1
|
Zacchi P, Longo F, Marconato A, Amadei M, Bonaccorsi di Patti MC, Avolio E, Li P, Fan H, Tetley TD, Zabucchi G, Borelli V. Functional Characterization of the Hephaestin Variant D568H Provides Novel Mechanistic Insights on Iron-Dependent Asbestos-Induced Carcinogenesis. Int J Mol Sci 2025; 26:2607. [PMID: 40141249 PMCID: PMC11941830 DOI: 10.3390/ijms26062607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
A local disruption of iron homeostasis leading to oxidative stress is considered one of the main mechanisms of asbestos-related genotoxicity. Another aspect contributing to the risk of developing pathological consequences upon asbestos exposure is individual genetic factors. In a previous study, we identified a coding SNP in the hephaestin gene (HEPH) that protects against developing asbestos-related thoracic cancer. Heph is a ferroxidase that promotes iron export in concert with the permease ferroportin (Fpn1). Here, we performed an in-depth functional characterization of the HephD568H variant to gain insights into the molecular basis of its protective activity. We showed that HephD568H forms a complex with Fpn1 and possesses full ferroxidase activity. Although HephD568H is more efficiently recruited to the plasma membrane, it is impaired in binding iron-deficient Tfn, whose interaction with wild-type (WT) ferroxidase emerged as a novel mechanism to perceive brain iron needs. Heph is expressed in the human lung by pericytes and fibroblasts, and lung pericytes were shown to respond to iron demand by upregulating the iron exporter pair. These results extend the paradigm of local iron regulation discovered at the blood-brain barrier to the pulmonary vasculature. Furthermore, they establish a mechanistic link between changes in iron sensing and the risk of developing asbestos-related malignancies.
Collapse
Affiliation(s)
- Paola Zacchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Francesco Longo
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Alice Marconato
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Matteo Amadei
- Department of Biochemical Sciences, Sapienza University of Roma, 00185 Rome, Italy; (M.A.); (M.C.B.d.P.)
| | | | - Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Level 7 Bristol Royal Infirmary, Bristol BS2 8HW, UK;
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (P.L.); (H.F.)
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (P.L.); (H.F.)
| | - Teresa D. Tetley
- National Heart and Lung Institute, Imperial College London, Exhibition Road, London SW7 0HF, UK;
| | - Giuliano Zabucchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| |
Collapse
|
2
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
3
|
Amadei M, Polticelli F, Musci G, Bonaccorsi di Patti MC. The Ferroxidase-Permease System for Transport of Iron Across Membranes: From Yeast to Humans. Int J Mol Sci 2025; 26:875. [PMID: 39940646 PMCID: PMC11817551 DOI: 10.3390/ijms26030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Transport of iron across the cell membrane is a tightly controlled process carried out by specific proteins in all living cells. In yeast and in mammals, a system formed by an enzyme with ferroxidase activity coupled to a membrane transporter supports iron uptake or iron efflux, respectively. Ferroxidase belongs to the family of blue multicopper oxidases, enzymes able to couple the one-electron oxidation of substrate(s) to full reduction of molecular oxygen to water. On the other hand, the permeases are widely different and are specific to Fe3+ and Fe2+ in yeast and multicellular organisms, respectively. This review will describe the yeast and human ferroxidase-permease systems, highlighting similarities and differences in structure, function and regulation of the respective protein components.
Collapse
Affiliation(s)
- Matteo Amadei
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy;
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | | |
Collapse
|
4
|
Zhang G, Wu K, Jiang X, Gao Y, Ding D, Wang H, Yu C, Wang X, Jia N, Zhu L. The role of ferroptosis-related non-coding RNA in liver fibrosis. Front Cell Dev Biol 2024; 12:1517401. [PMID: 39717848 PMCID: PMC11663870 DOI: 10.3389/fcell.2024.1517401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Liver fibrosis represents a reversible pathophysiological process, caused by chronic inflammation stemming from hepatocyte damage. It delineates the initial stage in the progression of chronic liver disease. This pathological progression is characterized by the excessive accumulation of the extracellular matrix (ECM), which leads to significant structural disruption and ultimately impairs liver function. To date, no specific antifibrotic drugs have been developed, and advanced liver fibrosis remains largely incurable. Liver transplantation remains the sole efficacious intervention for advanced liver fibrosis; nevertheless, it is constrained by exorbitant costs and the risk of postoperative immune rejection, underscoring the imperative for novel therapeutic strategies. Ferroptosis, an emergent form of regulated cell death, has been identified as a pivotal regulatory mechanism in the development of liver fibrosis and is intricately linked with the progression of liver diseases. Recent investigations have elucidated that a diverse array of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, are involved in the ferroptosis pathway, thereby modulating the progression of various diseases, including liver fibrosis. In recent years, the roles of ferroptosis and ferroptosis-related ncRNAs in liver fibrosis have attracted escalating scholarly attention. This paper elucidates the pathophysiology of liver fibrosis, explores the mechanisms underlying ferroptosis, and delineates the involvement of ncRNA-mediated ferroptosis pathways in the pathology of liver fibrosis. It aims to propose novel strategies for the prevention and therapeutic intervention of liver fibrosis.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Kejia Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaobo Jiang
- Kunshan Zhenchuan Community Health Service Center, Kunshan, Jiangsu, China
| | - Yuan Gao
- Department of Hepato-Biliary-Pancreatic Surgery, The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong Ding
- Department of Hepato-Biliary-Pancreatic Surgery, The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hao Wang
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhong Wang
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and the Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Naixin Jia
- Department of Hepatobiliary Surgery, Kunshan First People’s Hospital affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Li Zhu
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Gowtham A, Chauhan C, Rahi V, Kaundal RK. An update on the role of ferroptosis in ischemic stroke: from molecular pathways to Neuroprotection. Expert Opin Ther Targets 2024; 28:1149-1175. [PMID: 39710973 DOI: 10.1080/14728222.2024.2446319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Ischemic stroke (IS), a major cause of mortality and disability worldwide, remains a significant healthcare challenge due to limited therapeutic options. Ferroptosis, a distinct iron-dependent form of regulated cell death characterized by lipid peroxidation and oxidative stress, has emerged as a crucial mechanism in IS pathophysiology. This review explores the role of ferroptosis in IS and its potential for driving innovative therapeutic strategies. AREA COVERED This review delves into the practical implications of ferroptosis in IS, focusing on molecular mechanisms like lipid peroxidation, iron accumulation, and their interplay with inflammation, reactive oxygen species (ROS), and the Nrf2-ARE antioxidant system. It highlights ferroptotic proteins, small-molecule inhibitors, and non-coding RNA modulators as emerging therapeutic targets to mitigate neuroinflammation and neuronal cell death. Studies from PubMed (1982-2024) were identified using MeSH terms such as 'Ferroptosis' and 'Ischemic Stroke,' and only rigorously screened articles were included. EXPERT OPINION Despite preclinical evidence supporting the neuroprotective effects of ferroptosis inhibitors, clinical translation faces hurdles such as suboptimal pharmacokinetics and safety concerns. Advances in drug delivery systems, bioinformatics, and AI-driven drug discovery may optimize ferroptosis-targeting strategies, develop biomarkers, and improve therapeutic outcomes for IS patients.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Vikrant Rahi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
6
|
Chen Y, Zhang Z, Xiong R, Luan M, Qian Z, Zhang Q, Wang S. A multi-component paclitaxel -loaded β-elemene nanoemulsion by transferrin modification enhances anti-non-small-cell lung cancer treatment. Int J Pharm 2024; 663:124570. [PMID: 39134291 DOI: 10.1016/j.ijpharm.2024.124570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
A multi-component paclitaxel (PTX) -loaded β-elemene nanoemulsion by transferrin modification (Tf-PE-MEs) was developed to enhance non-small-cell lung cancer (NSCLC) treatment. After transferrin modification, the particle size of Tf-PE-MEs was (14.87 ± 1.84) nm, and the zeta potential was (-10.19 ± 0.870) mV, respectively. In vitro experiments showed that Tf-PE-MEs induced massive apoptosis in A549 cells, indicating that it had significant cytotoxicity to A549 cells. Through transferrin modification, Tf-PE-MEs accumulated at the tumor site efficiently with overexpressed transferrin receptor (TfR) on the surface of A549 cells. This will allow increasing PTX and β-elemene concentration in the target cells, enhancing the therapeutic effect. Compared to PTX alone, Tf-PE-MEs displayed good anti-tumor efficacy and diminished systemic toxicity in vivo studies. With favourable therapeutic potential, this study provides a new strategy for the combined anticancer treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Yunyan Chen
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Ziwei Zhang
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Rui Xiong
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Minna Luan
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Zhilei Qian
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Zhang
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Shaozhen Wang
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
7
|
Li B, Yu W, Verkhratsky A. Trace metals and astrocytes physiology and pathophysiology. Cell Calcium 2024; 118:102843. [PMID: 38199057 DOI: 10.1016/j.ceca.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Several trace metals, including iron, copper, manganese and zinc are essential for normal function of the nervous system. Both deficiency and excessive accumulation of these metals trigger neuropathological developments. The central nervous system (CNS) is in possession of dedicated homeostatic system that removes, accumulates, stores and releases these metals to fulfil nervous tissue demand. This system is mainly associated with astrocytes that act as dynamic reservoirs for trace metals, these being a part of a global system of CNS ionostasis. Here we overview physiological and pathophysiological aspects of astrocyte-cantered trace metals regulation.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, Ikerbasque, Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius LT-01102, Lithuania.
| |
Collapse
|
8
|
Palsa K, Neely EB, Baringer SL, Helmuth TB, Simpson IA, Connor JR. Brain iron acquisition depends on age and sex in iron-deficient mice. FASEB J 2024; 38:e23331. [PMID: 38031991 PMCID: PMC10691552 DOI: 10.1096/fj.202301596rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Adequate and timely delivery of iron is essential for brain development. The uptake of transferrin-bound (Tf) iron into the brain peaks at the time of myelination, whereas the recently discovered H-ferritin (FTH1) transport of iron into the brain continues to increase beyond the peak in myelination. Here, we interrogate the impact of dietary iron deficiency (ID) on the uptake of FTH1- and Tf-bound iron. In the present study, we used C57BL/6J male and female mice at a developing (post-natal day (PND) 15) and adult age (PND 85). In developing mice, ID results in increased iron delivery from both FTH1 and Tf for both males and females. The amount of iron uptake from FTH1 was higher than the Tf and this difference between the iron delivery was much greater in females. In contrast, in the adult model, ID was associated with increased brain iron uptake by both FTH1 and Tf but only in the males. There was no increased uptake from either protein in the females. Moreover, transferrin receptor expression on the microvasculature as well as whole brain iron, and H and L ferritin levels revealed the male brains became iron deficient but not the female brains. Last, under normal dietary conditions, 55 Fe uptake was higher in the developing group from both delivery proteins than in the adult group. These results indicate that there are differences in iron acquisition between the developing and adult brain for FTH1 and Tf during nutritional ID and demonstrate a level of regulation of brain iron uptake that is age and sex-dependent.
Collapse
Affiliation(s)
- Kondaiah Palsa
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Elizabeth B. Neely
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Stephanie L. Baringer
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Timothy B. Helmuth
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ian A. Simpson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
9
|
Jormakka M. Structural insights into ferroportin mediated iron transport. Biochem Soc Trans 2023; 51:BST20230594. [PMID: 38115725 DOI: 10.1042/bst20230594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Iron is a vital trace element for almost all organisms, and maintaining iron homeostasis is critical for human health. In mammals, the only known gatekeeper between intestinally absorbed iron and circulatory blood plasma is the membrane transporter ferroportin (Fpn). As such, dysfunction of Fpn or its regulation is a key driver of iron-related pathophysiology. This review focuses on discussing recent insights from high-resolution structural studies of the Fpn protein family. While these studies have unveiled crucial details of Fpn regulation and structural architecture, the associated functional studies have also at times provided conflicting data provoking more questions than answers. Here, we summarize key findings and illuminate important remaining questions and contradictions.
Collapse
Affiliation(s)
- Mika Jormakka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Ginzburg Y, An X, Rivella S, Goldfarb A. Normal and dysregulated crosstalk between iron metabolism and erythropoiesis. eLife 2023; 12:e90189. [PMID: 37578340 PMCID: PMC10425177 DOI: 10.7554/elife.90189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Erythroblasts possess unique characteristics as they undergo differentiation from hematopoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifaceted process requiring numerous properly timed physiological events to maintain efficient production of 2 million red blood cells per second in steady state. Iron is required for normal functioning in all human cells, the erythropoietic compartment consuming the majority in light of the high iron requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythropoiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differentiation. In addition, significant progress has been made in our understanding of dysregulated iron metabolism in various congenital and acquired malignant and non-malignant diseases. Finally, we report several actual as well as theoretical opportunities for translating the recently acquired robust mechanistic understanding of iron metabolism regulation to improve management of patients with disordered erythropoiesis, such as anemia of chronic inflammation, β-thalassemia, polycythemia vera, and myelodysplastic syndromes.
Collapse
Affiliation(s)
- Yelena Ginzburg
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Xiuli An
- LFKRI, New York Blood CenterNew YorkUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Cell and Molecular Biology affinity group (CAMB), University of PennsylvaniaPhiladelphiaUnited States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Penn Center for Musculoskeletal Disorders at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at University of PennsylvaniaPhiladelphiaUnited States
- RNA Institute at University of PennsylvaniaPhiladelphiaUnited States
| | - Adam Goldfarb
- Department of Pathology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
11
|
Pasquadibisceglie A, Bonaccorsi di Patti MC, Musci G, Polticelli F. Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects. Biomolecules 2023; 13:1172. [PMID: 37627237 PMCID: PMC10452680 DOI: 10.3390/biom13081172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
Collapse
Affiliation(s)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|