carica papaya leaf extracts. J Biomol Struct Dyn 2024; 42:5963-5981. [PMID: 37394810 DOI: 10.1080/07391102.2023.2230293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Dengue virus is a mosquito-borne pathogen that causes a variety of illnesses ranging from mild fever to severe and fatal dengue haemorrhagic fever or dengue shock syndrome. One of the major clinical manifestations of severe dengue infection is thrombocytopenia. The dengue non-structural protein 1 (NS1) is the primary protein that stimulates immune cells via toll-like receptor 4 (TLR4), induces platelets, and promotes aggregation, which could result in thrombocytopenia. The leaf extracts of Carica papaya seem to have therapeutic benefits in managing thrombocytopenia associated with dengue. The present study focuses on understanding the underlying mechanism of the use of papaya leaf extracts in treating thrombocytopenia. We have identified 124 phytocompounds that are present in the papaya leaf extract. The pharmacokinetics, molecular docking, binding free energy calculations, and molecular dynamic simulations were performed to investigate the drug-like properties, binding affinities, and interaction of phytocompounds with NS1 protein as well as the interactions of NS1 with TLR4. Three phytocompounds were found to bind with the ASN130, a crucial amino acid residue in the active site of the NS1 protein. Thus, we conclude that Rutin, Myricetin 3-rhamnoside, or Kaempferol 3-(2''-rhamnosylrutinoside) may serve as promising molecules by ameliorating thrombocytopenia in dengue-infected patients by interfering the interaction of NS1 with TLR4. These molecules can serve as drugs in the management of dengue-associated thrombocytopenia after verifying their effectiveness and assessing the drug potency, through additional in-vitro assays.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Abel John Koshy
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Anila Leelamma
- Department of Biochemistry, NSS College, Nilamel, Kollam, Kerala, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
12
|
Wang C, Li C, Zhang R, Huang L. Macrophage membrane-coated nanoparticles for the treatment of infectious diseases. Biomed Mater 2024; 19:042003. [PMID: 38740051 DOI: 10.1088/1748-605x/ad4aaa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Infectious diseases severely threaten human health, and traditional treatment techniques face multiple limitations. As an important component of immune cells, macrophages display unique biological properties, such as biocompatibility, immunocompatibility, targeting specificity, and immunoregulatory activity, and play a critical role in protecting the body against infections. The macrophage membrane-coated nanoparticles not only maintain the functions of the inner nanoparticles but also inherit the characteristics of macrophages, making them excellent tools for improving drug delivery and therapeutic implications in infectious diseases (IDs). In this review, we describe the characteristics and functions of macrophage membrane-coated nanoparticles and their advantages and challenges in ID therapy. We first summarize the pathological features of IDs, providing insight into how to fight them. Next, we focus on the classification, characteristics, and preparation of macrophage membrane-coated nanoparticles. Finally, we comprehensively describe the progress of macrophage membrane-coated nanoparticles in combating IDs, including drug delivery, inhibition and killing of pathogens, and immune modulation. At the end of this review, a look forward to the challenges of this aspect is presented.
Collapse
Affiliation(s)
- Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Ruoyu Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
13
|
Reena G, Ranjani R, Goutham D, Sangeetha K. In silico screening of potential plant peptides against the non-structural proteins of dengue virus. J Vector Borne Dis 2024; 61:211-219. [PMID: 38922655 DOI: 10.4103/jvbd.jvbd_47_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/06/2023] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND OBJECTIVES Peptides isolated from different sources of plants have the advantages of specificity, lower toxicity, and increased therapeutic effects; hence, it is necessary to search for newer antivirals from plant sources for the treatment of dengue viral infections. METHODS In silico screening of selected plant peptides against the non-structural protein 1, NS3 protease domain (NS2B-NS3Pro) with the cofactor and ATPase/helicase domain (NS3 helicase domain/NS3hel) of dengue virus was performed. The physicochemical characteristics of the peptides were calculated using Protparam tools, and the allergenicity and toxicity profiles were assessed using allergenFP and ToxinPred, respectively. RESULTS Among the tested compounds, Ginkbilobin demonstrated higher binding energy against three tested nonstructural protein targets. Kalata B8 demonstrated maximum binding energy against NSP-1 and NSP-2, whereas Circulin A acted against the NSP3 protein of dengue virus. INTERPRETATION CONCLUSION The three compounds identified by in silico screening can be tested in vitro, which could act as potential leads as they are involved in hampering the replication of the dengue virus by interacting with the three prime non-structural proteins.
Collapse
Affiliation(s)
- G Reena
- Saveetha School of Engineering, SIMATS, Thandalam, Chennai, India
| | - R Ranjani
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh, India
| | - D Goutham
- Department of Computer Science, College of Engineering & Sri Venkateswara University, Tirupathi, Andhra Pradesh, India
| | - K Sangeetha
- Saveetha School of Engineering, SIMATS, Thandalam, Chennai, India
| |
Collapse
|
14
|
Xie X, Wang D, Li B, Liang G, Chen X, Xing D, Zhao T, Zhou X, Li C. Aedes aegypti Beta-1,3-Glucan-Binding Protein Inhibits Dengue and ZIKA Virus Replication. Biomedicines 2024; 12:88. [PMID: 38255195 PMCID: PMC10812959 DOI: 10.3390/biomedicines12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
GNBPB6, a beta-1,3-glucan-binding protein, was identified in the transcriptome of Aedes aegypti (A. aegypti) with dengue (DENV), Zika (ZIKV), and chikungunya viruses (CHIKV). In this study, we not only clarified that DENV2 and ZIKV regulate the changes in GNBPB6 expression but also identified the relationship of this gene with viral infections. The changes in GNBPB6 expression were quantified and showed a decrease in A. aegypti cells (Aag2 cells) at 2 dpi and 3 dpi and an increase at 4 dpi and 5 dpi (p < 0.05). A significant increase was observed only at 5 dpi after DENV2 infection. Subsequently, a GNBPB6 knockout (KO) cell line was constructed using the CRISPR/Cas9 system, and the DENV2 and ZIKV RNA copies, along with cell densities, were quantified and compared between the KO and wild type (WT) cells at different dpi. The result showed that DENV2 and ZIKV RNA copies were significantly increased in the KO cell line with no significant change in cell growth. Finally, DENV2 copies decreased after GNBPB6 was complemented in the KO. In conclusion, GNBPB6 knockout and complementation in Aag2 cells revealed that GNBPB6 can inhibit the replication of both DENV2 and ZIKV. These results contribute to subsequent research on mosquito-virus interactions.
Collapse
Affiliation(s)
- Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Bo Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guorui Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Xiaoli Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| |
Collapse
|
15
|
Tejo AM, Hamasaki DT, Menezes LM, Ho YL. Severe dengue in the intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2024; 4:16-33. [PMID: 38263966 PMCID: PMC10800775 DOI: 10.1016/j.jointm.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 01/25/2024]
Abstract
Dengue fever is considered the most prolific vector-borne disease in the world, with its transmission rate increasing more than eight times in the last two decades. While most cases present mild to moderate symptoms, 5% of patients can develop severe disease. Although the mechanisms are yet not fully comprehended, immune-mediated activation leading to excessive cytokine expression is suggested as a cause of the two main findings in critical patients: increased vascular permeability that may shock and thrombocytopenia, and coagulopathy that can induce hemorrhage. The risk factors of severe disease include previous infection by a different serotype, specific genotypes associated with more efficient replication, certain genetic polymorphisms, and comorbidities such as diabetes, obesity, and cardiovascular disease. The World Health Organization recommends careful monitoring and prompt hospitalization of patients with warning signs or propensity for severe disease to reduce mortality. This review aims to update the diagnosis and management of patients with severe dengue in the intensive care unit.
Collapse
Affiliation(s)
- Alexandre Mestre Tejo
- Intensive Care Unit, Department of Intensive Medicine of the Cancer Institute of the State of São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Debora Toshie Hamasaki
- Transfusion Medicine and Cell Therapy Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Letícia Mattos Menezes
- Intensive Care Unit of Infectious Disease Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Yeh-Li Ho
- Intensive Care Unit of Infectious Disease Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Wu N, Ji J, Gou X, Hu P, Cheng Y, Liu Y, Wang Y, Zhang Q, Zuo L. DENV-2 NS1 promotes AMPK-LKB1 interaction to activate AMPK/ERK/mTOR signaling pathway to induce autophagy. Virol J 2023; 20:231. [PMID: 37821951 PMCID: PMC10568820 DOI: 10.1186/s12985-023-02166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/23/2023] [Indexed: 10/13/2023] Open
Abstract
The global incidence of dengue fever has gradually increased in recent years, posing a serious threat to human health. In the absence of specific anti-dengue drugs, understanding the interaction of Dengue virus (DENV) with the host is essential for the development of effective therapeutic measures. Autophagy is often activated during DENV infection to promote viral replication, but the mechanism of how DENV's own proteins induce autophagy has not been clarified. In this study, we first preliminarily identified DENV-2 NS1 as the most likely viral protein for DENV-2-induced autophagy with the help of molecular docking techniques. Further experimental results confirmed that DENV-2 NS1 regulates DENV-2 infection of HUVEC-induced autophagy through the AMPK/ERK/mTOR signaling pathway. Mechanistically, DENV-2 NS1 mainly interacted with AMPK by means of its Wing structural domain, and NS1 bound to all three structural domains on the AMPKα subunit. Finally, the experimental results showed that DENV-2 NS1 promoted the interaction between LKB1 and AMPKα1 and thus activated AMPK by both increasing the expression of LKB1 and binding LKB1. In conclusion, the results of this study revealed that DENV-2 NS1 protein served as a platform for the interaction between AMPK and LKB1 after DENV-2 infection with HUVEC, and pulled AMPK and LKB1 together to form a complex. LKB1 to form a complex, promoting LKB1 action on the kinase structural domain of AMPKα1, which in turn promotes phosphorylation of the Thr172 site on the AMPK kinase structural domain and activates AMPK, thereby positively regulating the AMPK/ERK/mTOR signaling pathway and inducing autophagy. The present discovery improves our understanding of DENV-2-induced host autophagy and contributes to the development of anti-dengue drugs.
Collapse
Affiliation(s)
- Ning Wu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Jinzhong Ji
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Xiaoqin Gou
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Pan Hu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Yao Cheng
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Yuhang Liu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Yuanying Wang
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China
| | - Qilong Zhang
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China.
| | - Li Zuo
- Department of Immunology, Guizhou Medical University, No.9, Beijing Road, Yunyan District, Guiyang, 550000, Guizhou Province, China.
| |
Collapse
|
17
|
Sunari IGAAEP, Aryati A, Hakim FKN, Tanzilia MF, Zuroidah N, Wrahatnala BJ, Rohman A, Wardhani P, Husada D, Miftahussurur M. Non-structural protein 1 and hematology parameters as predictors of dengue virus infection severity in Indonesia. J Med Life 2023; 16:1546-1551. [PMID: 38313186 PMCID: PMC10835564 DOI: 10.25122/jml-2022-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/14/2023] [Indexed: 02/06/2024] Open
Abstract
Dengue virus infection (DVI) remains a significant health challenge, and diagnosis must still be considered. Non-structural protein 1 (NS1) is a potential marker of the dengue virus that can help diagnose DVI. The study aimed to assess the role of NS1 as a predictor of the severity of DVI. We utilized Dengue PCR-confirmed samples and employed semi-quantitative NS1Ag ELISA for NS1 examination, adhering to the World Health Organization South-East Asia Region (WHO-SEARO) 2011 criteria for DVI. We included DVI patients from Indonesia aged 1-65 years. Secondary infections had more severe clinical conditions than primary infections. Leukocyte and platelet levels had a more significant effect on NS1 positivity (6.19 (1.9-30.2); p<0.001; 190 (11-417); p=0.015; respectively). Multivariate analysis revealed leukocytes as a more significant predictor of NS1 values than platelets, with an odds ratio of 5.38 contributing to 30.5% of the NS1 value variation. The NS1 value could distinguish undifferentiated fever and dengue fever in the children group with a sensitivity of 76.0% and specificity of 87.5% (p=0.015). The number of NS1(-) in the severe dengue hemorrhagic fever (DHF) group was higher than NS1(+). DENV-4 type and primary infection were dominant in this study, although they did not significantly differ from the NS1 value. NS1 value can be used as a predictor to determine the severity of DVI in children but not in the adult group. The levels of leukocytes and platelets influenced the NS1 value.
Collapse
Affiliation(s)
| | - Aryati Aryati
- Department of Clinical Pathology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | | | - May Fanny Tanzilia
- Department of Clinical Pathology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Nelly Zuroidah
- Department of Clinical Pathology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Puspa Wardhani
- Department of Clinical Pathology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Dominicus Husada
- Department of Child Health, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Miftahussurur
- Department of Internal Medicine, Division of Gastroentero-Hepatology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
- Helicobacter pylori and Microbiota Study Group Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
18
|
Jearanaiwitayakul T, Warit S, Lekjinda K, Seesen M, Limthongkul J, Midoeng P, Sunintaboon P, Ubol S. The Adjuvant Activity of BCG Cell Wall Cytoskeleton on a Dengue Virus-2 Subunit Vaccine. Vaccines (Basel) 2023; 11:1344. [PMID: 37631912 PMCID: PMC10459381 DOI: 10.3390/vaccines11081344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
The uneven immunogenicity of the attenuated tetravalent dengue vaccine has made it difficult to achieve balanced protection against all four serotypes of the dengue virus (DENV). To overcome this problem, non-replicative vaccines have come into focus, as their immunogenicity is adjustable. This approach is excellent for multivalent vaccines but commonly faces the issue of low immunogenicity. In this present study, we developed a non-replicating dengue vaccine composed of UV-inactivated dengue virus-2 (UV-DENV-2) and DENV-2 NS1-279 protein encapsidated within nanoparticles. This vaccine candidate was administered in the presence of BCG cell wall cytoskeleton (BCG-CWS) as an adjuvant. We revealed, here, that encapsidated immunogens with BCG-CWS exerted potent activities on both B and T cells and elicited Th-1/Th-2 responses in mice. This was evidenced by BCG-CWS significantly augmenting antibody-mediated complement-fixing activity, strongly stimulating the antigen-specific polyfunctional T cell responses, and activating mixed Th-1/Th-2 responses specific to DENV-2- and NS1-279 antigens. In conclusion, BCG-CWS potently adjuvanted the inactivated DENV-2 and DENV subunit immunogens. The mechanism of adjuvanticity remains unclear. This study revealed the potential use of BCG-CWS in vaccine development.
Collapse
Affiliation(s)
- Tuksin Jearanaiwitayakul
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand;
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (M.S.); (J.L.)
| | - Saradee Warit
- Tuberculosis Research Laboratory, Medical Molecular Biology Research Unit, BIOTEC, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand;
| | - Kritsadayut Lekjinda
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya 73170, Thailand; (K.L.); (P.S.)
| | - Mathurin Seesen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (M.S.); (J.L.)
| | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (M.S.); (J.L.)
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok 10400, Thailand;
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya 73170, Thailand; (K.L.); (P.S.)
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (M.S.); (J.L.)
| |
Collapse
|
19
|
Lim PY, Ramapraba A, Loy T, Rouers A, Thein TL, Leo YS, Burton DR, Fink K, Wang CI. A nonstructural protein 1 capture enzyme-linked immunosorbent assay specific for dengue viruses. PLoS One 2023; 18:e0285878. [PMID: 37200264 PMCID: PMC10194908 DOI: 10.1371/journal.pone.0285878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Dengue non-structural protein (NS1) is an important diagnostic marker during the acute phase of infection. Because NS1 is partially conserved across the flaviviruses, a highly specific DENV NS-1 diagnostic test is needed to differentiate dengue infection from Zika virus (ZIKV) infection. In this study, we characterized three newly isolated antibodies against NS1 (A2, D6 and D8) from a dengue-infected patient and a previously published human anti-NS1 antibody (Den3). All four antibodies recognized multimeric forms of NS1 from different serotypes. A2 bound to NS1 from DENV-1, -2, and -3, D6 bound to NS1 from DENV-1, -2, and -4, and D8 and Den3 interacted with NS1 from all four dengue serotypes. Using a competition ELISA, we found that A2 and D6 bound to overlapping epitopes on NS1 whereas D8 recognized an epitope distinct from A2 and D6. In addition, we developed a capture ELISA that specifically detected NS1 from dengue viruses, but not ZIKV, using Den3 as the capture antibody and D8 as the detecting antibody. This assay detected NS1 from all the tested dengue virus strains and dengue-infected patients. In conclusion, we established a dengue-specific capture ELISA using human antibodies against NS1. This assay has the potential to be developed as a point-of-care diagnostic tool.
Collapse
Affiliation(s)
- Pei-Yin Lim
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Appanna Ramapraba
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Thomas Loy
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Angeline Rouers
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tun-Linn Thein
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
20
|
Srisawat N, Gubler DJ, Pangestu T, Thisyakorn U, Ismail Z, Goh D, Capeding MR, Bravo L, Yoksan S, Tantawichien T, Hadinegoro SR, Rafiq K, Picot VS, Ooi EE. Proceedings of the 5th Asia Dengue Summit. Trop Med Infect Dis 2023; 8:tropicalmed8040231. [PMID: 37104356 PMCID: PMC10142460 DOI: 10.3390/tropicalmed8040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
The 5th Asia Dengue Summit, themed "Roll Back Dengue", was held in Singapore from 13 to 15 June 2022. The summit was co-convened by Asia Dengue Voice and Action (ADVA), Global Dengue and Aedes transmitted Diseases Consortium (GDAC), Southeast Asian Ministers of Education Tropical Medicine and Public Health Network (SEAMEO TROPMED), and the Fondation Mérieux (FMx). Dengue experts from academia and research and representatives from the Ministries of Health, Regional and Global World Health Organization (WHO), and International Vaccine Institute (IVI) participated in the three-day summit. With more than 270 speakers and delegates from over 14 countries, 12 symposiums, and 3 full days, the 5th ADS highlighted the growing threat of dengue, shared innovations and strategies for successful dengue control, and emphasized the need for multi-sectoral collaboration to control dengue.
Collapse
Affiliation(s)
- Nattachai Srisawat
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10330, Thailand
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169547, Singapore
| | - Tikki Pangestu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 169547, Singapore
| | - Usa Thisyakorn
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok 10330, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok 10330, Thailand
| | - Zulkifli Ismail
- Department of Pediatrics, KPJ Selangor Specialist Hospital, Malaysia
| | - Daniel Goh
- Division of Pediatric Pulmonary Medicine and Sleep, Khoo Teck Puat National University Children's Medical Institute, National University Hospital, Singapore 169547, Singapore
| | | | - Lulu Bravo
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Terapong Tantawichien
- Division of Infectious Diseases, Department of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sri Rezeki Hadinegoro
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Kamran Rafiq
- International Society of Neglected Tropical Diseases, London WC2H 9JQ, UK
| | | | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169547, Singapore
| |
Collapse
|
21
|
Wei KC, Wei WJ, Liao CL, Chang TH. Discrepant Activation Pattern of Inflammation and Pyroptosis Induced in Dermal Fibroblasts in Response to Dengue Virus Serotypes 1 and 2 and Nonstructural Protein 1. Microbiol Spectr 2023; 11:e0358622. [PMID: 36629424 PMCID: PMC9927091 DOI: 10.1128/spectrum.03586-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Four serotypes of dengue virus (DENV-1 to DENV-4) cause mild to severe disease in humans through infected mosquito bites. Dermal fibroblasts were found to be susceptible to DENV, and this may play a critical role in establishing the initial infection stage. However, the cellular response induced by the different DENV serotypes in dermal fibroblasts during the early stage of infection remains unclear. To determine this, normal human dermal fibroblast WS1 cells were infected with DENV-1 or DENV-2. Compared with the response elicited by DENV-1 infection, DENV-2 induced a stronger innate inflammatory response and cell death in the WS1 cells. However, DENV-1 activated a higher level of pyroptosis signaling than did DENV-2, which was associated with higher virion production. Caspase-1 inhibitor Ac-YVAD-cmk and imipramine, an antidepressant drug, reduced DENV-mediated caspase-1 and interleukin 1β (IL-β) cleavage in the pyroptosis pathway. Ac-YVAD-cmk and imipramine downregulated DENV virion production in WS1 cells. Furthermore, DENV-1 and DENV-2 NS1 proteins promoted diverse activation levels of cell death, inflammatory response, and activation of caspase-1 and IL-β in dermal fibroblasts at different time points. Collectively, these data suggest that DENV-1, DENV-2, and their nonstructural protein 1 (NS1) induce discrepant activation patterns of inflammation and pyroptosis in dermal fibroblasts. The pyroptosis caused by virus and NS1 may facilitate DENV replication in dermal fibroblasts. IMPORTANCE Skin fibroblasts are the primary cells of DENV infection through mosquito bites. Establishing a successful infection in dermal fibroblasts might be critical for dengue disease. However, the cellular response induced by DENV in dermal fibroblasts remains unclear. In this in vitro study, we found that DENV-2 and DENV-1 showed different time course patterns of virus replication and inflammation in dermal fibroblasts. We demonstrated that DENV-1 and DNEV-2 and their viral protein NS1 activate the cellular pyroptosis response to regulate virus replication in dermal fibroblasts. This finding suggests that pyroptosis activation in the DENV primary inoculation site plays a role in the establishment of a DENV infection.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Ju Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Hsien Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
22
|
The Current Landscape of Bioactive Molecules against DENV: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:2236210. [PMID: 36818227 PMCID: PMC9937760 DOI: 10.1155/2023/2236210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/12/2023]
Abstract
With a 30-fold increase in incidence over the previous 50 years, dengue fever is now the most widespread viral disease transmitted by mosquitoes in the world. The intricate interaction of the human defense system, hereditary predisposition, and specific bitterness elements is more likely to be the pathogenesis of dengue. There are presently no viable treatments for dengue. Synthetic drugs which are used against this ailment also show major side effects. There must be a deeper understanding of the underlying mechanism generating severe symptoms to develop auguring markers, cutting-edge diagnostics, and treatments and finally a well-rounded and secure antiserum. Hence, the aim is to search for safer and more potent drugs derived from plants. Plants or herbs are mainly targeting replication or its enzyme or specific stereotypes, though an exact mechanism of phytoconstituents interfering with the viral replication is still undiscovered. The present attempt provided the update with the objective to bringing up forward pathophysiological eventualities involved in dengue virus along with the naturally derived treatment relevant to provide the impregnable therapy by evading the noxious symptoms for dengue fever. Governor's plum, Cryptocarya chartacea, magnolia berry, and Chinese ginger are such plants exhibiting many effective phytoconstituents against DENV and can be further explored for novel drug discovery by medicinal scientists.
Collapse
|
23
|
Sootichote R, Puangmanee W, Benjathummarak S, Kowaboot S, Yamanaka A, Boonnak K, Ampawong S, Chatchen S, Ramasoota P, Pitaksajjakul P. Potential Protective Effect of Dengue NS1 Human Monoclonal Antibodies against Dengue and Zika Virus Infections. Biomedicines 2023; 11:biomedicines11010227. [PMID: 36672734 PMCID: PMC9855337 DOI: 10.3390/biomedicines11010227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Due to the lack of an effective therapeutic treatment to flavivirus, dengue virus (DENV) nonstructural protein 1 (NS1) has been considered to develop a vaccine owing to its lack of a role in antibody-dependent enhancement (ADE). However, both NS1 and its antibody have shown cross-reactivity to host molecules and have stimulated anti-DENV NS1 antibody-mediated endothelial damage and platelet dysfunction. To overcome the pathogenic events and reactogenicity, human monoclonal antibodies (HuMAbs) against DENV NS1 were generated from DENV-infected patients. Herein, the four DENV NS1-specific HuMAbs revealed the therapeutic effects in viral neutralization, reduction of viral replication, and enhancement of cell cytolysis of DENV and zika virus (ZIKV) via complement pathway. Furthermore, we demonstrate that DENV and ZIKV NS1 trigger endothelial dysfunction, leading to vascular permeability in vitro. Nevertheless, the pathogenic effects from NS1 were impeded by 2 HuMAbs (D25-4D4C3 and D25-2B11E7) and also protected the massive cytokines stimulation (interleukin [IL-]-1b, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-13, IL-17, eotaxin, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, Inducible protein-10, monocyte chemoattractant protein-1, macrophage inflammatory protein [MIP]-1 α, MIP-1β, tumor necrosis factor-α, platelet-derived growth factor, and RANTES). Collectively, our findings suggest that the novel protective NS1 monoclonal antibodies generated from humans has multiple therapeutic benefits against DENV and ZIKV infections.
Collapse
Affiliation(s)
- Rochanawan Sootichote
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wilarat Puangmanee
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Siriporn Kowaboot
- Faculty of Medical Technology, Rangsit University, Pathumthani 12000, Thailand
| | - Atsushi Yamanaka
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Korbporn Boonnak
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pannamthip Pitaksajjakul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-023069186 or +66-0899858305
| |
Collapse
|
24
|
Activation of Early Proinflammatory Responses by TBEV NS1 Varies between the Strains of Various Subtypes. Int J Mol Sci 2023; 24:ijms24021011. [PMID: 36674524 PMCID: PMC9863113 DOI: 10.3390/ijms24021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Tick-borne encephalitis (TBE) is an emerging zoonosis that may cause long-term neurological sequelae or even death. Thus, there is a growing interest in understanding the factors of TBE pathogenesis. Viral genetic determinants may greatly affect the severity and consequences of TBE. In this study, nonstructural protein 1 (NS1) of the tick-borne encephalitis virus (TBEV) was tested as such a determinant. NS1s of three strains with similar neuroinvasiveness belonging to the European, Siberian and Far-Eastern subtypes of TBEV were studied. Transfection of mouse cells with plasmids encoding NS1 of the three TBEV subtypes led to different levels of NS1 protein accumulation in and secretion from the cells. NS1s of TBEV were able to trigger cytokine production either in isolated mouse splenocytes or in mice after delivery of NS1 encoding plasmids. The profile and dynamics of TNF-α, IL-6, IL-10 and IFN-γ differed between the strains. These results demonstrated the involvement of TBEV NS1 in triggering an immune response and indicated the diversity of NS1 as one of the genetic factors of TBEV pathogenicity.
Collapse
|
25
|
Differential critical residues on the overlapped region of the non-structural protein-1 recognized by flavivirus and dengue virus cross-reactive monoclonal antibodies. Sci Rep 2022; 12:21548. [PMID: 36513793 PMCID: PMC9747715 DOI: 10.1038/s41598-022-26097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The non-structural protein-1 (NS1) of dengue virus (DENV) contributes to several functions related to dengue disease pathogenesis as well as diagnostic applications. Antibodies against DENV NS1 can cross-react with other co-circulating flaviviruses, which may lead to incorrect diagnosis. Herein, five anti-DENV NS1 monoclonal antibodies (mAbs) were investigated. Four of them (1F11, 2E3, 1B2, and 4D2) cross-react with NS1 of all four DENV serotypes (pan-DENV mAbs), whereas the other (2E11) also reacts with NS1 of other flaviviruses (flavi-cross-reactive mAb). The binding epitopes recognized by these mAbs were found to overlap a region located on the disordered loop of the NS1 wing domain (amino acid residues 104 to 123). Fine epitope mapping employing phage display technology and alanine-substituted DENV2 NS1 mutants indicates the critical binding residues W115, K116, and K120 for the 2E11 mAb, which are conserved among flaviviruses. In contrast, the critical binding residues of four pan-DENV mAbs include both flavi-conserved residues (W115 to G119) and DENV-conserved flanking residues (K112, Y113, S114 and A121, K122). Our results highlight DENV-conserved residues in cross-reactive epitopes that distinguish pan-DENV antibodies from the flavi-cross-reactive antibody. These antibodies can be potentially applied to differential diagnosis of DENV from other flavivirus infections.
Collapse
|
26
|
Unbiased Identification of Dengue Virus Non-Structural Protein 1 Peptides for Use in Vaccine Design. Vaccines (Basel) 2022; 10:vaccines10122028. [PMID: 36560438 PMCID: PMC9784660 DOI: 10.3390/vaccines10122028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022] Open
Abstract
Dengue virus (DENV) is a global health problem, with over half of the world's population at risk for infection. Despite this, there is only one licensed vaccine available to prevent infection and safety concerns limit immunization to only a subset of individuals. Most dengue virus vaccine efforts attempt to evoke broadly neutralizing antibodies against structural proteins. However, eliciting antibodies to block the activity of viral proteins involved in pathogenesis could be a useful complementary approach. Studies suggest that non-structural protein 1, which participates in disruption of the endothelial barrier and is hypothesized to play a significant role in the progression to severe dengue, could be a promising target for vaccine efforts. Here, we used an unbiased approach to identify peptide epitopes of dengue virus non-structural protein 1 that could evoke antibodies that bind to NS1 from all 4 serotypes and also bind to DENV-infected cells. DENV-2 NS1 peptides were generated such that 35 overlapping 15 amino acid peptides represented the entire NS1 protein. These peptides were each chemically conjugated to bacteriophage virus-like particles (VLP) and used to immunize mice. Sera were then screened for IgG to cognate peptide as well as binding to recombinant hexameric NS1 from all four DENV serotypes as well as binding to DENV-2 infected cells by microscopy. From these data, we identified several peptides that were able to elicit antibodies that could bind to infected cells as well as DENV NS1. These peptides and their homologues in the corresponding NS1 of other DENV serotypes could be used as potential immunogens to elicit binding antibodies to NS1. Future studies will investigate the functional and protective capacities of antibodies elicited by these immunogens against DENV NS1.
Collapse
|
27
|
Zeyaullah M, Muzammil K, AlShahrani AM, Khan N, Ahmad I, Alam MS, Ahmad R, Khan WH. Preparedness for the Dengue Epidemic: Vaccine as a Viable Approach. Vaccines (Basel) 2022; 10:1940. [PMID: 36423035 PMCID: PMC9697487 DOI: 10.3390/vaccines10111940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 08/08/2023] Open
Abstract
Dengue fever is one of the significant fatal mosquito-borne viral diseases and is considered to be a worldwide problem. Aedes mosquito is responsible for transmitting various serotypes of dengue viruses to humans. Dengue incidence has developed prominently throughout the world in the last ten years. The exact number of dengue cases is underestimated, whereas plenty of cases are misdiagnosed as alternative febrile sicknesses. There is an estimation that about 390 million dengue cases occur annually. Dengue fever encompasses a wide range of clinical presentations, usually with undefinable clinical progression and outcome. The diagnosis of dengue depends on serology tests, molecular diagnostic methods, and antigen detection tests. The therapeutic approach relies completely on supplemental drugs, which is far from the real approach. Vaccines for dengue disease are in various stages of development. The commercial formulation Dengvaxia (CYD-TDV) is accessible and developed by Sanofi Pasteur. The vaccine candidate Dengvaxia was inefficient in liberating a stabilized immune reaction toward different serotypes (1-4) of dengue fever. Numerous promising vaccine candidates are now being developed in preclinical and clinical stages even though different serotypes of DENV exist that worsen the situation for a vaccine to be equally effective for all serotypes. Thus, the development of an efficient dengue fever vaccine candidate requires time. Effective dengue fever management can be a multidisciplinary challenge, involving international cooperation from diverse perspectives and expertise to resolve this global concern.
Collapse
Affiliation(s)
- Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Md. Shane Alam
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wajihul H. Khan
- Department of Microbiology, All India Institute of Medical Sciences Delhi, New Delhi 110029, India
| |
Collapse
|
28
|
Ghetia C, Bhatt P, Mukhopadhyay C. Association of dengue virus non-structural-1 protein with disease severity: a brief review. Trans R Soc Trop Med Hyg 2022; 116:986-995. [PMID: 36125197 DOI: 10.1093/trstmh/trac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 08/31/2022] [Indexed: 01/19/2023] Open
Abstract
Dengue virus (DENV) was discovered by P. M. Ashburn and Charles F. Craig in 1907. Evidence of dengue-like illness was observed before 1907 and DENV epidemics have been reported from different parts of the world since then, with increased morbidity rates every year. DENV typically causes a febrile illness that ranges from mild asymptomatic infection to fatal dengue haemorrhagic fever (DHF) and/or dengue shock syndrome (DSS). Host mechanisms through which mild infection progresses to the fatal forms are still unknown. Few factors have been associated to aid severe disease acquisition, DENV non-structural 1 (NS1) protein being one of them. NS1 is a highly conserved glycoprotein among the Flavivirus and is often used as a biomarker for dengue diagnosis. This review focuses on assessing the role of NS1 in severe dengue. In this review, hospital-based studies on the association of dengue NS1 with severe dengue from all over the world have been assessed and analysed and the majority of the studies positively correlate high NS1 levels with DHF/DSS acquisition. The review also discusses a few experimental studies on NS1 that have shown it contributes to dengue pathogenesis. This review assesses the role of NS1 and disease severity from hospital-based studies and aims to provide better insights on the kinetics and dynamics of DENV infection with respect to NS1 for a better understanding of the role of NS1 in dengue.
Collapse
Affiliation(s)
- Charmi Ghetia
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Puneet Bhatt
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
29
|
Cheng YL, Chao CH, Lai YC, Hsieh KH, Wang JR, Wan SW, Huang HJ, Chuang YC, Chuang WJ, Yeh TM. Antibodies against the SARS-CoV-2 S1-RBD cross-react with dengue virus and hinder dengue pathogenesis. Front Immunol 2022; 13:941923. [PMID: 36045680 PMCID: PMC9420930 DOI: 10.3389/fimmu.2022.941923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/28/2022] [Indexed: 12/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally since December 2019. Several studies reported that SARS-CoV-2 infections may produce false-positive reactions in dengue virus (DENV) serology tests and vice versa. However, it remains unclear whether SARS-CoV-2 and DENV cross-reactive antibodies provide cross-protection against each disease or promote disease severity. In this study, we confirmed that antibodies against the SARS-CoV-2 spike protein and its receptor-binding domain (S1-RBD) were significantly increased in dengue patients compared to normal controls. In addition, anti-S1-RBD IgG purified from S1-RBD hyperimmune rabbit sera could cross-react with both DENV envelope protein (E) and nonstructural protein 1 (NS1). The potential epitopes of DENV E and NS1 recognized by these antibodies were identified by a phage-displayed random peptide library. In addition, DENV infection and DENV NS1-induced endothelial hyperpermeability in vitro were inhibited in the presence of anti-S1-RBD IgG. Passive transfer anti-S1-RBD IgG into mice also reduced prolonged bleeding time and decreased NS1 seral level in DENV-infected mice. Lastly, COVID-19 patients’ sera showed neutralizing ability against dengue infection in vitro. Thus, our results suggest that the antigenic cross-reactivity between the SARS-CoV-2 S1-RBD and DENV can induce the production of anti-SARS-CoV-2 S1-RBD antibodies that cross-react with DENV which may hinder dengue pathogenesis.
Collapse
Affiliation(s)
- Yi-Ling Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiao-Hsuan Chao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chung Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Han Hsieh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Wan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Jyun Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chun Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Leadgene Biomedical, Inc., Tainan, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Trai-Ming Yeh,
| |
Collapse
|
30
|
Blockade of protease-activated receptor 2 (PAR-2) attenuates vascular dyshomeostasis and liver dysfunction induced by dengue virus infection. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
The Dengue Virus Nonstructural Protein 1 (NS1) Interacts with the Putative Epigenetic Regulator DIDO1 to Promote Flavivirus Replication in Mosquito Cells. J Virol 2022; 96:e0070422. [PMID: 35652656 DOI: 10.1128/jvi.00704-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) NS1 is a multifunctional protein essential for viral replication. To gain insights into NS1 functions in mosquito cells, the protein interactome of DENV NS1 in C6/36 cells was investigated using a proximity biotinylation system and mass spectrometry. A total of 817 mosquito targets were identified as protein-protein interacting with DENV NS1. Approximately 14% of them coincide with interactomes previously obtained in vertebrate cells, including the oligosaccharide transferase complex, the chaperonin containing TCP-1, vesicle localization, and ribosomal proteins. Notably, other protein pathways not previously reported in vertebrate cells, such as epigenetic regulation and RNA silencing, were also found in the NS1 interactome in mosquito cells. Due to the novel and strong interactions observed for NS1 and the epigenetic regulator DIDO1 (Death-Inducer Obliterator 1), the role of DIDO1 in viral replication was further explored. Interactions between NS1 and DIDO1 were corroborated in infected mosquito cells, by colocalization and proximity ligation assays. Silencing DIDO1 expression results in a significant reduction in DENV and ZIKV replication and progeny production. Comparison of transcription analysis of mock or DENV infected cells silenced for DIDO1 revealed variations in multiple gene expression pathways, including pathways associated with DENV infection such as RNA surveillance, IMD, and Toll. These results suggest that DIDO1 is a host factor involved in the negative modulation of the antiviral response necessary for flavivirus replication in mosquito cells. Our findings uncover novel mechanisms of NS1 to promote DENV and ZIKV replication, and add to the understanding of NS1 as a multifunctional protein. IMPORTANCE Dengue is the most important mosquito-borne viral disease to humans. Dengue virus NS1 is a multifunctional protein essential for replication and modulation of innate immunity. To gain insights into NS1 functions, the protein interactome of dengue virus NS1 in Aedes albopictus cells was investigated using a proximity biotinylation system and mass spectrometry. Several protein pathways, not previously observed in vertebrate cells, such as transcription and epigenetic regulation, were found as part of the NS1 interactome in mosquito cells. Among those, DIDO1 was found to be a necessary host factor for dengue and Zika virus replication in mosquito cells. Transcription analysis of infected mosquito cells silenced for DIDO1 revealed alterations of the IMD and Toll pathways, part of the antiviral response in mosquitoes. The results suggest that DIDO1 is a host factor involved in modulation of the antiviral response and necessary for flavivirus replication.
Collapse
|
32
|
Sankaradoss A, Jagtap S, Nazir J, Moula SE, Modak A, Fialho J, Iyer M, Shastri JS, Dias M, Gadepalli R, Aggarwal A, Vedpathak M, Agrawal S, Pandit A, Nisheetha A, Kumar A, Bordoloi M, Shafi M, Shelar B, Balachandra SS, Damodar T, Masika MM, Mwaura P, Anzala O, Muthumani K, Sowdhamini R, Medigeshi GR, Roy R, Pattabiraman C, Krishna S, Sreekumar E. Immune profile and responses of a novel dengue DNA vaccine encoding an EDIII-NS1 consensus design based on Indo-African sequences. Mol Ther 2022; 30:2058-2077. [PMID: 34999210 PMCID: PMC8736276 DOI: 10.1016/j.ymthe.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
The ongoing COVID-19 pandemic highlights the need to tackle viral variants, expand the number of antigens, and assess diverse delivery systems for vaccines against emerging viruses. In the present study, a DNA vaccine candidate was generated by combining in tandem envelope protein domain III (EDIII) of dengue virus serotypes 1-4 and a dengue virus (DENV)-2 non-structural protein 1 (NS1) protein-coding region. Each domain was designed as a serotype-specific consensus coding sequence derived from different genotypes based on the whole genome sequencing of clinical isolates in India and complemented with data from Africa. This sequence was further optimized for protein expression. In silico structural analysis of the EDIII consensus sequence revealed that epitopes are structurally conserved and immunogenic. The vaccination of mice with this construct induced pan-serotype neutralizing antibodies and antigen-specific T cell responses. Assaying intracellular interferon (IFN)-γ staining, immunoglobulin IgG2(a/c)/IgG1 ratios, and immune gene profiling suggests a strong Th1-dominant immune response. Finally, the passive transfer of immune sera protected AG129 mice challenged with a virulent, non-mouse-adapted DENV-2 strain. Our findings collectively suggest an alternative strategy for dengue vaccine design by offering a novel vaccine candidate with a possible broad-spectrum protection and a successful clinical translation either as a stand alone or in a mix and match strategy.
Collapse
Affiliation(s)
- Arun Sankaradoss
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Junaid Nazir
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shefta E Moula
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Ayan Modak
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India
| | - Joshuah Fialho
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Meenakshi Iyer
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Jayanthi S Shastri
- Department of Microbiology, T.N.Medical College & B.y.L.Nair Hospital, Mumbai 400008, India
| | - Mary Dias
- Division of Infectious Disease, St. John's Medical College and Hospital, Bangalore 560034, India
| | - Ravisekhar Gadepalli
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Alisha Aggarwal
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Manoj Vedpathak
- Department of Microbiology, T.N.Medical College & B.y.L.Nair Hospital, Mumbai 400008, India
| | - Sachee Agrawal
- Department of Microbiology, T.N.Medical College & B.y.L.Nair Hospital, Mumbai 400008, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Amul Nisheetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Anuj Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Mahasweta Bordoloi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Mohamed Shafi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Bhagyashree Shelar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Swathi S Balachandra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Tina Damodar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Moses Muia Masika
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi 19676-00202, Kenya
| | - Patrick Mwaura
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi 19676-00202, Kenya
| | - Omu Anzala
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi 19676-00202, Kenya
| | - Kar Muthumani
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | | | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Chitra Pattabiraman
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Ponda 404401, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
33
|
Ghosh A, Sukla S, Nath H, Saha R, De A, Biswas S. Non-structural protein 1 (NS1) variants from dengue virus clinical samples revealed mutations that influence NS1 production and secretion. Eur J Clin Microbiol Infect Dis 2022; 41:803-814. [PMID: 35397074 DOI: 10.1007/s10096-022-04441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/31/2022] [Indexed: 11/03/2022]
Abstract
Dengue diagnosis primarily relies on NS1 ELISA and serological (IgG/IgM) tests. There are reports of low and variable sensitivity of the widely used NS1 ELISA tests. Poor sensitivity has been attributed to patient's infection status, prevalent serotypes, and the geographical origin of the samples. We investigated whether NS1 mutations directly have any impact on NS1 ELISA-based dengue virus (DENV) detection in clinical samples. Fifty-eight serum samples were collected from dengue-endemic area during 2015-2017 and tested with three commonly used NS1 ELISA kits. The samples were subjected to diagnostic RT-PCR and sequencing of structural gene(s). Sequencing of NS1 gene revealed amino acid changes which were transferred to respective wild type NS1 backbone to determine their effects on NS1 production and secretion in Huh-7, Vero, and A549 cells. Eighty-seven percent samples were virus RNA-positive but 65% of these were NS1 ELISA-positive. NS1-gene mutations like Val236➔Ala (DENV2) or Trp68➔stop codon in DENV3 were associated with decreased NS1 production and secretion. These mutations were originally identified in NS1 ELISA-negative clinical isolates. All DENV1 and > 80% DENV2 were NS1 ELISA-positive. The three NS1 ELISA could not detect recently circulating DENV3 single infections despite being RNA-positive. Among serotypes 1-3, wild-type NS1 production was highest for DENV1 and lowest for DENV3 in all cell lines tested. Mutations in circulating DENV directly correlated with NS1 production and secretion and, hence, ELISA-based NS1 detection. Further studies to define more NS1 mutations in clinical samples are needed to optimize ELISA kits for more sensitive dengue diagnosis.
Collapse
Affiliation(s)
- Anisa Ghosh
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, West Bengal, Kolkata, India
| | - Soumi Sukla
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, West Bengal, Kolkata, India.,National Institute of Pharmaceuticals Education and Research, Kolkata, West Bengal, India
| | - Himadri Nath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, West Bengal, Kolkata, India
| | - Rajdeep Saha
- Department of Microbiology, Calcutta National Medical College and Hospital, Kolkata, West Bengal, India
| | - Abhishek De
- Department of Dermatology, Calcutta National Medical College and Hospital, Kolkata, West Bengal, India
| | - Subhajit Biswas
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, West Bengal, Kolkata, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
34
|
Losada PX, DeLaura I, Narváez CF. Dengue Virus and Platelets: From the Biology to the Clinic. Viral Immunol 2022; 35:349-358. [PMID: 35483090 DOI: 10.1089/vim.2021.0135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dengue is one of the most important vector-borne viral illnesses found in tropical and subtropical regions. Colombia has one of the highest rates of dengue cases in the Americas. Severe dengue virus (DENV) infection presents with capillary leakage, hemorrhage, and organ compromise, eventually leading to death. Over the years, there have been many efforts to develop a vaccine that guarantees protective immunity, but they have been partially successful, as such immunity would need to guarantee protection against four distinct viral serotypes. Absolute platelet count is a laboratory parameter used to monitor the clinical progression of DENV, as infection is often accompanied by thrombocytopenia. Although this finding is well described with respect to the natural history of the disease, there are various hypotheses as to the cause of this rapid decrease, and several in vivo and ex vivo models have been used to explain the effect of DENV infection on platelets and their precursors. DENV infects and activates platelets, facilitating their elimination through recognition by phagocytic cells and peripheral margination. However, infection also affects the precursors in the bone marrow by modulating megakaryopoiesis. The objective of this article is to explore various proposed mechanisms of DENV-induced thrombocytopenia to better understand the pathophysiology and clinical presentations of this highly relevant viral infection.
Collapse
Affiliation(s)
- Paula X Losada
- División de Inmunología, Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Isabel DeLaura
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Carlos F Narváez
- División de Inmunología, Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
35
|
Tien SM, Chang PC, Lai YC, Chuang YC, Tseng CK, Kao YS, Huang HJ, Hsiao YP, Liu YL, Lin HH, Chu CC, Cheng MH, Ho TS, Chang CP, Ko SF, Shen CP, Anderson R, Lin YS, Wan SW, Yeh TM. Therapeutic efficacy of humanized monoclonal antibodies targeting dengue virus nonstructural protein 1 in the mouse model. PLoS Pathog 2022; 18:e1010469. [PMID: 35486576 PMCID: PMC9053773 DOI: 10.1371/journal.ppat.1010469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/24/2022] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) which infects about 390 million people per year in tropical and subtropical areas manifests various disease symptoms, ranging from fever to life-threatening hemorrhage and even shock. To date, there is still no effective treatment for DENV disease, but only supportive care. DENV nonstructural protein 1 (NS1) has been shown to play a key role in disease pathogenesis. Recent studies have shown that anti-DENV NS1 antibody can provide disease protection by blocking the DENV-induced disruption of endothelial integrity. We previously demonstrated that anti-NS1 monoclonal antibody (mAb) protected mice from all four serotypes of DENV challenge. Here, we generated humanized anti-NS1 mAbs and transferred them to mice after DENV infection. The results showed that DENV-induced prolonged bleeding time and skin hemorrhage were reduced, even several days after DENV challenge. Mechanistic studies showed the ability of humanized anti-NS1 mAbs to inhibit NS1-induced vascular hyperpermeability and to elicit Fcγ-dependent complement-mediated cytolysis as well as antibody-dependent cellular cytotoxicity of cells infected with four serotypes of DENV. These results highlight humanized anti-NS1 mAb as a potential therapeutic agent in DENV infection. DENV comprising four serotypes has a complicated pathogenesis and remains an unresolved global health problem. To date, supportive therapy is the mainstay for treatment of dengue patients. Despite a licensed Sanofi vaccine and ongoing clinical trials, more effective vaccines and/or licensed therapeutic drugs are required. Therapeutic mAbs are a potential tool to treat many epidemic diseases because of their high target specificity. Humanized anti-NS1 mAbs can recognize the NS1 from all four serotypes of DENV without danger of inducing ADE. In the DENV infection mouse model, we demonstrate that humanized NS1 mAbs have therapeutic benefits such as reducing DENV-induced prolonged bleeding time and skin hemorrhage. In vitro mechanistic studies showed a reduction of NS1-induced vascular permeability and an increase in cytolysis of DENV-infected cells. Our results showed that humanized anti-NS1 mAbs show strong potential for development toward clinical use.
Collapse
Affiliation(s)
- Sen-Mao Tien
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Chun Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Leadgene Biomedical, Inc. Tainan, Taiwan
| | - Yen-Chung Lai
- Leadgene Biomedical, Inc. Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chun Chuang
- Leadgene Biomedical, Inc. Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Yu-San Kao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Jyun Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Peng Hsiao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ling Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsing-Han Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- SIDSCO Biomedical Co., Ltd. Kaohsiung, Taiwan
| | - Chien-Chou Chu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Miao-Huei Cheng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Fen Ko
- Development Center for Biotechnology, Taipei, Taiwan
| | - Che-Piao Shen
- Development Center for Biotechnology, Taipei, Taiwan
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (YSL); (SWW); (TMY)
| | - Shu-Wen Wan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (YSL); (SWW); (TMY)
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (YSL); (SWW); (TMY)
| |
Collapse
|
36
|
Wellekens K, Betrains A, De Munter P, Peetermans W. Dengue: current state one year before WHO 2010-2020 goals. Acta Clin Belg 2022; 77:436-444. [PMID: 33090941 DOI: 10.1080/17843286.2020.1837576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Dengue is a possibly life-threatening human mosquito-borne viral infection widely spread in peridomestic (sub)tropical climates. The global incidence has expanded rapidly in the last decades, with 40% of the world's population currently at risk. To date, no anti-viral treatment other than supportive care exists. In 2015, the first and only dengue-vaccine, CYD-TDV, received marketing authorization. OBJECTIVES To present the current understanding of dengue in terms of epidemiology, transmission, pathogenesis, disease management and prevention. To illustrate the knowledge gaps that remain to be filled in order to control dengue and achieve the WHO 2010-2020 goals. METHODS An updated systematic review (2009-2019) was carried out. The databases Pubmed, Embase and The Cochrane Library were searched along with WHO and CDC guidelines. RESULTS In total, 39 articles were included. Contemporary climatic and economic factors significantly contributed to the emergence of epidemic dengue. Unfortunately, CYD-TDV failed to meet safety and efficacy demands. New vaccination approaches are in the pipeline along with innovative vector-control strategies. Current anti-viral drug research focuses on repurposing drugs in addition to specific anti-dengue strategies that interfere with viral replication. CONCLUSION The lack of understanding dengue pathogenesis and immunology has hampered the development of an effective vaccine. Recent research has provided new insights into the therapeutic and prophylactic approach. Implementation of complementary methods to control disease burden are required considering the socio-economic impact of this rapidly emerging global disease.
Collapse
Affiliation(s)
- K Wellekens
- Department of general internal medicine, University Hospitals Leuven, Leuven, Belgium
| | - A Betrains
- Department of general internal medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of clinical infectious and inflammatory disease, Leuven, Belgium
| | - P De Munter
- Department of general internal medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of clinical infectious and inflammatory disease, Leuven, Belgium
| | - W Peetermans
- Department of general internal medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of clinical infectious and inflammatory disease, Leuven, Belgium
| |
Collapse
|
37
|
Huang HJ, Yang M, Chen HW, Wang S, Chang CP, Ho TS, Kao YS, Tien SM, Lin HH, Chang PC, Lai YC, Hsiao YP, Liu YL, Chao CH, Anderson R, Yeh TM, Lin YS, Wan SW. A novel chimeric dengue vaccine candidate composed of consensus envelope protein domain III fused to C-terminal-modified NS1 protein. Vaccine 2022; 40:2299-2310. [DOI: 10.1016/j.vaccine.2022.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
|
38
|
Park J, Kim J, Jang YS. Current status and perspectives on vaccine development against dengue virus infection. J Microbiol 2022; 60:247-254. [PMID: 35157223 PMCID: PMC8853353 DOI: 10.1007/s12275-022-1625-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 10/31/2022]
Abstract
Dengue virus (DENV) consists of four serotypes in the family Flaviviridae and is a causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV is transmitted by mosquitoes, Aedes aegypti and A. albopictus, and is mainly observed in areas where vector mosquitoes live. The number of dengue cases reported by the World Health Organization increased more than 8-fold over the last two decades from 505,430 in 2000 to over 2.4 million in 2010 to 5.2 million in 2019. Although vaccine is the most effective method against DENV, only one commercialized vaccine exists, and it cannot be administered to children under 9 years of age. Currently, many researchers are working to resolve the various problems hindering the development of effective dengue vaccines; understanding of the viral antigen configuration would provide insight into the development of effective vaccines against DENV infection. In this review, the current status and perspectives on effective vaccine development for DENV are examined. In addition, a plausible direction for effective vaccine development against DENV is suggested.
Collapse
Affiliation(s)
- Jisang Park
- Department of Bioactive Material Sciences and the Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Innovative Research and Education Center for Integrated Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and the Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Innovative Research and Education Center for Integrated Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
39
|
Huerta V, Ramos Y. Isolation and Identification of Dengue Virus Interactome with Human Plasma Proteins by Affinity Purification-Mass Spectrometry. Methods Mol Biol 2022; 2409:133-153. [PMID: 34709640 DOI: 10.1007/978-1-0716-1879-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Viral proteins evolve to benefit the interaction with host proteins during the infection and replication processes. A comprehensive understanding of virus interactome with host proteins may thus lead to the identification of molecular targets for infection inhibition. We present a procedure for isolating and identifying the dengue virus interactome with human plasma proteins. It comprises the fractionation of human plasma by anion exchange chromatography, followed by affinity purification and mass spectrometry identification of the captured proteins. This procedure was applied to the characterization of the interactions of the four serotypes of dengue virus with human plasma proteins, mediated by the domain III of the envelope protein of the virus. The resulting interactome comprises 62 proteins, six of which were validated as new direct interactions of the virus with its human host.
Collapse
Affiliation(s)
- Vivian Huerta
- Division of System Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yassel Ramos
- Division of System Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
40
|
Abraham PR, R B, N PK, Kumar A. Dengue NS1 antigen kit shows high sensitivity for detection of recombinant dengue virus-2 NS1 antigen spiked with Aedes aegypti mosquitoes. Sci Rep 2021; 11:23699. [PMID: 34880307 PMCID: PMC8655051 DOI: 10.1038/s41598-021-02965-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Dengue, caused by the dengue virus (DENV) is a significant vector-borne disease. In absence of a specific treatment and vaccine, dengue is becoming a rising threat to public health. Currently, control of dengue mainly focuses on the surveillance of the mosquito vectors. Improved surveillance methods for DENV in mosquito populations would be highly beneficial to the public health. However, current methods of DENV detection in mosquitoes requires specialized equipment and expensive reagents and highly trained personnel. As an alternative, commercially available dengue NS1 antigen ELISA kits could be used for detection of DENV infection in Aedes aegypti mosquitoes. In this study, we explored the utility of commercially available Dengue NS1 antigen kit (J. Mitra & Co. Pvt. Ltd) for the detection of recombinant dengue virus-2 (rDENV-2) NS1 protein and serum of dengue infected patient spiked with Ae. aegypti mosquito pools. The kit was found to be highly sensitive and specific towards detection of all serotypes of DENV. Further, it could detect as low as 750 femto gram rDENV-2 NS1 protein. It was also observed that rDENV-2 NS1 antigen spiked with blood-fed and unfed mosquito pools could be detected. In addition, the kit also detected dengue infected patient serum spiked with Ae. aegypti mosquito pools. Overall, the Dengue NS1 antigen kit displayed high sensitivity towards detection of recombinant as well as serum NS1 protein spiked with Ae. aegypti mosquito pools and could be considered for the dengue virus surveillance after a field evaluation in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Philip Raj Abraham
- Unit of Omics, ICMR-Vector Control Research Centre, Puducherry, 605006, India. .,Unit of Molecular Epidemiology, ICMR-Vector Control Research Centre, Puducherry, 605006, India.
| | - Bharathy R
- Unit of Omics, ICMR-Vector Control Research Centre, Puducherry, 605006, India
| | - Pradeep Kumar N
- ICMR-Vector Control Research Centre Field Station, Kottayam, 686002, Kerala, India
| | - Ashwani Kumar
- ICMR-Vector Control Research Centre, Indira Nagar, Puducherry, 605006, India
| |
Collapse
|
41
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
42
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
43
|
Wang WH, Urbina AN, Lin CY, Yang ZS, Assavalapsakul W, Thitithanyanont A, Lu PL, Chen YH, Wang SF. Targets and strategies for vaccine development against dengue viruses. Biomed Pharmacother 2021; 144:112304. [PMID: 34634560 DOI: 10.1016/j.biopha.2021.112304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
44
|
Anti-dengue activity of super critical extract and isolated oleanolic acid of Leucas cephalotes using in vitro and in silico approach. BMC Complement Med Ther 2021; 21:227. [PMID: 34496833 PMCID: PMC8425015 DOI: 10.1186/s12906-021-03402-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Backgrounds Leucas cephalotes is a common ethnomedicinal plant widely used by traditional healers for the treatment of Malaria and other types of fever. Oleanolic acid and its derivatives have been reported for various types of pharmacological activities, such as anti-inflammatory, antioxidant, anticancer, hepatoprotective, anti-HIV and anti-HCV activity. Methods L.cephalotes plant extracts were prepared by supercritical fluid extraction (SFE) method and oleanolic acid was isolated by preparatory thin-layer chromatography. The compound was identified and characterize by using ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infra-Red spectroscopy (FT-IR) and high-performance thin-layer chromatography (HPTLC). The structure of the compound was elucidated by proton nuclear magnetic resonance (1HNMR) and carbon nuclear magnetic resonance (1CNMR) and the purity checked by differential scanning calorimetry (DSC). The MTT assay was used to determine the toxicity of plant extract and oleanolic acid using a microplate reader at 595 nm. The anti-dengue activity of plant extract and oleanolic acid was tested in vitro and in silico using real-time RT-PCR. Results The optimum yield of the extract was obtained at 40 °C temperature and 15Mpa pressure. The maximum non-toxic dose (MNTD) of plant extract and oleanolic acid were found as 46.87 μg/ml and 93.75 μg/ml, respectively in C6/36 cell lines. UV spectrophotometer curve of the isolated compound was overlapped with standard oleanolic acid at 232 nm. Superimposed FT-IR structure of the isolated compound was indicated the same spectra at 3433, 2939, 2871, 1690, 1500,1463, 1387, 1250, 1209, 1137 and 656 position as per marker compound. HPTLC analysis showed the retention factor of L. cephalotes extract was 0.19 + 0.06 as similar to the standard oleanolic acid chromatogram. The NMR structure of the isolated compound was identified as similar to the marker oleanolic acid structure. DSC analysis revealed the purity of isolated oleanolic acid was 98.27% with a melting point of 311.16 °C. Real-time RT PCR results revealed that L. cephalotes supercritical extract and isolated oleanolic acid showed 100 and 99.17% inhibition against the dengue − 2 virus when treated with MNTD value of plant extract (46.87 μg/ml) and the test compound (93.75 μg/ml), respectively. The molecular study demonstrated the binding energy of oleanolic acid with NS1and NS5 (non-structural protein) were − 9.42 & -8.32Kcal/mol, respectively. Conclusions The SFE extract L. cephalotes and its active compound, oleanolic acid inhibiting the activity of dengue-2 serotype in the in vitro and in silico assays. Thus, the L.cephalotes plant could be an excellent source for drug design for the treatment of dengue infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03402-2.
Collapse
|
45
|
Structure and Dynamics of Zika Virus Protease and Its Insights into Inhibitor Design. Biomedicines 2021; 9:biomedicines9081044. [PMID: 34440248 PMCID: PMC8394600 DOI: 10.3390/biomedicines9081044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV)—a member of the Flaviviridae family—is an important human pathogen. Its genome encodes a polyprotein that can be further processed into structural and non-structural proteins. ZIKV protease is an important target for antiviral development due to its role in cleaving the polyprotein to release functional viral proteins. The viral protease is a two-component protein complex formed by NS2B and NS3. Structural studies using different approaches demonstrate that conformational changes exist in the protease. The structures and dynamics of this protease in the absence and presence of inhibitors were explored to provide insights into the inhibitor design. The dynamic nature of residues binding to the enzyme cleavage site might be important for the function of the protease. Due to the charges at the protease cleavage site, it is challenging to develop small-molecule compounds acting as substrate competitors. Developing small-molecule compounds to inhibit protease activity through an allosteric mechanism is a feasible strategy because conformational changes are observed in the protease. Herein, structures and dynamics of ZIKV protease are summarized. The conformational changes of ZIKV protease and other proteases in the same family are discussed. The progress in developing allosteric inhibitors is also described. Understanding the structures and dynamics of the proteases are important for designing potent inhibitors.
Collapse
|
46
|
Phytoconstituents as Lead Compounds for Anti-Dengue Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:159-193. [PMID: 34258741 DOI: 10.1007/978-981-16-0267-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dengue is an arthropod-borne viral disease common in subtropical and tropical regions. The widespread use of traditional medicines in these regions for dengue fever (DF) has encouraged researchers to explore the therapeutic effect of herbs and their phytochemicals in dengue infection. Phytochemicals such as quercetin, baicalein, luteolin, oxindole alkaloids, celastrol and geraniin have shown significant inhibition of dengue virus in vitro. Many phytoconstituents have better selectivity index supporting their safety profile for future development. However, in vivo studies supporting therapeutic potency for these active phytoconstituents are limited. There is a need for studies translating anti-dengue profile of active phytoconstituents to find successful anti-dengue compounds.
Collapse
|
47
|
Warner NL, Frietze KM. Development of Bacteriophage Virus-Like Particle Vaccines Displaying Conserved Epitopes of Dengue Virus Non-Structural Protein 1. Vaccines (Basel) 2021; 9:726. [PMID: 34358143 PMCID: PMC8310087 DOI: 10.3390/vaccines9070726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) is a major global health problem, with over half of the world's population at risk of infection. Despite over 60 years of efforts, no licensed vaccine suitable for population-based immunization against DENV is available. Here, we describe efforts to engineer epitope-based vaccines against DENV non-structural protein 1 (NS1). NS1 is present in DENV-infected cells as well as secreted into the blood of infected individuals. NS1 causes disruption of endothelial cell barriers, resulting in plasma leakage and hemorrhage. Immunizing against NS1 could elicit antibodies that block NS1 function and also target NS1-infected cells for antibody-dependent cell cytotoxicity. We identified highly conserved regions of NS1 from all four DENV serotypes. We generated synthetic peptides to these regions and chemically conjugated them to bacteriophage Qβ virus-like particles (VLPs). Mice were immunized two times with the candidate vaccines and sera were tested for the presence of antibodies that bound to the cognate peptide, recombinant NS1 from all four DENV serotypes, and DENV-2-infected cells. We found that two of the candidate vaccines elicited antibodies that bound to recombinant NS1, and one candidate vaccine elicited antibodies that bound to DENV-infected cells. These results show that an epitope-specific vaccine against conserved regions of NS1 could be a promising approach for DENV vaccines or therapeutics to bind circulating NS1 protein.
Collapse
Affiliation(s)
- Nikole L. Warner
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA;
| | - Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA;
- Clinical and Translational Science Center, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
48
|
Bachour Junior B, Batistuti MR, Pereira AS, de Sousa Russo EM, Mulato M. Electrochemical aptasensor for NS1 detection: Towards a fast dengue biosensor. Talanta 2021; 233:122527. [PMID: 34215030 DOI: 10.1016/j.talanta.2021.122527] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022]
Abstract
Dengue is one of the most commonly neglected tropical diseases transmitted by Aedes aegypti infected with Dengue virus. This virus belongs to the gender Flavivirus and produces a non-structural protein 1 (NS1), which is an important biomarker found at high levels in blood in early disease stage. Therefore, this study focused on the development of an electrochemical biosensor for NS1 detection using DNA aptamers. Gold electrodes were co-immobilized with specific aptamers and 6-mercapto-1-hexanol (MCH) to obtain a self-assembled monolayer. The molar ratio between aptamers and MCH was optimized and the platform characterized by electrochemical impedance spectroscopy and atomic force microscopy. Bovine serum albumin was added in NS1 solution to stabilize it and block the surface to avoid non-specific interactions. The biosensor performance was tested with NS1 protein serotype 4 (in phosphate saline buffer and human serum) and with a solution of serotype 1 in human serum. The results showed a sensitivity of 2.9%, 2.7% and 1.7% per decade, respectively, and low limit of detection (0.05, 0.022 and 0.025 ng/mL). The platform was also tested with Envelope protein as negative control. Furthermore, the aptamer sensor was able to detect NS1 in clinical range and it is a promising candidate for a new class for miniaturized point-of-care device for different Dengue serotypes.
Collapse
Affiliation(s)
- Bassam Bachour Junior
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil
| | - Marina Ribeiro Batistuti
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| | - Aline Sanches Pereira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Elisa Maria de Sousa Russo
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Marcelo Mulato
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
49
|
Pan YH, Liao MY, Chien YW, Ho TS, Ko HY, Yang CR, Chang SF, Yu CY, Lin SY, Shih PW, Shu PY, Chao DY, Pan CY, Chen HM, Perng GC, Ku CC, King CC. Use of seroprevalence to guide dengue vaccination plans for older adults in a dengue non-endemic country. PLoS Negl Trop Dis 2021; 15:e0009312. [PMID: 33793562 PMCID: PMC8075253 DOI: 10.1371/journal.pntd.0009312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 04/26/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023] Open
Abstract
A shift in dengue cases toward the adult population, accompanied by an increased risk of severe cases of dengue in the elderly, has created an important emerging issue in the past decade. To understand the level of past DENV infection among older adults after a large dengue outbreak occurred in southern Taiwan in 2015, we screened 1498 and 2603 serum samples from healthy residents aged ≥ 40 years in Kaohsiung City and Tainan City, respectively, to assess the seroprevalence of anti-DENV IgG in 2016. Seropositive samples were verified to exclude cross-reaction from Japanese encephalitis virus (JEV), using DENV/JEV-NS1 indirect IgG ELISA. We further identified viral serotypes and secondary DENV infections among positive samples in the two cities. The overall age-standardized seroprevalence of DENV-IgG among participants was 25.77% in Kaohsiung and 11.40% in Tainan, and the seroprevalence was significantly higher in older age groups of both cities. Although the percentages of secondary DENV infection in Kaohsiung and Tainan were very similar (43.09% and 44.76%, respectively), DENV-1 and DENV-2 spanned a wider age range in Kaohsiung, whereas DENV-2 was dominant in Tainan. As very few studies have obtained the serostatus of DENV infection in older adults and the elderly, this study highlights the need for further investigation into antibody status, as well as the safety and efficacy of dengue vaccination in these older populations.
Collapse
Affiliation(s)
- Yi-Hua Pan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| | - Mei-Ying Liao
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| | - Yu-Wen Chien
- Department of Public Health, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan, Republic of China
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng-Kung University Hospital (NCKUH), College of Medicine, NCKU, Tainan, Taiwan, Republic of China
| | - Hui-Ying Ko
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| | - Chin-Rur Yang
- Institute of Immunology, College of Medicine, NTU, Taipei, Taiwan, Republic of China
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Tainan, Taiwan, Republic of China
| | - Shu-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| | - Pin-Wei Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| | - Day-Yu Chao
- Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Chao-Ying Pan
- Department of Health, Kaohsiung City Government, Kaohsiung, Taiwan, Republic of China
| | - Hong-Ming Chen
- Public Health Bureau, Tainan City Government, Tainan, Taiwan, Republic of China
| | - Guey-Chuen Perng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan, Republic of China
| | - Chia-Chi Ku
- Institute of Immunology, College of Medicine, NTU, Taipei, Taiwan, Republic of China
| | - Chwan-Chuen King
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| |
Collapse
|
50
|
Bhatnagar P, Sreekanth GP, Murali-Krishna K, Chandele A, Sitaraman R. Dengue Virus Non-Structural Protein 5 as a Versatile, Multi-Functional Effector in Host-Pathogen Interactions. Front Cell Infect Microbiol 2021; 11:574067. [PMID: 33816326 PMCID: PMC8015806 DOI: 10.3389/fcimb.2021.574067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue is emerging as one of the most prevalent mosquito-borne viral diseases of humans. The 11kb RNA genome of the dengue virus encodes three structural proteins (envelope, pre-membrane, capsid) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5), all of which are translated as a single polyprotein that is subsequently cleaved by viral and host cellular proteases at specific sites. Non-structural protein 5 (NS5) is the largest of the non-structural proteins, functioning as both an RNA-dependent RNA polymerase (RdRp) that replicates the viral RNA and an RNA methyltransferase enzyme (MTase) that protects the viral genome by RNA capping, facilitating polyprotein translation. Within the human host, NS5 interacts with several proteins such as those in the JAK-STAT pathway, thereby interfering with anti-viral interferon signalling. This mini-review presents annotated, consolidated lists of known and potential NS5 interactors in the human host as determined by experimental and computational approaches respectively. The most significant protein interactors and the biological pathways they participate in are also highlighted and their implications discussed, along with the specific serotype of dengue virus as appropriate. This information can potentially stimulate and inform further research efforts towards providing an integrative understanding of the mechanisms by which NS5 manipulates the human-virus interface in general and the innate and adaptive immune responses in particular.
Collapse
Affiliation(s)
- Priya Bhatnagar
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India.,ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Gopinathan Pillai Sreekanth
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Department of Paediatrics and Emory Vaccine Centre, Emory University School of Medicine, Atlanta, GA, United States
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | |
Collapse
|