1
|
Alnafisah KH, Ranjan A, Sahu SP, Chen J, Alhejji SM, Noël A, Gartia MR, Mukhopadhyay S. Machine learning for automated classification of lung collagen in a urethane-induced lung injury mouse model. BIOMEDICAL OPTICS EXPRESS 2024; 15:5980-5998. [PMID: 39421774 PMCID: PMC11482176 DOI: 10.1364/boe.527972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 10/19/2024]
Abstract
Dysregulation of lung tissue collagen level plays a vital role in understanding how lung diseases progress. However, traditional scoring methods rely on manual histopathological examination introducing subjectivity and inconsistency into the assessment process. These methods are further hampered by inter-observer variability, lack of quantification, and their time-consuming nature. To mitigate these drawbacks, we propose a machine learning-driven framework for automated scoring of lung collagen content. Our study begins with the collection of a lung slide image dataset from adult female mice using second harmonic generation (SHG) microscopy. In our proposed approach, first, we manually extracted features based on the 46 statistical parameters of fibrillar collagen. Subsequently, we pre-processed the images and utilized a pre-trained VGG16 model to uncover hidden features from pre-processed images. We then combined both image and statistical features to train various machine learning and deep neural network models for classification tasks. We employed advanced unsupervised techniques like K-means, principal component analysis (PCA), t-distributed stochastic neighbour embedding (t-SNE), and uniform manifold approximation and projection (UMAP) to conduct thorough image analysis for lung collagen content. Also, the evaluation of the trained models using the collagen data includes both binary and multi-label classification to predict lung cancer in a urethane-induced mouse model. Experimental validation of our proposed approach demonstrates promising results. We obtained an average accuracy of 83% and an area under the receiver operating characteristic curve (ROC AUC) values of 0.96 through the use of a support vector machine (SVM) model for binary categorization tasks. For multi-label classification tasks, to quantify the structural alteration of collagen, we attained an average accuracy of 73% and ROC AUC values of 1.0, 0.38, 0.95, and 0.86 for control, baseline, treatment_1, and treatment_2 groups, respectively. Our findings provide significant potential for enhancing diagnostic accuracy, understanding disease mechanisms, and improving clinical practice using machine learning and deep learning models.
Collapse
Affiliation(s)
| | - Amit Ranjan
- Center for Computation & Technology and Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sushant P Sahu
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- Amity Institute of Biotechnology and Applied Sciences, Amity University, Mumbai, Maharashtra-410206, India
| | - Jianhua Chen
- Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Supratik Mukhopadhyay
- Center for Computation & Technology and Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Wang S, Pan J, Zhang X, Li Y, Liu W, Lin R, Wang X, Kang D, Li Z, Huang F, Chen L, Chen J. Towards next-generation diagnostic pathology: AI-empowered label-free multiphoton microscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:254. [PMID: 39277586 PMCID: PMC11401902 DOI: 10.1038/s41377-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Diagnostic pathology, historically dependent on visual scrutiny by experts, is essential for disease detection. Advances in digital pathology and developments in computer vision technology have led to the application of artificial intelligence (AI) in this field. Despite these advancements, the variability in pathologists' subjective interpretations of diagnostic criteria can lead to inconsistent outcomes. To meet the need for precision in cancer therapies, there is an increasing demand for accurate pathological diagnoses. Consequently, traditional diagnostic pathology is evolving towards "next-generation diagnostic pathology", prioritizing on the development of a multi-dimensional, intelligent diagnostic approach. Using nonlinear optical effects arising from the interaction of light with biological tissues, multiphoton microscopy (MPM) enables high-resolution label-free imaging of multiple intrinsic components across various human pathological tissues. AI-empowered MPM further improves the accuracy and efficiency of diagnosis, holding promise for providing auxiliary pathology diagnostic methods based on multiphoton diagnostic criteria. In this review, we systematically outline the applications of MPM in pathological diagnosis across various human diseases, and summarize common multiphoton diagnostic features. Moreover, we examine the significant role of AI in enhancing multiphoton pathological diagnosis, including aspects such as image preprocessing, refined differential diagnosis, and the prognostication of outcomes. We also discuss the challenges and perspectives faced by the integration of MPM and AI, encompassing equipment, datasets, analytical models, and integration into the existing clinical pathways. Finally, the review explores the synergy between AI and label-free MPM to forge novel diagnostic frameworks, aiming to accelerate the adoption and implementation of intelligent multiphoton pathology systems in clinical settings.
Collapse
Affiliation(s)
- Shu Wang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Junlin Pan
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Xiao Zhang
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
| | - Yueying Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Wenxi Liu
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
| | - Ruolan Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xingfu Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhijun Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Feng Huang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China.
| | - Liangyi Chen
- New Cornerstone Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100091, China.
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
3
|
Baniasadi A, Das JP, Prendergast CM, Beizavi Z, Ma HY, Jaber MY, Capaccione KM. Imaging at the nexus: how state of the art imaging techniques can enhance our understanding of cancer and fibrosis. J Transl Med 2024; 22:567. [PMID: 38872212 PMCID: PMC11177383 DOI: 10.1186/s12967-024-05379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Both cancer and fibrosis are diseases involving dysregulation of cell signaling pathways resulting in an altered cellular microenvironment which ultimately leads to progression of the condition. The two disease entities share common molecular pathophysiology and recent research has illuminated the how each promotes the other. Multiple imaging techniques have been developed to aid in the early and accurate diagnosis of each disease, and given the commonalities between the pathophysiology of the conditions, advances in imaging one disease have opened new avenues to study the other. Here, we detail the most up-to-date advances in imaging techniques for each disease and how they have crossed over to improve detection and monitoring of the other. We explore techniques in positron emission tomography (PET), magnetic resonance imaging (MRI), second generation harmonic Imaging (SGHI), ultrasound (US), radiomics, and artificial intelligence (AI). A new diagnostic imaging tool in PET/computed tomography (CT) is the use of radiolabeled fibroblast activation protein inhibitor (FAPI). SGHI uses high-frequency sound waves to penetrate deeper into the tissue, providing a more detailed view of the tumor microenvironment. Artificial intelligence with the aid of advanced deep learning (DL) algorithms has been highly effective in training computer systems to diagnose and classify neoplastic lesions in multiple organs. Ultimately, advancing imaging techniques in cancer and fibrosis can lead to significantly more timely and accurate diagnoses of both diseases resulting in better patient outcomes.
Collapse
Affiliation(s)
- Alireza Baniasadi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA.
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Conor M Prendergast
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Zahra Beizavi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Hong Y Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | | | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| |
Collapse
|
4
|
Narasaraju T, Neeli I, Criswell SL, Krishnappa A, Meng W, Silva V, Bila G, Vovk V, Serhiy Z, Bowlin GL, Meyer N, Luning Prak ET, Radic M, Bilyy R. Neutrophil Activity and Extracellular Matrix Degradation: Drivers of Lung Tissue Destruction in Fatal COVID-19 Cases and Implications for Long COVID. Biomolecules 2024; 14:236. [PMID: 38397474 PMCID: PMC10886497 DOI: 10.3390/biom14020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Pulmonary fibrosis, severe alveolitis, and the inability to restore alveolar epithelial architecture are primary causes of respiratory failure in fatal COVID-19 cases. However, the factors contributing to abnormal fibrosis in critically ill COVID-19 patients remain unclear. This study analyzed the histopathology of lung specimens from eight COVID-19 and six non-COVID-19 postmortems. We assessed the distribution and changes in extracellular matrix (ECM) proteins, including elastin and collagen, in lung alveoli through morphometric analyses. Our findings reveal the significant degradation of elastin fibers along the thin alveolar walls of the lung parenchyma, a process that precedes the onset of interstitial collagen deposition and widespread intra-alveolar fibrosis. Lungs with collapsed alveoli and organized fibrotic regions showed extensive fragmentation of elastin fibers, accompanied by alveolar epithelial cell death. Immunoblotting of lung autopsy tissue extracts confirmed elastin degradation. Importantly, we found that the loss of elastin was strongly correlated with the induction of neutrophil elastase (NE), a potent protease that degrades ECM. This study affirms the critical role of neutrophils and neutrophil enzymes in the pathogenesis of COVID-19. Consistently, we observed increased staining for peptidyl arginine deiminase, a marker for neutrophil extracellular trap release, and myeloperoxidase, an enzyme-generating reactive oxygen radical, indicating active neutrophil involvement in lung pathology. These findings place neutrophils and elastin degradation at the center of impaired alveolar function and argue that elastolysis and alveolitis trigger abnormal ECM repair and fibrosis in fatal COVID-19 cases. Importantly, this study has implications for severe COVID-19 complications, including long COVID and other chronic inflammatory and fibrotic disorders.
Collapse
Affiliation(s)
- Teluguakula Narasaraju
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
- Department of Microbiology, Adichunchanagiri Institute of Medical Sciences, Center for Research and Innovation, Adichunchanagiri University, Mandya 571448, India
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
| | - Sheila L. Criswell
- Department of Diagnostic and Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Amita Krishnappa
- Department of Pathology, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya 571448, India;
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.M.); (E.T.L.P.)
| | - Vasuki Silva
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
| | - Galyna Bila
- Department of Histology, Cytology, Histology & Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (G.B.); (R.B.)
| | - Volodymyr Vovk
- Department of Pathological Anatomy and Forensic Medicine, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Lviv Regional Pathological Anatomy Office, CU ENT (Pulmonology Lviv Regional Diagnostic Center), 79000 Lviv, Ukraine;
| | - Zolotukhin Serhiy
- Lviv Regional Pathological Anatomy Office, CU ENT (Pulmonology Lviv Regional Diagnostic Center), 79000 Lviv, Ukraine;
| | - Gary L. Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
| | - Nuala Meyer
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.M.); (E.T.L.P.)
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
| | - Rostyslav Bilyy
- Department of Histology, Cytology, Histology & Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (G.B.); (R.B.)
| |
Collapse
|
5
|
PSHG-TISS: A collection of polarization-resolved second harmonic generation microscopy images of fixed tissues. Sci Data 2022; 9:376. [PMID: 35780180 PMCID: PMC9250519 DOI: 10.1038/s41597-022-01477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Second harmonic generation (SHG) microscopy is acknowledged as an established imaging technique capable to provide information on the collagen architecture in tissues that is highly valuable for the diagnostics of various pathologies. The polarization-resolved extension of SHG (PSHG) microscopy, together with associated image processing methods, retrieves extensive image sets under different input polarization settings, which are not fully exploited in clinical settings. To facilitate this, we introduce PSHG-TISS, a collection of PSHG images, accompanied by additional computationally generated images which can be used to complement the subjective qualitative analysis of SHG images. These latter have been calculated using the single-axis molecule model for collagen and provide 2D representations of different specific PSHG parameters known to account for the collagen structure and distribution. PSHG-TISS can aid refining existing PSHG image analysis methods, while also supporting the development of novel image processing and analysis methods capable to extract meaningful quantitative data from the raw PSHG image sets. PSHG-TISS can facilitate the breadth and widespread of PSHG applications in tissue analysis and diagnostics. Measurement(s) | Type I Collagen | Technology Type(s) | multi-photon laser scanning microscopy | Factor Type(s) | second order susceptibility tensor elements | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Environment | laboratory environment | Sample Characteristic - Location | Romania |
Collapse
|
6
|
Second-Harmonic Generation Imaging Reveals Changes in Breast Tumor Collagen Induced by Neoadjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14040857. [PMID: 35205605 PMCID: PMC8869853 DOI: 10.3390/cancers14040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/10/2022] Open
Abstract
Breast cancer is the most common invasive cancer in women, with most deaths attributed to metastases. Neoadjuvant chemotherapy (NACT) may be prescribed prior to surgical removal of the tumor for subsets of breast cancer patients but can have diverse undesired and off-target effects, including the increased appearance of the 'tumor microenvironment of metastasis', image-based multicellular signatures that are prognostic of breast tumor metastasis. To assess whether NACT can induce changes in two other image-based prognostic/predictive signatures derived from tumor collagen, we quantified second-harmonic generation (SHG) directionality and fiber alignment in formalin-fixed, paraffin-embedded sections of core needle biopsies and primary tumor excisions from 22 human epidermal growth factor receptor 2-overexpressing (HER2+) and 22 triple-negative breast cancers. In both subtypes, we found that SHG directionality (i.e., the forward-to-backward scattering ratio, or F/B) is increased by NACT in the bulk of the tumor, but not the adjacent tumor-stroma interface. Overall collagen fiber alignment is increased by NACT in triple-negative but not HER2+ breast tumors. These results suggest that NACT impacts the collagenous extracellular matrix in a complex and subtype-specific manner, with some prognostic features being unchanged while others are altered in a manner suggestive of a more metastatic phenotype.
Collapse
|
7
|
Lee J, Kim JG, Hong S, Kim YS, Ahn S, Kim R, Chun H, Park KD, Jeong Y, Kim DE, Lee CJ, Ku T, Kim P. Longitudinal intravital imaging of cerebral microinfarction reveals a dynamic astrocyte reaction leading to glial scar formation. Glia 2022; 70:975-988. [PMID: 35106851 DOI: 10.1002/glia.24151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 01/25/2023]
Abstract
Cerebral microinfarct increases the risk of dementia. But how microscopic cerebrovascular disruption affects the brain tissue in cellular-level are mostly unknown. Herein, with a longitudinal intravital imaging, we serially visualized in vivo dynamic cellular-level changes in astrocyte, pericyte and neuron as well as microvascular integrity after the induction of cerebral microinfarction for 1 month in mice. At day 2-3, it revealed a localized edema with acute astrocyte loss, neuronal death, impaired pericyte-vessel coverage and extravascular leakage of 3 kDa dextran (but not 2 MDa dextran) indicating microinfarction-related blood-brain barrier (BBB) dysfunction for small molecules. At day 5, the local edema disappeared with the partial restoration of microcirculation and recovery of pericyte-vessel coverage and BBB integrity. But brain tissue continued to shrink with persisted loss of astrocyte and neuron in microinfarct until 30 days, resulting in a collagen-rich fibrous scar surrounding the microinfarct. Notably, reactive astrocytes expressing glial fibrillary acidic protein (GFAP) appeared at the peri-infarct area early at day 2 and thereafter accumulated in the peri-infarct until 30 days, inducing glial scar formation in cerebral cortex. Our longitudinal intravital imaging of serial microscopic neurovascular pathophysiology in cerebral microinfarction newly revealed that astrocytes are critically susceptible to the acute microinfarction and their reactive response leads to the fibrous glial scar formation.
Collapse
Affiliation(s)
- Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Joon-Goon Kim
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Young Seo Kim
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Soyeon Ahn
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ryul Kim
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heejung Chun
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Med Science & Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Yong Jeong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dong-Eog Kim
- Department of Neurology, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Taeyun Ku
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
8
|
Popovics P, Jain A, Skalitzky KO, Schroeder E, Ruetten H, Cadena M, Uchtmann KS, Vezina CM, Ricke WA. Osteopontin Deficiency Ameliorates Prostatic Fibrosis and Inflammation. Int J Mol Sci 2021; 22:ijms222212461. [PMID: 34830342 PMCID: PMC8617904 DOI: 10.3390/ijms222212461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrogenic and inflammatory processes in the prostate are linked to the development of lower urinary tract symptoms (LUTS) in men. Our previous studies identified that osteopontin (OPN), a pro-fibrotic cytokine, is abundant in the prostate of men with LUTS, and its secretion is stimulated by inflammatory cytokines potentially to drive fibrosis. This study investigates whether the lack of OPN ameliorates inflammation and fibrosis in the mouse prostate. We instilled uropathogenic E. coli (UTI89) or saline (control) transurethrally to C57BL/6J (WT) or Spp1tm1Blh/J (OPN-KO) mice and collected the prostates one or 8 weeks later. We found that OPN mRNA and protein expression were significantly induced by E. coli-instillation in the dorsal prostate (DP) after one week in WT mice. Deficiency in OPN expression led to decreased inflammation and fibrosis and the prevention of urinary dysfunction after 8 weeks. RNAseq analysis identified that E. coli-instilled WT mice expressed increased levels of inflammatory and fibrotic marker RNAs compared to OPN-KO mice including Col3a1, Dpt, Lum and Mmp3 which were confirmed by RNAscope. Our results indicate that OPN is induced by inflammation and prolongs the inflammatory state; genetic blockade of OPN accelerates recovery after inflammation, including a resolution of prostate fibrosis.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Asha Jain
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kegan O. Skalitzky
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elise Schroeder
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah Ruetten
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Cadena
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristen S. Uchtmann
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chad M. Vezina
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
9
|
Johnson PB, Karvounis A, Singh HJ, Brereton CJ, Bourdakos KN, Lunn K, Roberts JJW, Davies DE, Muskens OL, Jones MG, Mahajan S. Superresolved polarization-enhanced second-harmonic generation for direct imaging of nanoscale changes in collagen architecture. OPTICA 2021; 8:674-685. [PMID: 34239949 PMCID: PMC8237832 DOI: 10.1364/optica.411325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/06/2021] [Accepted: 03/16/2021] [Indexed: 05/06/2023]
Abstract
Superresolution (SR) optical microscopy has allowed the investigation of many biological structures below the diffraction limit; however, most of the techniques are hampered by the need for fluorescent labels. Nonlinear label-free techniques such as second-harmonic generation (SHG) provide structurally specific contrast without the addition of exogenous labels, allowing observation of unperturbed biological systems. We use the photonic nanojet (PNJ) phenomena to achieve SR-SHG. A resolution of ∼ λ / 6 with respect to the fundamental wavelength, that is, a ∼ 2.3 -fold improvement over conventional or diffraction-limited SHG under the same imaging conditions is achieved. Crucially we find that the polarization properties of excitation are maintained in a PNJ. This is observed in experiment and simulations. This may have widespread implications to increase sensitivity by detection of polarization-resolved SHG by observing anisotropy in signals. These new, to the best of our knowledge, findings allowed us to visualize biological SHG-active structures such as collagen at an unprecedented and previously unresolvable spatial scale. Moreover, we demonstrate that the use of an array of self-assembled high-index spheres overcomes the issue of a limited field of view for such a method, allowing PNJ-assisted SR-SHG to be used over a large area. Dysregulation of collagen at the nanoscale occurs in many diseases and is an underlying cause in diseases such as lung fibrosis. Here we demonstrate that pSR-SHG allows unprecedented observation of changes at the nanoscale that are invisible by conventional diffraction-limited SHG imaging. The ability to nondestructively image SHG-active biological structures without labels at the nanoscale with a relatively simple optical method heralds the promise of a new tool to understand biological phenomena and drive drug discovery.
Collapse
Affiliation(s)
- Peter B. Johnson
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Artemios Karvounis
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Southampton, UK
| | - H. Johnson Singh
- Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Christopher J. Brereton
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Konstantinos N. Bourdakos
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Kerry Lunn
- Synairgen Research Ltd., Southampton, UK
| | | | - Donna E. Davies
- Institute for Life Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Otto L. Muskens
- Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Mark G. Jones
- Institute for Life Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sumeet Mahajan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Borile G, Sandrin D, Filippi A, Anderson KI, Romanato F. Label-Free Multiphoton Microscopy: Much More Than Fancy Images. Int J Mol Sci 2021; 22:2657. [PMID: 33800802 PMCID: PMC7961783 DOI: 10.3390/ijms22052657] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Multiphoton microscopy has recently passed the milestone of its first 30 years of activity in biomedical research. The growing interest around this approach has led to a variety of applications from basic research to clinical practice. Moreover, this technique offers the advantage of label-free multiphoton imaging to analyze samples without staining processes and the need for a dedicated system. Here, we review the state of the art of label-free techniques; then, we focus on two-photon autofluorescence as well as second and third harmonic generation, describing physical and technical characteristics. We summarize some successful applications to a plethora of biomedical research fields and samples, underlying the versatility of this technique. A paragraph is dedicated to an overview of sample preparation, which is a crucial step in every microscopy experiment. Afterwards, we provide a detailed review analysis of the main quantitative methods to extract important information and parameters from acquired images using second harmonic generation. Lastly, we discuss advantages, limitations, and future perspectives in label-free multiphoton microscopy.
Collapse
Affiliation(s)
- Giulia Borile
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy;
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
| | - Deborah Sandrin
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy
| | - Andrea Filippi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
| | - Kurt I. Anderson
- Crick Advanced Light Microscopy Facility (CALM), The Francis Crick Institute, London NW1 1AT, UK;
| | - Filippo Romanato
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy;
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy
| |
Collapse
|
11
|
Hsiao CY, Teng X, Su TH, Lee PH, Kao JH, Huang KW. Improved second harmonic generation and two-photon excitation fluorescence microscopy-based quantitative assessments of liver fibrosis through auto-correction and optimal sampling. Quant Imaging Med Surg 2021; 11:351-361. [PMID: 33392034 DOI: 10.21037/qims-20-394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Second harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy is commonly used for the quantitative assessment of liver fibrosis; however, the accuracy is susceptible to sampling error and count error due to disturbances induced by some forms of collagen in liver specimens. In this study, we sought to improve the accuracy of quantitative assessments by removing the effects of this disturbing collagen and optimizing the sampling protocol. Methods Large liver resection samples from 111 patients with chronic hepatitis B were scanned using SHG/TPEF microscopy with multiple adjacent images. During the quantitative assessment, we then removed SHG signals associated with three types of extraneous physiological collagen: large patches of collagen near the boundary of the capsule, collagen around tubular structures, and collagen associated with distorted vessel walls. The optimal sampling protocol was identified by comparing scans from regions of interest of various sizes (3×3 tiles and 5×5 tiles) with full scans of the same tissue. Results The proposed auto-correction algorithm detected 88 of 97 (90.7%) disturbing collagen on the images from the validation set. Removing these signals of disturbing collagen improved the correlation between Metavir stage and quantification of all 41 proposed collagen features. Through optimal sampling, five scans of 5×5 tiles or ten scans of 3×3 tiles were sufficient to minimize the mean error rate to around 2% of collagen percentage quantification and to achieve similar correlations around 0.27 with Metavir stage as using full tissue scans. Conclusions Our results demonstrate that the quantitative assessments of liver fibrosis can be greatly enhanced in terms of accuracy and efficiency through optimal sampling and the automated removal of disturbing collagen signals. These types of image processing could be integrated in next-generation SHG/TPEF microscopic systems.
Collapse
Affiliation(s)
- Chih-Yang Hsiao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei.,Department of Surgery, National Taiwan University Hospital, Taipei.,Department of Traumatology, National Taiwan University Hospital, Taipei
| | | | - Tung-Hung Su
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei.,Department of Internal Medicine, National Taiwan University Hospital, Taipei.,Hepatitis Research Center, National Taiwan University Hospital, Taipei
| | - Po-Huang Lee
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei.,Department of Surgery, National Taiwan University Hospital, Taipei
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei.,Department of Internal Medicine, National Taiwan University Hospital, Taipei.,Hepatitis Research Center, National Taiwan University Hospital, Taipei
| | - Kai-Wen Huang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei.,Department of Surgery, National Taiwan University Hospital, Taipei.,Hepatitis Research Center, National Taiwan University Hospital, Taipei
| |
Collapse
|
12
|
Sijilmassi O, López-Alonso JM, Del Río Sevilla A, Del Carmen Barrio Asensio M. Development of a polarization imaging method to detect paraffin-embedded pathology tissues before applying other techniques. JOURNAL OF BIOPHOTONICS 2021; 14:e202000288. [PMID: 32981228 DOI: 10.1002/jbio.202000288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The present article describes the development of a technique, applied to paraffin-embedded tissues, which uses three different wavelengths of monochromatic light (λ1 = 445 nm, λ2 = 540 nm and λ3 = 660 nm) for the measures of the degree of polarization, degree of linear polarization, degree of circular polarization and birefringence, all obtained from measurements of Stokes parameters by using polarized light. The goal of this study was to detect changes in developing embryonic mouse eye when pregnant mice fed diets without folic acid for variable periods compared with a healthy control group. We present a biomedical diagnostic technique based on polarized light detection applied to paraffin-embedded tissues to visualize the structural damage to aid us in the diagnosis before applying other techniques. Through this method, we can visualize and identify which parts of the tissue were altered with respect to the control group.
Collapse
Affiliation(s)
- Ouafa Sijilmassi
- Department of Anatomy and Embryology, Faculty of Optics and Optometry, Universidad Complutense De Madrid, Madrid, Spain
- Department of Optics, Faculty of Optics and Optometry, Universidad Complutense De Madrid, Madrid, Spain
| | - José Manuel López-Alonso
- Department of Optics, Faculty of Optics and Optometry, Universidad Complutense De Madrid, Madrid, Spain
| | - Aurora Del Río Sevilla
- Department of Anatomy and Embryology, Faculty of Optics and Optometry, Universidad Complutense De Madrid, Madrid, Spain
| | | |
Collapse
|
13
|
van Huizen LMG, Radonic T, van Mourik F, Seinstra D, Dickhoff C, Daniels JMA, Bahce I, Annema JT, Groot ML. Compact portable multiphoton microscopy reveals histopathological hallmarks of unprocessed lung tumor tissue in real time. TRANSLATIONAL BIOPHOTONICS 2020; 2:e202000009. [PMID: 34341777 PMCID: PMC8311669 DOI: 10.1002/tbio.202000009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
During lung cancer operations a rapid and reliable assessment of tumor tissue can reduce operation time and potentially improve patient outcomes. We show that third harmonic generation (THG), second harmonic generation (SHG) and two-photon excited autofluorescence (2PEF) microscopy reveals relevant, histopathological information within seconds in fresh unprocessed human lung samples. We used a compact, portable microscope and recorded images within 1 to 3 seconds using a power of 5 mW. The generated THG/SHG/2PEF images of tumorous and nontumorous tissues are compared with the corresponding standard histology images, to identify alveolar structures and histopathological hallmarks. Cellular structures (tumor cells, macrophages and lymphocytes) (THG), collagen (SHG) and elastin (2PEF) are differentiated and allowed for rapid identification of carcinoid with solid growth pattern, minimally enlarged monomorphic cell nuclei with salt-and-pepper chromatin pattern, and adenocarcinoma with lipidic and micropapillary growth patterns. THG/SHG/2PEF imaging is thus a promising tool for clinical intraoperative assessment of lung tumor tissue.
Collapse
Affiliation(s)
- Laura M. G. van Huizen
- Faculty of Science, Department of Physics, LaserLabVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Teodora Radonic
- Department of PathologyAmsterdam Universities Medical Center/VU University Medical CenterAmsterdamNetherlands
| | | | - Danielle Seinstra
- Department of PathologyAmsterdam Universities Medical Center/VU University Medical CenterAmsterdamNetherlands
| | - Chris Dickhoff
- Department of SurgeryAmsterdam Universities Medical CenterAmsterdamNetherlands
| | - Johannes M. A. Daniels
- Department of Pulmonary DiseasesAmsterdam Universities Medical CenterAmsterdamNetherlands
| | - Idris Bahce
- Department of Pulmonary DiseasesAmsterdam Universities Medical CenterAmsterdamNetherlands
| | - Jouke T. Annema
- Department of Pulmonary DiseasesAmsterdam Universities Medical CenterAmsterdamNetherlands
| | - Marie Louise Groot
- Faculty of Science, Department of Physics, LaserLabVrije Universiteit AmsterdamAmsterdamNetherlands
| |
Collapse
|
14
|
Freeberg MAT, Perelas A, Rebman JK, Phipps RP, Thatcher TH, Sime PJ. Mechanical Feed-Forward Loops Contribute to Idiopathic Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:18-25. [PMID: 33031756 PMCID: PMC7768346 DOI: 10.1016/j.ajpath.2020.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis is a progressive scarring disease characterized by extracellular matrix accumulation and altered mechanical properties of lung tissue. Recent studies support the hypothesis that these compositional and mechanical changes create a progressive feed-forward loop in which enhanced matrix deposition and tissue stiffening contribute to fibroblast and myofibroblast differentiation and activation, which further perpetuates matrix production and stiffening. The biomechanical properties of tissues are sensed and responded to by mechanotransduction pathways that facilitate sensing of changes in mechanical cues by tissue resident cells and convert the mechanical signals into downstream biochemical signals. Although our understanding of mechanotransduction pathways associated with pulmonary fibrosis remains incomplete, recent progress has allowed us to begin to elucidate the specific mechanisms supporting fibrotic feed-forward loops. The mechanosensors discussed here include integrins, Piezo channels, transient receptor potential channels, and nonselective ion channels. Also discussed are downstream transcription factors, including myocardin-related transcription factor and Yes-associated protein/transcriptional coactivator with PDZ-binding motif. This review describes mechanosensors and mechanotransduction pathways associated with fibrosis progression and highlights promising therapeutic insights.
Collapse
Affiliation(s)
- Margaret A T Freeberg
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Apostolos Perelas
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jane K Rebman
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | | | - Thomas H Thatcher
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Patricia J Sime
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
15
|
Matera DL, DiLillo KM, Smith MR, Davidson CD, Parikh R, Said M, Wilke CA, Lombaert IM, Arnold KB, Moore BB, Baker BM. Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation. SCIENCE ADVANCES 2020; 6:eabb5069. [PMID: 32917680 PMCID: PMC11206459 DOI: 10.1126/sciadv.abb5069] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Fibrosis, characterized by aberrant tissue scarring from activated myofibroblasts, is often untreatable. Although the extracellular matrix becomes increasingly stiff and fibrous during disease progression, how these physical cues affect myofibroblast differentiation in 3D is poorly understood. Here, we describe a multicomponent hydrogel that recapitulates the 3D fibrous structure of interstitial tissue regions where idiopathic pulmonary fibrosis (IPF) initiates. In contrast to findings on 2D hydrogels, myofibroblast differentiation in 3D was inversely correlated with hydrogel stiffness but positively correlated with matrix fibers. Using a multistep bioinformatics analysis of IPF patient transcriptomes and in vitro pharmacologic screening, we identify matrix metalloproteinase activity to be essential for 3D but not 2D myofibroblast differentiation. Given our observation that compliant degradable 3D matrices amply support fibrogenesis, these studies demonstrate a departure from the established relationship between stiffness and myofibroblast differentiation in 2D, and provide a new 3D model for studying fibrosis and identifying antifibrotic therapeutics.
Collapse
Affiliation(s)
- Daniel L Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katarina M DiLillo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Makenzee R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Ritika Parikh
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohammed Said
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carole A Wilke
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabelle M Lombaert
- Department of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Abstract
In this study we have utilized an optical clearing method to allow visualization of a heretofore undescribed subpleural acinar structural organization in the mammalian lung. The clearing method enables visualization of the lung structure deep below the visceral pleura in intact inflated lungs. In addition to confirming previous observations that the immediate subpleural alveoli are uniform in appearance, we document for the first time that the subpleural lung parenchyma is much more uniformly organized than the internal parenchyma. Specifically, we report that below the surface layer of alveoli, there is a striking parallel arrangement of alveolar ducts that all run perpendicular to the visceral pleural surface. A three dimensional visualization of alveolar ducts allowed for a calculation of the average inner to outer duct diameter ratio of 0.53 in these subpleural ducts. This unique, self-organizing parallel duct structure likely impacts both elastic recoil and the transmission of tethering forces in healthy and diseased lungs.
Collapse
|
17
|
Hsiao CY, Teng X, Su TH, Lee PH, Kao JH, Huang KW. Improved quantitative assessment of HBV-associated liver fibrosis using second-harmonic generation microscopy with feature selection. Clin Res Hepatol Gastroenterol 2020; 44:12-20. [PMID: 31076362 DOI: 10.1016/j.clinre.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Quantitative assessments of liver fibrosis using second-harmonic generation/two-photon excited fluorescence microscopy provide greater sensitivity and accuracy than collagen proportionate area while eliminating operator-dependent variation in the staining process. In conjunction with sophisticated image analysis algorithms and feature selection, we might reduce the computation cost in future and narrow down the candidates for further clinical studies. METHODS We sampled a total of 244 liver specimens from patients with hepatitis B viral infections who underwent liver biopsy or liver resection at the National Taiwan University Hospital. The samples were then imaged using a Genesis (HistoIndex Pte. Ltd, Singapore) system, wherein second-harmonic generation microscopy was used to visualize collagen, and two-photon excited fluorescence microscopy was used to visualize other cell structures. We used 100 morphological features extracted from the images to assess correlations with METAVIR fibrosis scores. RESULTS Out of 100 quantitative measurements, 76 showed significant correlation with METAVIR scoring, thereby enabling the statistical discrimination of patients in various stages of the disease. These 76 features were also narrowed down by the nonlinear test to 10 candidate measurements, which can be further investigated in detail. CONCLUSIONS Our experimental results showed that the model with 10 selected features can beat the one with second-harmonic generation only, and performed equivalently well compared the model with 76 features, especially for early-stage discrimination. Features presenting significant correlation were used to fit a single combined index in order to predict pathological staging, thereby making it possible to reveal incremental progress during treatment.
Collapse
Affiliation(s)
- C-Y Hsiao
- Department of Surgery, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - X Teng
- HistoIndex Pte Ltd, Singapore
| | - T-H Su
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - P-H Lee
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - J-H Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - K-W Huang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Garofalakis A, Kruglik SG, Mansuryan T, Gillibert A, Thiberville L, Louradour F, Vever-Bizet C, Bourg-Heckly G. Characterization of a multicore fiber image guide for nonlinear endoscopic imaging using two-photon fluorescence and second-harmonic generation. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 31646840 PMCID: PMC7000885 DOI: 10.1117/1.jbo.24.10.106004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Multiphoton microscopy (MPM) has the capacity to record second-harmonic generation (SHG) and endogenous two-photon excitation fluorescence (2PEF) signals emitted from biological tissues. The development of fiber-based miniaturized endomicroscopes delivering pulses in the femtosecond range will allow the transfer of MPM to clinical endoscopy. We present real-time SHG and 2PEF ex vivo images using an endomicroscope, which totally complies with clinical endoscopy regulations. This system is based on the proximal scanning of a commercial multicore image guide (IG). For understanding the inhomogeneities of the recorded images, we quantitatively characterize the IG at the single-core level during nonlinear excitation. The obtained results suggest that these inhomogeneities originate from the variable core geometries that, therefore, exhibit variable nonlinear and dispersive properties. Finally, we propose a method based on modulation of dispersion precompensation to address the image inhomogeneity issue and, as a proof of concept, we demonstrate its capability to improve the nonlinear image quality.
Collapse
Affiliation(s)
- Anikitos Garofalakis
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Sergei G. Kruglik
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | | | - André Gillibert
- Rouen University Hospital, Department of Biostatistics, Rouen, France
| | - Luc Thiberville
- CHU Rouen, Service de Pneumologie, Oncologie Thoracique et Soins Intensifs Respiratoires, Rouen, France
| | | | - Christine Vever-Bizet
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Genevieve Bourg-Heckly
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| |
Collapse
|
19
|
Kazarine A, Gopal AA, Wiseman PW. Nonlinear microscopy of common histological stains reveals third harmonic generation harmonophores. Analyst 2019; 144:3239-3249. [PMID: 30920574 DOI: 10.1039/c9an00267g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since its invention over a hundred years ago, histological analysis using coloured dye staining remains the gold standard for histopathology. While these stains provide critical information for a variety of diagnostic purposes, they offer limited two-dimensional histological information. Extending classical histological analysis to three dimensions requires novel imaging approaches such as multiphoton microscopy. Multiphoton microscopy enables multimodal, three-dimensional imaging of histologically stained samples. Specifically, third harmonic generation (THG), a nonlinear optical process in which three incident photons are combined into one by the sample, allows high contrast imaging of tissues stained with absorbing dyes, which in turn act as harmonophores. While this technique has previously been applied to hematoxylin and eosin (H&E) tissue sections, we extend this approach to other commonly used histological stains to demonstrate further potential applications of the technique. We demonstrate THG imaging of both human skin and liver tissue stained with H&E, Verhoeff-Van Gieson (VVG) and Picrosirius Red stains. We find that these stains provide excellent contrast as THG harmonophores, enabling high resolution imaging of histological samples. THG imaging of the Verhoeff stain enables easy detection of elastic fibers while Picrosirius Red acts as an effective harmonophore for imaging collagen fibers of all sizes.
Collapse
Affiliation(s)
- Alexei Kazarine
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada.
| | | | | |
Collapse
|
20
|
Liu G, Cooley MA, Jarnicki AG, Borghuis T, Nair PM, Tjin G, Hsu AC, Haw TJ, Fricker M, Harrison CL, Jones B, Hansbro NG, Wark PA, Horvat JC, Argraves WS, Oliver BG, Knight DA, Burgess JK, Hansbro PM. Fibulin-1c regulates transforming growth factor-β activation in pulmonary tissue fibrosis. JCI Insight 2019; 5:124529. [PMID: 31343988 DOI: 10.1172/jci.insight.124529] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice, and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of IPF patients and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (-/-) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin and tenascin-c in collagen deposits following bleomycin challenge. In a novel mechanism of fibrosis Fbln1c bound to latent transforming growth factor (TGF)-β binding protein-1 (LTBP1) to induce TGF-β activation, and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1 and LTBP1 co-localized in lung tissues from IPF patients. Thus, Fbln1c may be a novel driver of TGF-β-induced fibrosis involving LTBP1 and may be an upstream therapeutic target.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, Georgia, USA
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Gavin Tjin
- Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Celeste L Harrison
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pathology and Medical Biology, Groningen, Netherlands.,Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Dudenkova VV, Shirmanova MV, Lukina MM, Feldshtein FI, Virkin A, Zagainova EV. Examination of Collagen Structure and State by the Second Harmonic Generation Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S89-S107. [DOI: 10.1134/s0006297919140062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Imaging of Murine Whole Lung Fibrosis by Large Scale 3D Microscopy aided by Tissue Optical Clearing. Sci Rep 2018; 8:13348. [PMID: 30190498 PMCID: PMC6127188 DOI: 10.1038/s41598-018-31182-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Pulmonary fibrosis, characterized by excessive collagen deposition in the lungs, comprises a key and debilitating component of chronic lung diseases. Methods are lacking for the direct visualization of fibrillar collagen throughout the whole murine lung, a capability that would aid the understanding of lung fibrosis. We combined an optimized organ-level optical clearing (OC) approach with large-scale, label-free multiphoton microscopy (MPM) and second harmonic generation microscopy (SHGM) to reveal the complete network of fibrillar collagen in whole murine lungs. An innate inflammation-driven model based on repetitive poly(I:C) challenge was evaluated. Following OC, mosaic MPM/SHGM imaging with 3D reconstruction and whole organ quantitative analysis revealed significant differences in collagen deposition between PBS and poly(I:C) treated lungs. Airway specific analysis in whole lung acquisitions revealed significant sub-epithelial fibrosis evident throughout the proximal conductive and distal airways with higher collagen deposition in the poly(I:C) group vs PBS group. This study establishes a new, powerful approach based on OC and MPM/SHGM imaging for 3D analysis of lung fibrosis with macroscopic views of lung pathology based on microscopy and providing a new way to analyze the whole lung while avoiding regional sampling bias.
Collapse
|
23
|
Ayala P, Vivar R, Montalva R, Olmos P, Meneses M, Borzone GR. Elastin degradation products in acute lung injury induced by gastric contents aspiration. Respir Res 2018; 19:165. [PMID: 30170599 PMCID: PMC6119254 DOI: 10.1186/s12931-018-0873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Background Gastric contents aspiration is a high-risk condition for acute lung injury (ALI). Consequences range from subclinical pneumonitis to respiratory failure, depending on the volume of aspirate. A large increment in inflammatory cells, an important source of elastase, potentially capable of damaging lung tissue, has been described in experimental models of aspiration. We hypothesized that in early stages of aspiration-induced ALI, there is proteolytic degradation of elastin, preceding collagen deposition. Our aim was to evaluate whether after a single orotracheal instillation of gastric fluid, there is evidence of elastin degradation. Methods Anesthesized Sprague-Dawley rats received a single orotracheal instillation of gastric fluid and were euthanized 4, 12 and 24 h and at day 4 after instillation (n = 6/group). We used immunodetection of soluble elastin in lung tissue and BALF and correlated BALF levels of elastin degradation products with markers of ALI. We investigated possible factors involved in elastin degradation and evaluated whether a similar pattern of elastin degradation can be found in BALF samples of patients with interstitial lung diseases known to have aspirated. Non-parametric ANOVA (Kruskall-Wallis) and linear regression analysis were used. Results We found evidence of early proteolytic degradation of lung elastin. Elastin degradation products are detected both in lung tissue and BALF in the first 24 h and are significantly reduced at day 4. They correlate significantly with ALI markers, particularly PMN cell count, are independent of acidity and have a similar molecular weight as those obtained using pancreatic elastase. Evaluation of BALF from patients revealed the presence of elastin degradation products not present in controls that are similar to those found in BALF of rats treated with gastric fluid. Conclusions A single instillation of gastric fluid into the lungs induces early proteolytic degradation of elastin, in relation to the magnitude of alveolar-capillary barrier derangement. PMN-derived proteases released during ALI are mostly responsible for this damage. BALF from patients showed elastin degradation products similar to those found in rats treated with gastric fluid. Long-lasting effects on lung elastic properties could be expected under conditions of repeated instillations of gastric fluid in experimental animals or repeated aspiration events in humans.
Collapse
Affiliation(s)
- Pedro Ayala
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Raúl Vivar
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Rebeca Montalva
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Pablo Olmos
- Department of Diabetes and Nutrition, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Meneses
- Pathology Unit, Instituto Nacional del Tórax, Santiago, Chile
| | - Gisella R Borzone
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile.
| |
Collapse
|
24
|
Tjin G, White ES, Faiz A, Sicard D, Tschumperlin DJ, Mahar A, Kable EPW, Burgess JK. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis. Dis Model Mech 2018; 10:1301-1312. [PMID: 29125826 PMCID: PMC5719253 DOI: 10.1242/dmm.030114] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with few effective therapeutic options. Structural remodelling of the extracellular matrix [i.e. collagen cross-linking mediated by the lysyl oxidase (LO) family of enzymes (LOX, LOXL1-4)] might contribute to disease pathogenesis and represent a therapeutic target. This study aimed to further our understanding of the mechanisms by which LO inhibitors might improve lung fibrosis. Lung tissues from IPF and non-IPF subjects were examined for collagen structure (second harmonic generation imaging) and LO gene (microarray analysis) and protein (immunohistochemistry and western blotting) levels. Functional effects (collagen structure and tissue stiffness using atomic force microscopy) of LO inhibitors on collagen remodelling were examined in two models, collagen hydrogels and decellularized human lung matrices. LOXL1/LOXL2 gene expression and protein levels were increased in IPF versus non-IPF. Increased collagen fibril thickness in IPF versus non-IPF lung tissues correlated with increased LOXL1/LOXL2, and decreased LOX, protein expression. β-Aminoproprionitrile (β-APN; pan-LO inhibitor) but not Compound A (LOXL2-specific inhibitor) interfered with transforming growth factor-β-induced collagen remodelling in both models. The β-APN treatment group was tested further, and β-APN was found to interfere with stiffening in the decellularized matrix model. LOXL1 activity might drive collagen remodelling in IPF lungs. The interrelationship between collagen structural remodelling and LOs is disrupted in IPF lungs. Inhibition of LO activity alleviates fibrosis by limiting fibrillar collagen cross-linking, thereby potentially impeding the formation of a pathological microenvironment in IPF. Summary: Transforming growth factor-β-induced collagen remodelling is driven by enhanced lysyl oxidase expression in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Gavin Tjin
- Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, New South Wales 2037, Australia .,Central Clinical School, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia.,Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia.,Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Victoria 3065, Australia
| | - Eric S White
- Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, 9713 GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, 9713 GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, 9713 GZ, The Netherlands
| | - Delphine Sicard
- Department of Physiology & Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Annabelle Mahar
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Eleanor P W Kable
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Janette K Burgess
- Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, New South Wales 2037, Australia .,Central Clinical School, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia.,University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, 9713 GZ, The Netherlands.,University of Groningen, University Medical Center Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen, 9713 GZ, The Netherlands.,Discipline of Pharmacology, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
25
|
Bhattacharyya S, Wang W, Qin W, Cheng K, Coulup S, Chavez S, Jiang S, Raparia K, De Almeida LMV, Stehlik C, Tamaki Z, Yin H, Varga J. TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung. JCI Insight 2018; 3:98850. [PMID: 29997297 DOI: 10.1172/jci.insight.98850] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/23/2018] [Indexed: 01/01/2023] Open
Abstract
Persistent fibrosis in multiple organs is the hallmark of systemic sclerosis (SSc). Recent genetic and genomic studies implicate TLRs and their damage-associated molecular pattern (DAMP) endogenous ligands in fibrosis. To test the hypothesis that TLR4 and its coreceptor myeloid differentiation 2 (MD2) drive fibrosis persistence, we measured MD2/TLR4 signaling in tissues from patients with fibrotic SSc, and we examined the impact of MD2 targeting using a potentially novel small molecule. Levels of MD2 and TLR4, and a TLR4-responsive gene signature, were enhanced in SSc skin biopsies. We developed a small molecule that selectively blocks MD2, which is uniquely required for TLR4 signaling. Targeting MD2/TLR4 abrogated inducible and constitutive myofibroblast transformation and matrix remodeling in fibroblast monolayers, as well as in 3-D scleroderma skin equivalents and human skin explants. Moreover, the selective TLR4 inhibitor prevented organ fibrosis in several preclinical disease models and mouse strains, and it reversed preexisting fibrosis. Fibroblast-specific deletion of TLR4 in mice afforded substantial protection from skin and lung fibrosis. By comparing experimentally generated fibroblast TLR4 gene signatures with SSc skin biopsy gene expression datasets, we identified a subset of SSc patients displaying an activated TLR4 signature. Together, results from these human and mouse studies implicate MD2/TLR4-dependent fibroblast activation as a key driver of persistent organ fibrosis. The results suggest that SSc patients with high TLR4 activity might show optimal therapeutic response to selective inhibitors of MD2/TLR4 complex formation.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Wenxia Wang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Wenyi Qin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kui Cheng
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Sara Coulup
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Sherry Chavez
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Shuangshang Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kirtee Raparia
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois, USA
| | | | - Christian Stehlik
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois, USA
| | - Zenshiro Tamaki
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hang Yin
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
26
|
Ayala P, Torres J, Vivar R, Olmos PR, Meneses M, Borzone GR. Changes in the pattern of fibrosis in the rat lung with repetitive orotracheal instillations of gastric contents: evidence of persistent collagen accumulation. Am J Physiol Lung Cell Mol Physiol 2018; 315:L390-L403. [PMID: 29745252 DOI: 10.1152/ajplung.00559.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recurrent aspiration of gastric contents has been associated with several interstitial lung diseases. Despite this association, the pathogenic role of aspiration in these diseases has been poorly studied and little is known about extracellular matrix (ECM) changes in animal models of repetitive events of aspiration. Our aim was to study the repair phase of lung injury induced by each of several instillations of gastric fluid in Sprague-Dawley rats to evaluate changes in ECM and their reversibility. Anesthetized animals received weekly orotracheal instillations of gastric fluid for 1, 2, 3, and 4 wk and were euthanized at day 7 after last instillation. For reversibility studies, another group received 7 weekly instillations and was euthanized at day 7 or 60 after last instillation. Biochemical and histological measurements were used to evaluate ECM changes. Lung hydroxyproline content increased progressively and hematoxylin and eosin, Masson's trichrome, and alpha-SMA stains showed that after a single instillation, intra-alveolar fibrosis predominated, whereas with repetitive instillations this fibrosis pattern became less prominent and interstitial fibrosis progressively became evident. Both type I and III collagen increased in intra-alveolar and interstitial fibrosis. Imbalance between matrix metalloproteinase-2 (MMP-2) activity and tissue inhibitor of metalloproteinase-2 (TIMP-2) expression was observed, favoring either collagen degradation or accumulation depending on the number of instillations. Caspase-3 activation was also dose dependent. ECM changes were partially reversible at long-term evaluation, since Masson bodies, granulomas, and foreign body giant cells disappeared, whereas interstitial collagen accumulated. In conclusion, repetitive lung instillations of gastric fluid induce progressive fibrotic changes in rat lung ECM that persist at long-term evaluation.
Collapse
Affiliation(s)
- Pedro Ayala
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Jorge Torres
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Raúl Vivar
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Pablo R Olmos
- Department of Diabetes and Nutrition, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Manuel Meneses
- Pathology Unit, Instituto Nacional del Tórax , Santiago , Chile
| | - Gisella R Borzone
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
27
|
Mostaço-Guidolin L, Rosin NL, Hackett TL. Imaging Collagen in Scar Tissue: Developments in Second Harmonic Generation Microscopy for Biomedical Applications. Int J Mol Sci 2017; 18:E1772. [PMID: 28809791 PMCID: PMC5578161 DOI: 10.3390/ijms18081772] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/13/2023] Open
Abstract
The ability to respond to injury with tissue repair is a fundamental property of all multicellular organisms. The extracellular matrix (ECM), composed of fibrillar collagens as well as a number of other components is dis-regulated during repair in many organs. In many tissues, scaring results when the balance is lost between ECM synthesis and degradation. Investigating what disrupts this balance and what effect this can have on tissue function remains an active area of research. Recent advances in the imaging of fibrillar collagen using second harmonic generation (SHG) imaging have proven useful in enhancing our understanding of the supramolecular changes that occur during scar formation and disease progression. Here, we review the physical properties of SHG, and the current nonlinear optical microscopy imaging (NLOM) systems that are used for SHG imaging. We provide an extensive review of studies that have used SHG in skin, lung, cardiovascular, tendon and ligaments, and eye tissue to understand alterations in fibrillar collagens in scar tissue. Lastly, we review the current methods of image analysis that are used to extract important information about the role of fibrillar collagens in scar formation.
Collapse
Affiliation(s)
- Leila Mostaço-Guidolin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| | - Nicole L Rosin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
28
|
Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 56:667-679. [PMID: 28459387 DOI: 10.1165/rcmb.2017-0096st] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.
Collapse
|
29
|
Kellner M, Heidrich M, Lorbeer RA, Antonopoulos GC, Knudsen L, Wrede C, Izykowski N, Grothausmann R, Jonigk D, Ochs M, Ripken T, Kühnel MP, Meyer H. A combined method for correlative 3D imaging of biological samples from macro to nano scale. Sci Rep 2016; 6:35606. [PMID: 27759114 PMCID: PMC5069670 DOI: 10.1038/srep35606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023] Open
Abstract
Correlative analysis requires examination of a specimen from macro to nano scale as well as applicability of analytical methods ranging from morphological to molecular. Accomplishing this with one and the same sample is laborious at best, due to deformation and biodegradation during measurements or intermediary preparation steps. Furthermore, data alignment using differing imaging techniques turns out to be a complex task, which considerably complicates the interconnection of results. We present correlative imaging of the accessory rat lung lobe by combining a modified Scanning Laser Optical Tomography (SLOT) setup with a specially developed sample preparation method (CRISTAL). CRISTAL is a resin-based embedding method that optically clears the specimen while allowing sectioning and preventing degradation. We applied and correlated SLOT with Multi Photon Microscopy, histological and immunofluorescence analysis as well as Transmission Electron Microscopy, all in the same sample. Thus, combining CRISTAL with SLOT enables the correlative utilization of a vast variety of imaging techniques.
Collapse
Affiliation(s)
- Manuela Kellner
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marko Heidrich
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany
| | | | | | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Nicole Izykowski
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Roman Grothausmann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Tammo Ripken
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany
| | - Mark P Kühnel
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Heiko Meyer
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Monaghan MG, Kroll S, Brucker SY, Schenke-Layland K. Enabling Multiphoton and Second Harmonic Generation Imaging in Paraffin-Embedded and Histologically Stained Sections. Tissue Eng Part C Methods 2016; 22:517-23. [PMID: 27018844 PMCID: PMC4922008 DOI: 10.1089/ten.tec.2016.0071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nonlinear microscopy, namely multiphoton imaging and second harmonic generation (SHG), is an established noninvasive technique useful for the imaging of extracellular matrix (ECM). Typically, measurements are performed in vivo on freshly excised tissues or biopsies. In this article, we describe the effect of rehydrating paraffin-embedded sections on multiphoton and SHG emission signals and the acquisition of nonlinear images from hematoxylin and eosin (H&E)-stained sections before and after a destaining protocol. Our results reveal that bringing tissue sections to a physiological state yields a significant improvement in nonlinear signals, particularly in SHG. Additionally, the destaining of sections previously processed with H&E staining significantly improves their SHG emission signals during imaging, thereby allowing sufficient analysis of collagen in these sections. These results are important for researchers and pathologists to obtain additional information from paraffin-embedded tissues and archived samples to perform retrospective analysis of the ECM or gain additional information from rare samples.
Collapse
Affiliation(s)
- Michael G Monaghan
- 1 Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen , Tübingen, Germany
| | - Sebastian Kroll
- 1 Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen , Tübingen, Germany
| | - Sara Y Brucker
- 1 Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen , Tübingen, Germany
| | - Katja Schenke-Layland
- 1 Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen , Tübingen, Germany .,2 Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany .,3 Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California , Los Angeles, California
| |
Collapse
|
31
|
Kim HJ, Tashkin DP, Gjertson DW, Brown MS, Kleerup E, Chong S, Belperio JA, Roth MD, Abtin F, Elashoff R, Tseng CH, Khanna D, Goldin JG. Transitions to different patterns of interstitial lung disease in scleroderma with and without treatment. Ann Rheum Dis 2016; 75:1367-71. [PMID: 26757749 DOI: 10.1136/annrheumdis-2015-208929] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/11/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The aim is to investigate whether the 12-month quantitative changes in high-resolution CT (HRCT) measures of interstitial lung disease (ILD) are different, and to understand how they change, in patients with scleroderma-related ILD who receive drug therapy versus placebo. METHODS HRCT images were acquired at baseline and at 12 months in 83 participants in Scleroderma Lung Study I, a clinical trial comparing treatment with oral cyclophosphamide versus placebo. A computer-aided model was used to quantify the extent of fibrotic reticulation, ground glass and honeycomb patterns and quantitative ILD (QILD: sum of these patterns) in the whole lung and the lung zone (upper, middle or lower) of maximal disease involvement. RESULTS Mean QILD score decreased by 3.9% in the cyclophosphamide group while increasing by 4.2% in the placebo group in the most severe zone (p=0.01) and decreased by 3.2% in the cyclophosphamide group while increasing by 2.2% in the placebo group in the whole lung (p=0.03). Transitional probabilities demonstrated greater changes from a fibrotic to either a ground glass or normal pattern in the cyclophosphamide group and the reverse in the placebo group. CONCLUSIONS Changes in quantitative HRCT measures of ILD provide a sensitive indication of disease progression and response to treatment. TRIAL REGISTRATION NUMBER NCT00004563; Post-results.
Collapse
Affiliation(s)
- Hyun J Kim
- Department of Radiological Science, Center for Computer Vision Imaging Biomarker, David Geffen School of Medicine at UCLA, Los Angeles, California, USA Department of Biostatistics, Fielding School of Public Health at UCLA, Los Angeles, California, USA
| | - Donald P Tashkin
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - David W Gjertson
- Department of Radiological Science, Center for Computer Vision Imaging Biomarker, David Geffen School of Medicine at UCLA, Los Angeles, California, USA Department of Biostatistics, Fielding School of Public Health at UCLA, Los Angeles, California, USA
| | - Matthew S Brown
- Department of Radiological Science, Center for Computer Vision Imaging Biomarker, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Eric Kleerup
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Semin Chong
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michael D Roth
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Fereidoun Abtin
- Department of Radiological Science, Center for Computer Vision Imaging Biomarker, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Robert Elashoff
- Department of Biostatistics, Fielding School of Public Health at UCLA, Los Angeles, California, USA Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Chi-Hong Tseng
- Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan G Goldin
- Department of Radiological Science, Center for Computer Vision Imaging Biomarker, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
32
|
Boddupalli A, Bratlie KM. Multimodal imaging of harmonophores and application of high content imaging for early cancer detection. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.md.2015.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|