1
|
Gonçalves-de-Albuquerque CF, Cunha CMCD, Castro LVGD, Martins CDA, Barnese MRC, Burth P, Younes-Ibrahim M. Cellular Pathophysiology of Leptospirosis: Role of Na/K-ATPase. Microorganisms 2023; 11:1695. [PMID: 37512868 PMCID: PMC10383190 DOI: 10.3390/microorganisms11071695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Inada and Ido identified Leptospira sp. as the pathogen responsible for Weil's Disease in 1915. Later, it was confirmed that Leptospira causes leptospirosis. The host microorganism's interaction at the cellular level remained misunderstood for many years. Although different bacterial components have been isolated and purified, the complexity of the molecular interactions between these components and the host and the molecular mechanisms responsible for the systemic dysfunctions still needs to be fully unveiled. Leptospirosis affects virtually all animal species. Its cellular pathophysiology must involve a ubiquitous cellular mechanism in all eukaryotes. Na/K-ATPase is the molecular target of the leptospiral endotoxin (glycolipoprotein-GLP). Na/K-ATPase dysfunctions on different types of cells give rise to the organ disorders manifested in leptospirosis. Concomitantly, the development of a peculiar metabolic disorder characterized by dyslipidemia, with increased levels of circulating free fatty acids and an imbalance in the fatty acid/albumin molar ratio, triggers events of cellular lipotoxicity. Synergistically, multiple molecular stimuli are prompted during the infection, activating inflammasomes and Na/K-ATPase signalosome, leading to pro-inflammatory and metabolic alterations during leptospirosis. Leptospirosis involves diverse molecular mechanisms and alteration in patient inflammatory and metabolic status. Nonetheless, Na/K-ATPase is critical in the disease, and it is targeted by GLP, its components, and other molecules, such as fatty acids, that inhibit or trigger intracellular signaling through this enzyme. Herein, we overview the role of Na/K-ATPase during leptospirosis infection as a potential therapeutic target or an indicator of disease severity.
Collapse
Affiliation(s)
| | - Carolina Medina Coeli da Cunha
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-030, Brazil
- Neuroscience Graduate Program, Federal Fluminense University (UFF), Niteroi 24000-000, Brazil
| | | | - Caroline de Azevedo Martins
- School of Medicine and Surgery, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20270-901, Brazil
| | | | - Patrícia Burth
- Laboratory of Enzymology and Cellular Signaling, Department of Cellular and Molecular Biology, Federal Fluminense University (UFF), Niteroi 24000-000, Brazil
| | - Mauricio Younes-Ibrahim
- FISCLINEX Postgraduate Program, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, Brazil
- Department of Medicine, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22453-900, Brazil
- State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, Brazil
| |
Collapse
|
2
|
Leite JA, Cavalcante-Silva LHA, Ribeiro MR, de Morais Lima G, Scavone C, Rodrigues-Mascarenhas S. Neuroinflammation and Neutrophils: Modulation by Ouabain. Front Pharmacol 2022; 13:824907. [PMID: 35173621 PMCID: PMC8841582 DOI: 10.3389/fphar.2022.824907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiotonic steroids are natural compounds that present many physiological and pharmacological functions. They bind Na+/K+-ATPase (NKA) modifying cellular ion concentration and trigger cell signaling mechanisms without altering ion balance. These steroids are known to modulate some immune responses, including cytokine production, neutrophil migration, and inflammation (peripherally and in the nervous system). Inflammation can occur in response to homeostasis perturbations and is related to the development of many diseases, including immune-mediated diseases and neurodegenerative disorders. Considering the neutrophils role in the general neuroinflammatory response and that these cells can be modulated by cardiac steroids, this work aims to review the possible regulation of neutrophilic neuroinflammation by the cardiac steroid ouabain.
Collapse
Affiliation(s)
- Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science, Federal University of Goiás, Goiânia, Brazil
| | | | - Martina Raissa Ribeiro
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Geovanni de Morais Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Cristoforo Scavone,
| | | |
Collapse
|
3
|
Souza E Souza KFC, Moraes BPT, Paixão ICNDP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na +/K +-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:624704. [PMID: 33935717 PMCID: PMC8085498 DOI: 10.3389/fphar.2021.624704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from epidemic status to becoming a pandemic. Since its discovery in December 2019, there have been countless cases of mortality and morbidity due to this virus. Several compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir have been tested as potential therapies; however, no effective treatment is currently recommended by regulatory agencies. Some studies on respiratory non-enveloped viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites used to treat patients with cardiac insufficiency because they are the most potent inotropic agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine production. Interestingly, the antiviral effect of cardiac glycosides is associated with tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one of the main signaling targets of the NKA α-subunit, modulating other signaling factors that may also impair viral infection. These data suggest that Src-NFκB signaling modulated by NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2 pathology, cell signaling pathways, and NKA as a possible molecular target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kauê Francisco Corrêa Souza E Souza
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Neûrologia/Neurociências, Hospital Antônio Pedro Universidade Federal Fluminense, Niterói, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Biologia Celular e Molecular (PPGBMC), Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Martins CA, Santos MCBD, Gonçalves-de-Albuquerque CF, Castro-Faria-Neto HC, Castro-Faria MV, Burth P, Younes-Ibrahim M. The relationship of oleic acid/albumin molar ratio and clinical outcomes in leptospirosis. Heliyon 2021; 7:e06420. [PMID: 33732938 PMCID: PMC7944043 DOI: 10.1016/j.heliyon.2021.e06420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/12/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Human leptospirosis is an acute infectious zoonosis presenting specific lipid disorders. Previous in vitro studies showed both leptospira glycolipoprotein endotoxin, and high oleic acid levels were associated with Na/K-ATPase inhibition that is amplified by the reduction of circulating albumin levels. In this study, we aimed to investigate the relationship of oleic acid/albumin (OA/A) molar ratio and clinical outcomes in Leptospirosis. Through a prospective observational cohort study employing high-performance liquid chromatography (HPLC) we sequentially determined serum concentrations of nonesterified fatty acids (NEFA) and albumin in twenty-eight patients with severe leptospirosis since their hospital admission. Twenty patients recovered, and eight died. Data was distributed in two groups according to clinical outcomes. Oleic acid/albumin molar ratios (OA/A), initial samples, were higher than those in healthy donors. The ratio OA/A, however, persisted high in dying patients, whereas patients who survived had a reduction matching to healthy donors. Biochemical alterations suggest that cure is correlated to the reestablishment of the OA/A molar ratio, while fatal outcomes related to persisting OA/A imbalances. Analysis by receiver operating characteristic (ROC) showed the area under the curve of 0.864 and the cutoff value of 0.715 being associated with a high odds ratio. Lipid analysis from patients with leptospirosis had an acute high serum OA/A molar ratio, and sustained imbalance has a high odds ratio and strong correlation with mortality.
Collapse
Affiliation(s)
- Caroline Azevedo Martins
- Laboratório Integrado de Nefrologia, Department of Internal Medicine, Medical Sciences School, State University of Rio de Janeiro, Brazil
| | - Maria Conceição B dos Santos
- Laboratório Integrado de Nefrologia, Department of Internal Medicine, Medical Sciences School, State University of Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mauro Velho Castro-Faria
- Laboratório Integrado de Nefrologia, Department of Internal Medicine, Medical Sciences School, State University of Rio de Janeiro, Brazil
| | - Patricia Burth
- Laboratório de Enzimologia e Sinalização Celular, Department of Cellular and Molecular Biology, Federal Fluminense University, Niteroi, Brazil
| | - Mauricio Younes-Ibrahim
- Laboratório Integrado de Nefrologia, Department of Internal Medicine, Medical Sciences School, State University of Rio de Janeiro, Brazil
- Departamento de Medicina, Pontifícia Universidade Católica, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Werts C. Interaction of Leptospira with the Innate Immune System. Curr Top Microbiol Immunol 2019; 415:163-187. [PMID: 29038956 DOI: 10.1007/82_2017_46] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Innate immunity encompasses immediate host responses that detect and respond to microbes. Besides recognition by the complement system (see the chapter by A. Barbosa, this volume), innate immunity concerns cellular responses. These are triggered through recognition of conserved microbial components (called MAMPs) by pattern recognition receptors (PRRs), leading, through secretion of cytokines, antimicrobial peptides, and immune mediators, to cellular recruitment and phagocytosis. Leptospira spp. are successful zoonotic pathogenic bacteria that obviously overcome the immune system of their hosts. The first part of this chapter summarizes what is known about leptospires recognition and interaction with phagocytes and other innate immune cells, and the second part describes specific interactions of leptospiral MAMPs with PRRs from the TLR and NLR families. On the one hand, pathogenic leptospires appear to escape macrophage and neutrophil phagocytosis. On the other hand, studies about PRR sensing of leptospires remain very limited, but suggest that pathogenic leptospires escape some of the PRRs in a host-specific manner, due to peculiar cell wall specificities or post-translational modifications that may impair their recognition. Further studies are necessary to clarify the mechanisms and consequences of leptospiral escape on phagocytic functions and hopefully give clues to potential therapeutic strategies aimed at restoring the defective activation of PRRs by pathogenic Leptospira spp.
Collapse
Affiliation(s)
- Catherine Werts
- Unité Biologie et Génétique de La Paroi Bactérienne, Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
Khalaf FK, Dube P, Kleinhenz AL, Malhotra D, Gohara A, Drummond CA, Tian J, Haller ST, Xie Z, Kennedy DJ. Proinflammatory Effects of Cardiotonic Steroids Mediated by NKA α-1 (Na+/K+-ATPase α-1)/Src Complex in Renal Epithelial Cells and Immune Cells. Hypertension 2019; 74:73-82. [PMID: 31132948 DOI: 10.1161/hypertensionaha.118.12605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiotonic steroids (CTSs) are NKA α-1 (Na+/K+-ATPase α-1) ligands that are increased in volume expanded states and associated with cardiac and renal diseases. Although initiation and resolution of inflammation is an important component of cellular injury and repair in renal disease, it is unknown whether CTS activation of NKA α-1 signaling in this setting regulates this inflammatory response. On this background, we hypothesized that CTS signaling through the NKA α-1-Src kinase complex promotes a proinflammatory response in renal epithelial and immune cells. First, we observed that the CTS telocinobufagin activated multiple proinflammatory cytokines/chemokines in renal epithelial cells, and these effects were attenuated after either NKA α-1 knockdown or with a specific inhibitor of the NKA α-1-Src kinase complex (pNaKtide). Similar findings were observed in immune cells, where we demonstrated that while telocinobufagin induced both oxidative burst and enhanced Nuclear factor kappa-light-chain-enhancer of activated B cells activation in macrophages ( P<0.05), the effects were abolished in NKA α-1+/- macrophages or by pretreatment with pNaKtide or the Src inhibitor PP2 ( P<0.01). In a series of in vivo studies, we found that 5/6th partial nephrectomy induced significantly less oxidative stress in the remnant kidney of NKA α-1+/- versus wild-type mice. Similarly, 5/6th partial nephrectomy yielded decreased levels of the urinary oxidative stress marker 8-Oxo-2'-deoxyguanosine in NKA α-1+/- versus wild-type mice. Finally, we found that in vivo inhibition of the NKA α-1-Src kinase complex with pNaKtide significantly inhibited renal proinflammatory gene expression after 5/6th partial nephrectomy. These findings suggest that the NKA α-1-Src kinase complex plays a central role in regulating the renal inflammatory response induced by elevated CTS both in vitro and in vivo.
Collapse
Affiliation(s)
- Fatimah K Khalaf
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Prabhatchandra Dube
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Andrew L Kleinhenz
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Deepak Malhotra
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Amira Gohara
- Department of Pathology (A.G.) University of Toledo College of Medicine and Life Sciences, OH
| | - Christopher A Drummond
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Jiang Tian
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Steven T Haller
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV (Z.X.)
| | - David J Kennedy
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| |
Collapse
|
7
|
Qiu Y, Chen C, Zhang J, Chen M, Gong H, Gong L, Du L, Wang R. VEGF attenuates lung injury by inducing homing of CD133+ progenitors via VEGFR1. Biochem Biophys Res Commun 2019; 511:650-657. [DOI: 10.1016/j.bbrc.2019.02.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
|
8
|
Khalaf FK, Dube P, Mohamed A, Tian J, Malhotra D, Haller ST, Kennedy DJ. Cardiotonic Steroids and the Sodium Trade Balance: New Insights into Trade-Off Mechanisms Mediated by the Na⁺/K⁺-ATPase. Int J Mol Sci 2018; 19:E2576. [PMID: 30200235 PMCID: PMC6165267 DOI: 10.3390/ijms19092576] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023] Open
Abstract
In 1972 Neal Bricker presented the "trade-off" hypothesis in which he detailed the role of physiological adaptation processes in mediating some of the pathophysiology associated with declines in renal function. In the late 1990's Xie and Askari published seminal studies indicating that the Na⁺/K⁺-ATPase (NKA) was not only an ion pump, but also a signal transducer that interacts with several signaling partners. Since this discovery, numerous studies from multiple laboratories have shown that the NKA is a central player in mediating some of these long-term "trade-offs" of the physiological adaptation processes which Bricker originally proposed in the 1970's. In fact, NKA ligands such as cardiotonic steroids (CTS), have been shown to signal through NKA, and consequently been implicated in mediating both adaptive and maladaptive responses to volume overload such as fibrosis and oxidative stress. In this review we will emphasize the role the NKA plays in this "trade-off" with respect to CTS signaling and its implication in inflammation and fibrosis in target organs including the heart, kidney, and vasculature. As inflammation and fibrosis exhibit key roles in the pathogenesis of a number of clinical disorders such as chronic kidney disease, heart failure, atherosclerosis, obesity, preeclampsia, and aging, this review will also highlight the role of newly discovered NKA signaling partners in mediating some of these conditions.
Collapse
Affiliation(s)
- Fatimah K Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Amal Mohamed
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - David J Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| |
Collapse
|
9
|
Effect of polygodial and its direct derivatives on the mammalian Na +/K +-ATPase activity. Eur J Pharmacol 2018; 831:1-8. [PMID: 29715454 DOI: 10.1016/j.ejphar.2018.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/06/2018] [Accepted: 04/26/2018] [Indexed: 11/23/2022]
Abstract
The sesquiterpene polygodial is an agonist of the transient receptor potential vanilloid 1 (TRPV1). Our group recently reported the synthesis and anticancer effects of polygodial and its derivatives, and showed that these compounds retain activity against apoptosis- and multidrug-resistant cancer cells. Herein, we tested the inhibitory effect of these compounds on the activity of the enzyme Na+/K+-ATPase (NKA) from kidney (α1 isoform) and brain (α2 and α3 isoforms) guinea pig extracts. Polygodial (1) displayed a dose-dependent inhibition of both kidney and brain purified NKA preparations, with higher sensitivity for the cerebral isoforms. Polygo-11,12-diol (2) and C11,C12-pyridazine derivative (3) proved to be poor inhibitors. Unsaturated ester (4) and 9-epipolygodial (5) inhibited NKA preparations from brain and kidney, with the same inhibitory potency. Nevertheless, they did not achieve maximum inhibition even at higher concentration. Comparing the inhibitory potency in crude homogenates and purified preparations of NKA, compounds 4 and 5 revealed a degree of selectivity toward the renal enzyme. Kinetic studies showed a non-competitive inhibition for Na+ and K+ by compounds 1, 4 and 5 and for ATP by 1 and 4. However, compound 5 presented a competitive inhibition type. Furthermore, K+-activated p-nitrophenylphosphatase activity of these purified preparations was not inhibited by 1, 4 and 5, suggesting that these compounds acted in the initial phase of the enzyme's catalytic cycle. These findings suggest that the antitumor action of polygodial and its analogues may be linked to their NKA inhibitory properties and reinforce that NKA may be an important target for cancer therapy.
Collapse
|
10
|
Wang C, Meng Y, Wang Y, Jiang Z, Xu M, Bo L, Deng X. Ouabain Protects Mice Against Lipopolysaccharide-Induced Acute Lung Injury. Med Sci Monit 2018; 24:4455-4464. [PMID: 29953424 PMCID: PMC6053945 DOI: 10.12659/msm.908627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Ouabain, an inhibitor of Na+/K+-ATPase, is a type of endogenous hormone synthesized in the adrenal cortex and hypothalamus. Previous studies found that ouabain potently inhibited inflammatory reactions and regulated immunological processes. Our present study aimed to investigate the therapeutic role of ouabain on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Material/Methods Ouabain (0.1 mg/kg) or vehicles were intraperitoneally injected into male C57BL/6J mice once a day for 3 consecutive days. One hour after the last injection of ouabain, LPS (5 mg/kg) was administrated through intranasal instillation to induce ALI. 6 hours and 24 hours later, bronchoalveolar lavage fluid (BALF) and lung tissues were harvested to detect the protective effects of ouabain, including protein concentration, inflammation cell counts, lung wet-to-dry ratio, and lung damage. Results The results showed that ouabain attenuated LPS-induced ALI in mice, which was indicated by alleviated pathological changes, downregulated TNF-α, IL-1β, and IL-6 production, inhibited neutrophils infiltration and macrophages, and ameliorated pulmonary edema and permeability. Further results found the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were suppressed by ouabain in LPS-induced ALI. Conclusions These results suggest that ouabain negatively modulates the severity of LPS-induced ALI.
Collapse
Affiliation(s)
- Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Yan Meng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Yuanyuan Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland).,Department of Anesthesiology, Women and Children's Health Care Hospital of Linyi City, Linyi, Shandong, China (mainland)
| | - Zhengyu Jiang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Mengda Xu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| |
Collapse
|
11
|
Cavalcante-Silva LHA, Lima ÉDA, Carvalho DCM, de Sales-Neto JM, Alves AKDA, Galvão JGFM, da Silva JSDF, Rodrigues-Mascarenhas S. Much More than a Cardiotonic Steroid: Modulation of Inflammation by Ouabain. Front Physiol 2017; 8:895. [PMID: 29176951 PMCID: PMC5686084 DOI: 10.3389/fphys.2017.00895] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022] Open
Abstract
Since the discovery of ouabain as a cardiotonic steroid hormone present in higher mammals, research about it has progressed rapidly and several of its physiological and pharmacological effects have been described. Ouabain can behave as a stress hormone and adrenal cortex is its main source. Direct effects of ouabain are originated due to the binding to its receptor, the Na+/K+-ATPase, on target cells. This interaction can promote Na+ transport blockade or even activation of signaling transduction pathways (e.g., EGFR/Src-Ras-ERK pathway activation), independent of ion transport. Besides the well-known effect of ouabain on the cardiovascular system and blood pressure control, compelling evidence indicates that ouabain regulates a number of immune functions. Inflammation is a tightly coordinated immunological function that is also affected by ouabain. Indeed, this hormone can modulate many inflammatory events such as cell migration, vascular permeability, and cytokine production. Moreover, ouabain also interferes on neuroinflammation. However, it is not clear how ouabain controls these events. In this brief review, we summarize the updates of ouabain effect on several aspects of peripheral and central inflammation, bringing new insights into ouabain functions on the immune system.
Collapse
Affiliation(s)
- Luiz H A Cavalcante-Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Éssia de Almeida Lima
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Deyse C M Carvalho
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José M de Sales-Neto
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Anne K de Abreu Alves
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José G F M Galvão
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Juliane S de França da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
12
|
Galvão JGFM, Cavalcante-Silva LHA, Carvalho DCM, Ferreira LKDP, Monteiro TM, Alves AF, Ferreira LAMP, Gadelha FAAF, Piuvezam MR, Rodrigues-Mascarenhas S. Ouabain attenuates ovalbumin-induced airway inflammation. Inflamm Res 2017; 66:1117-1130. [PMID: 28905075 DOI: 10.1007/s00011-017-1092-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Ouabain, an Na+/K+-ATPase inhibitor hormone, presents immunomodulatory actions, including anti-inflammatory effect on acute inflammation models. METHODS In the present study, the effect of ouabain in a model of allergic airway inflammation induced by ovalbumin (OVA) was assessed. RESULTS Initially, it was observed that ouabain treatment inhibited cellular migration induced by OVA on bronchoalveolar lavage fluid (BALF), mostly granulocytes, without modulating macrophage migration. In addition, it was observed, by flow cytometry, that ouabain reduces CD3high lymphocytes cells on BALF. Furthermore, treatment with ouabain decreased IL-4 and IL-13 levels on BALF. Ouabain also promoted pulmonary histological alterations, including decreased cell migration into peribronchiolar and perivascular areas, and reduced mucus production in bronchioles regions observed through hematoxylin-eosin (HE) and by periodic acid-Schiff stain, respectively. Allergic airway inflammation is characterized by high OVA-specific IgE serum titer. This parameter was also reduced by the treatment with ouabain. CONCLUSIONS Therefore, our data demonstrate that ouabain negatively modulates allergic airway inflammation induced by OVA.
Collapse
Affiliation(s)
- José Guilherme F M Galvão
- Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | | | - Deyse Cristina M Carvalho
- Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Laércia Karla D P Ferreira
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Talissa Mozzini Monteiro
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Adriano Francisco Alves
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Larissa Adilis M P Ferreira
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Francisco Allysson A F Gadelha
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Marcia Regina Piuvezam
- Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil.
| |
Collapse
|
13
|
Na/K Pump and Beyond: Na/K-ATPase as a Modulator of Apoptosis and Autophagy. Molecules 2017; 22:molecules22040578. [PMID: 28430151 PMCID: PMC6154632 DOI: 10.3390/molecules22040578] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/22/2023] Open
Abstract
Lung cancer is a leading cause of global cancer deaths. Na/K-ATPase has been studied as a target for cancer treatment. Cardiotonic steroids (CS) trigger intracellular signalling upon binding to Na/K-ATPase. Normal lung and tumour cells frequently express different pump isoforms. Thus, Na/K-ATPase is a powerful target for lung cancer treatment. Drugs targeting Na/K-ATPase may induce apoptosis and autophagy in transformed cells. We argue that Na/K-ATPase has a role as a potential target in chemotherapy in lung cancer treatment. We discuss the effects of Na/K-ATPase ligands and molecular pathways inducing deleterious effects on lung cancer cells, especially those leading to apoptosis and autophagy.
Collapse
|
14
|
Chang MY, Cheng YC, Hsu SH, Ma TL, Chou LF, Hsu HH, Tian YC, Chen YC, Sun YJ, Hung CC, Pan RL, Yang CW. Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae. Sci Rep 2016; 6:27838. [PMID: 27278903 PMCID: PMC4899798 DOI: 10.1038/srep27838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
Leptospirosis is an often overlooked cause of acute kidney injury that can lead to multiple organ failure and even death. The principle protein that conserved in many pathogenic leptospires is the outer membrane protein LipL32. However, the role of LipL32 in the pathogenesis of renal injury in leptospirosis is not entirely clear. Here we studied the effects of LipL32 on the developing kidney in zebrafish larvae. Incubation of zebrafish larvae with Leptospira santarosai serovar Shermani induced acute tubular injury predominantly in the proximal pronephric ducts. Furthermore, microinjection of lipl32 mRNA or recombinant LipL32 protein into zebrafish larvae increased macrophage accumulation and disrupted the basolateral location of NA-K-ATPase in pronephric ducts. These changes led to substantial impairment of the pronephric kidney structure. We further demonstrated that morpholino knockdown of tlr2, but not tlr4, reduced the LipL32-induced leukocyte infiltration and kidney injury. These data demonstrate that LipL32 contributes to the renal pathology in leptospirosis and gives some clues to the potential virulence of LipL32. Our results support the use of zebrafish as a model organism for studying the disease mechanism of leptospiral infection. This model might permit the future exploration of the virulence and molecular pathways of different leptospiral outer membrane proteins.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Department of Biochemistry and Molecular Biology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsu-Lin Ma
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Li-Fang Chou
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yuh-Ju Sun
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
15
|
Gonçalves-de-Albuquerque CF, Silva AR, Burth P, Rocco PRM, Castro-Faria MV, Castro-Faria-Neto HC. Possible mechanisms of Pseudomonas aeruginosa-associated lung disease. Int J Med Microbiol 2015; 306:20-8. [PMID: 26652129 DOI: 10.1016/j.ijmm.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium causing lung injury in immunocompromised patients correlated with high morbidity and mortality. Many bacteria, including P. aeruginosa, use extracellular signals to synchronize group behaviors, a process known as quorum sensing (QS). In the P. aeruginosa complex QS system controls expression of over 300 genes, including many involved in host colonization and disease. P. aeruginosa infection elicits a complex immune response due to a large number of immunogenic factors present in the bacteria or released during infection. Here, we focused on the mechanisms by which P. aeruginosa triggers lung injury and inflammation, debating the possible ways that P. aeruginosa evades the host immune system, which leads to immune suppression and resistance.
Collapse
Affiliation(s)
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Patricia Rieken Macêdo Rocco
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Velho Castro-Faria
- Laboratório Integrado de Nefrologia, Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
16
|
Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation. Mediators Inflamm 2015; 2015:260465. [PMID: 26640323 PMCID: PMC4660020 DOI: 10.1155/2015/260465] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023] Open
Abstract
Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation.
Collapse
|
17
|
Comparison of Bacterial Burden and Cytokine Gene Expression in Golden Hamsters in Early Phase of Infection with Two Different Strains of Leptospira interrogans. PLoS One 2015; 10:e0132694. [PMID: 26146835 PMCID: PMC4492770 DOI: 10.1371/journal.pone.0132694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/17/2015] [Indexed: 01/09/2023] Open
Abstract
Leptospirosis, a zoonotic infection with worldwide prevalence, is caused by pathogenic spirochaetes of Leptospira spp., and exhibits an extremely broad clinical spectrum in human patients. Although previous studies indicated that specific serovars or genotypes of Leptospira spp. were associated with severe leptospirosis or its outbreak, the mechanism underlying the difference in virulence of the various Leptospira serotypes or genotypes remains unclear. The present study addresses this question by measuring and comparing bacterial burden and cytokine gene expression in hamsters infected with strains of two L. interrogans serovars Manilae (highly virulent) and Hebdomadis (less virulent). The histopathology of kidney, liver, and lung tissues was also investigated in infected hamsters. A significantly higher bacterial burden was observed in liver tissues of hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.01). The average copy number of the leptospiral genome was 1,302 and 20,559 in blood and liver, respectively, of hamsters infected with serovar Manilae and 1,340 and 4,896, respectively, in hamsters infected with serovar Hebdomadis. The expression levels of mip1alpha in blood; tgfbeta, il1beta, mip1alpha, il10, tnfalpha and cox2 in liver; and tgfbeta, il6, tnfalpha and cox2 in lung tissue were significantly higher in hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.05). In addition, infection with serovar Manilae resulted in a significantly larger number of hamsters with tnfalpha upregulation (p = 0.04). Severe distortion of tubular cell arrangement and disruption of renal tubules in kidney tissues and hemorrhage in lung tissues were observed in Manilae-infected hamsters. These results demonstrate that serovar Manilae multiplied more efficiently in liver tissues and induced significantly higher expression of genes encoding pro- and anti-inflammatory cytokines than serovar Hebdomadis even in tissues for which a significant difference in leptospiral load was not observed. In addition, our results suggest a serovar Manilae-specific mechanism responsible for inducing severe damage in kidneys and hemorrhage in lung.
Collapse
|