1
|
Correnti S, Preianò M, Gamboni F, Stephenson D, Pelaia C, Pelaia G, Savino R, D'Alessandro A, Terracciano R. An integrated metabo-lipidomics profile of induced sputum for the identification of novel biomarkers in the differential diagnosis of asthma and COPD. J Transl Med 2024; 22:301. [PMID: 38521955 PMCID: PMC10960495 DOI: 10.1186/s12967-024-05100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Due to their complexity and to the presence of common clinical features, differentiation between asthma and chronic obstructive pulmonary disease (COPD) can be a challenging task, complicated in such cases also by asthma-COPD overlap syndrome. The distinct immune/inflammatory and structural substrates of COPD and asthma are responsible for significant differences in the responses to standard pharmacologic treatments. Therefore, an accurate diagnosis is of central relevance to assure the appropriate therapeutic intervention in order to achieve safe and effective patient care. Induced sputum (IS) accurately mirrors inflammation in the airways, providing a more direct picture of lung cell metabolism in comparison to those specimen that reflect analytes in the systemic circulation. METHODS An integrated untargeted metabolomics and lipidomics analysis was performed in IS of asthmatic (n = 15) and COPD (n = 22) patients based on Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry (UHPLC-MS) and UHPLC-tandem MS (UHPLC-MS/MS). Partial Least Squares-Discriminant Analysis (PLS-DA) was applied to resulting dataset. The analysis of main enriched metabolic pathways and the association of the preliminary metabolites/lipids pattern identified to clinical parameters of asthma/COPD differentiation were explored. Multivariate ROC analysis was performed in order to determine the discriminatory power and the reliability of the putative biomarkers for diagnosis between COPD and asthma. RESULTS PLS-DA indicated a clear separation between COPD and asthmatic patients. Among the 15 selected candidate biomarkers based on Variable Importance in Projection scores, putrescine showed the highest score. A differential IS bio-signature of 22 metabolites and lipids was found, which showed statistically significant variations between asthma and COPD. Of these 22 compounds, 18 were decreased and 4 increased in COPD compared to asthmatic patients. The IS levels of Phosphatidylethanolamine (PE) (34:1), Phosphatidylglycerol (PG) (18:1;18:2) and spermine were significantly higher in asthmatic subjects compared to COPD. CONCLUSIONS This is the first pilot study to analyse the IS metabolomics/lipidomics signatures relevant in discriminating asthma vs COPD. The role of polyamines, of 6-Hydroxykynurenic acid and of D-rhamnose as well as of other important players related to the alteration of glycerophospholipid, aminoacid/biotin and energy metabolism provided the construction of a diagnostic model that, if validated on a larger prospective cohort, might be used to rapidly and accurately discriminate asthma from COPD.
Collapse
Affiliation(s)
- Serena Correnti
- Department of Health Sciences, Magna Græcia University, 88100, Catanzaro, Italy.
| | | | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, Magna Græcia University, 88100, Catanzaro, Italy
| | - Rocco Savino
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100, Catanzaro, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Xiao Q, Tan S, Liu C, Liu B, Li Y, Guo Y, Hu P, Su Z, Chen S, Lei W, Li X, Su M, Rong F. Characterization of the Microbiome and Host's Metabolites of the Lower Respiratory Tract During Acute Community-Acquired Pneumonia Identifies Potential Novel Markers. Infect Drug Resist 2023; 16:581-594. [PMID: 36726385 PMCID: PMC9885967 DOI: 10.2147/idr.s394779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Purpose Community-acquired pneumonia (CAP) is one of the most frequently encountered infectious diseases worldwide. Few studies have explored the microbial composition of the lower respiratory tract (LRT) and host metabolites of CAP. We analyzed the microbial composition of the LRT and levels of host metabolites to explore new biomarkers for CAP. Patients and Methods Bronchoalveolar lavage fluid (BALF) was collected from 28 CAP patients and 20 healthy individuals. Following centrifugation, BALF pellets were used for amplicon sequencing of a variable region of the bacterial 16S rDNA gene to characterize the microbial composition. Non-targeted metabolomics was used to detect host's metabolites in the supernatant. Results Compared with healthy individuals, the bacterial alpha diversity in the LRT of CAP patients was significantly lower in CAP patients (p<0.05). On the bacterial genus level, over 20 genera were detected with lower relative abundance (p<0.05), while the relative abundance of Ruminiclostridium-6 was significantly higher in CAP patients. The levels of the host metabolites dimethyldisulfide, choline, pyrimidine, oleic acid and N-acetyl-neuraminic acid were all increased in BALF of CAP patients (p<0.05), while concentrations of lysophosphatidylcholines (LPC (12:0/0:0)) and phosphatidic acid (PA (20:4/2:0)) were decreased (p<0.05). Furthermore, the relative abundance of Parvimonas, Treponema-2, Moraxella, Aggregatibacter, Filifactor, Fusobacterium, Lautropia and Neisseria negatively correlated with concentrations of oleic acid (p<0.05). A negative correlation between the relative abundance of Treponema-2, Moraxella, Filifactor, Fusobacterium and dimethyldisulfide concentrations was also observed (p<0.05). In contrast, the relative abundance of Treponema-2, Moraxella, Filifactor, and Fusobacterium was found to be positively associated with concentrations of LPC (12:0/0:0) and PA (20:4/2:0) (p<0.05). Conclusion The composition of the LRT microbiome differed between healthy individuals and CAP patients. We propose that some respiratory microbial components and host metabolites are potentially novel diagnostic markers of CAP.
Collapse
Affiliation(s)
- Qiang Xiao
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China
| | - Shukun Tan
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China,Respiratory Medicine of the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528222, People’s Republic of China
| | - Changzhi Liu
- Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China
| | - Bin Liu
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China
| | - Yingxiong Li
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China
| | - Yehui Guo
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China
| | - Peiyan Hu
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China
| | - Zhuoying Su
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China
| | - Siqin Chen
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China
| | - Wei Lei
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China
| | - Xi Li
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China
| | - Minhong Su
- Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China,Minhong Su, Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People’s Republic of China, Tel +86-20-62782290, Email
| | - Fu Rong
- Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde Foshan), Foshan, 528300, People’s Republic of China,Correspondence: Fu Rong, Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), No. 1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, People’s Republic of China, Tel +86-757-22318689, Email
| |
Collapse
|
3
|
Yao Y, Chen X, Yang M, Han Y, Xue T, Zhang H, Wang T, Chen W, Qiu X, Que C, Zheng M, Zhu T. Neuroendocrine stress hormones associated with short-term exposure to nitrogen dioxide and fine particulate matter in individuals with and without chronic obstructive pulmonary disease: A panel study in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119822. [PMID: 35870527 DOI: 10.1016/j.envpol.2022.119822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is a major trigger of chronic obstructive pulmonary disease (COPD). Dysregulation of the neuroendocrine hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal medullary (SAM) axes is essential in progression of COPD. However, it is not clear whether air pollution exposure is associated with neuroendocrine responses in individuals with and without COPD. Based on a panel study of 51 stable COPD patients and 78 non-COPD participants with 384 clinical visits, we measured the morning serum levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol, norepinephrine, and epinephrine as indicators of stress hormones released from the HPA and SAM axes. Ambient nitrogen dioxide (NO2), fine particulate matter (PM2.5), and meteorological conditions were continuously monitored at the station from 2 weeks before the start of clinical visits. Linear mixed-effects models were used to estimate associations between differences in stress hormones following an average of 1-14-day exposures to NO2 and PM2.5. The average 1 day air pollutant levels prior to the clinical visits were 24.4 ± 14.0 ppb for NO2 and 55.6 ± 41.5 μg/m3 for PM2.5. We observed significant increases in CRH, ACTH, and norepinephrine, and decreases in cortisol and epinephrine with interquartile range increase in the average NO2 and PM2.5 concentrations in all participants. In the stratified analyses, we identified significant between-group difference in epinephrine following NO2 exposure in individuals with and without COPD. These results may suggest the susceptibility of COPD patients to the neuroendocrine responses associated with short-term air pollution exposure.
Collapse
Affiliation(s)
- Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Shenzhen, 518049, China
| | - Meigui Yang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, W12 0BZ, UK
| | - Tao Xue
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; School of Public Health, Peking University, Beijing, 100191, China
| | - Hanxiyue Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Teng Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Li GX, Duan YY, Wang Y, Bian LJ, Xiong MR, Song WP, Zhang X, Li B, Dai YL, Lu JW, Li M, Liu ZG, Liu SG, Zhang L, Yao HJ, Shao RG, Li L. Potential urinary biomarkers in young adults with short-term exposure to particulate matter and bioaerosols identified using an unbiased metabolomic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119308. [PMID: 35443204 DOI: 10.1016/j.envpol.2022.119308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Numerous epidemiological studies have shown a close relationship between outdoor air pollution and increased risks for cancer, infection, and cardiopulmonary diseases. However, very few studies have investigated the potential health effects of coexposure to airborne particulate matter (PM) and bioaerosols through the transmission of infectious agents, particularly under the current circumstances of the coronavirus disease 2019 pandemic. In this study, we aimed to identify urinary metabolite biomarkers that might serve as clinically predictive or diagnostic standards for relevant diseases in a real-time manner. We performed an unbiased gas/liquid chromatography-mass spectroscopy (GC/LC-MS) approach to detect urinary metabolites in 92 samples from young healthy individuals collected at three different time points after exposure to clean air, polluted ambient, or purified air, as well as two additional time points after air repollution or repurification. Subsequently, we compared the metabolomic profiles between the two time points using an integrated analysis, along with Kyoto Encyclopedia of Genes and Genomes-enriched pathway and time-series analysis. We identified 33 and 155 differential metabolites (DMs) associated with PM and bioaerosol exposure using GC/LC-MS and follow-up analyses, respectively. Our findings suggest that 16-dehydroprogesterone and 4-hydroxyphenylethanol in urine samples may serve as potential biomarkers to predict or diagnose PM- or bioaerosol-related diseases, respectively. The results indicated apparent differences between PM- and bioaerosol-associated DMs at five different time points and revealed dynamic alterations in the urinary metabolic profiles of young healthy humans with cyclic exposure to clean and polluted air environments. Our findings will help in investigating the detrimental health effects of short-term coexposure to airborne PM and bioaerosols in a real-time manner and improve clinically predictive or diagnostic strategies for preventing air pollution-related diseases.
Collapse
Affiliation(s)
- Guang-Xi Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Yuan-Yuan Duan
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Yi Wang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Ling-Jie Bian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No.116 Cuiping Street, Tongzhou District, Beijing, 100010, China.
| | - Meng-Ran Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Wen-Pin Song
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| | - Xia Zhang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Biao Li
- Shanghai Lu Ming Biological Technology Co. Ltd., Shanghai, 100037, China.
| | - Yu-Long Dai
- Shanghai Lu Ming Biological Technology Co. Ltd., Shanghai, 100037, China.
| | - Jia-Wei Lu
- Shanghai Lu Ming Biological Technology Co. Ltd., Shanghai, 100037, China.
| | - Meng Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Zhi-Guo Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Shi-Gang Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 BeiXianGe St, XiCheng District, Beijing, 100053, China.
| | - Li Zhang
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| | - Hong-Juan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| | - Rong-Guang Shao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), NO.1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
5
|
Infection Biomarkers Based on Metabolomics. Metabolites 2022; 12:metabo12020092. [PMID: 35208167 PMCID: PMC8877834 DOI: 10.3390/metabo12020092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
Current infection biomarkers are highly limited since they have low capability to predict infection in the presence of confounding processes such as in non-infectious inflammatory processes, low capability to predict disease outcomes and have limited applications to guide and evaluate therapeutic regimes. Therefore, it is critical to discover and develop new and effective clinical infection biomarkers, especially applicable in patients at risk of developing severe illness and critically ill patients. Ideal biomarkers would effectively help physicians with better patient management, leading to a decrease of severe outcomes, personalize therapies, minimize antibiotics overuse and hospitalization time, and significantly improve patient survival. Metabolomics, by providing a direct insight into the functional metabolic outcome of an organism, presents a highly appealing strategy to discover these biomarkers. The present work reviews the desired main characteristics of infection biomarkers, the main metabolomics strategies to discover these biomarkers and the next steps for developing the area towards effective clinical biomarkers.
Collapse
|
6
|
McCreath G, Whitfield PD, Roe AJ, Watson MJ, Sim MAB. A Metabolomics approach for the diagnosis Of SecondAry InfeCtions in COVID-19 (MOSAIC): a study protocol. BMC Infect Dis 2021; 21:1204. [PMID: 34856937 PMCID: PMC8637512 DOI: 10.1186/s12879-021-06832-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background Critically ill patients with COVID-19 are at an increased risk of developing secondary bacterial infections. These are both difficult to diagnose and are associated with an increased mortality. Metabolomics may aid clinicians in diagnosing secondary bacterial infections in COVID-19 through identification and quantification of disease specific biomarkers, with the aim of identifying underlying causative microorganisms and directing antimicrobial therapy. Methods This is a multi-centre prospective diagnostic observational study. Patients with COVID-19 will be recruited from critical care units in three Scottish hospitals. Three serial blood samples will be taken from patients, and an additional sample taken if a patient shows clinical or microbiological evidence of secondary infection. Samples will be analysed using LC–MS and subjected to bioinformatic processing and statistical analysis to explore the metabolite changes associated with bacterial infections in COVID-19 patients. Comparisons of the data sets will be made with standard microbiological and biochemical methods of diagnosing infection. Discussion Metabolomics analyses may provide additional strategies for identifying secondary infections, which might permit faster initiation of specific tailored antimicrobial therapy to critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Gordan McCreath
- Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, University Place, Glasgow, Scotland.
| | - Phillip D Whitfield
- Glasgow Polyomics, University of Glasgow, Garscube Campus, Glasgow, Scotland
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, University Place, Glasgow, Scotland
| | - Malcolm J Watson
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasglow, G12 8QQ, Scotland
| | - Malcolm A B Sim
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasglow, G12 8QQ, Scotland
| |
Collapse
|
7
|
Mahoney LB, Esther CR, May K, Rosen R. Metabolomic profiling of extraesophageal reflux disease in children. Clin Transl Sci 2021; 14:2025-2033. [PMID: 34058076 PMCID: PMC8504841 DOI: 10.1111/cts.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Although respiratory symptoms in children are often attributed to gastroesophageal reflux disease, establishing a clear diagnosis of extraesophageal reflux disease (EERD) can be challenging, as there are no sensitive or specific EERD biomarkers. The aim of this study was to evaluate the metabolite profile in bronchoalveolar (BAL) fluid from children with suspected EERD and assess the impact of reflux treatment on these metabolites. In this prospective pilot study, we performed nontargeted global metabolomic profiling on BAL fluid from 43 children undergoing testing with bronchoscopy, upper endoscopy, and multichannel intraluminal impedance with pH (pH-MII) for evaluation of chronic respiratory symptoms. Twenty-three (54%) patients had an abnormal pH-MII study. Seventeen (40%) patients were on proton pump inhibitors (PPIs) for testing. Levels of histamine, malate, adenosine 5'-monophosphate, and ascorbate were significantly lower in subjects with abnormal pH-MII studies compared to those normal studies. Furthermore, in children off PPI therapy, those with abnormal pH-MII studies had robust increases in a number of glycerophospholipids within phospholipid metabolic pathways, including derivatives of glycerophosphorylcholine, glycerophosphoglycerol, and glycerophosphoinositol, compared to those with normal pH-MII studies. These findings offer insight into the impact of reflux and PPIs on the lungs and provide a foundation for future studies using targeted metabolomic analysis to identify potential biomarkers of EERD.
Collapse
Affiliation(s)
- Lisa B Mahoney
- Aerodigestive Center, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Charles R Esther
- Pediatric Pulmonology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kara May
- Aerodigestive Center, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rachel Rosen
- Aerodigestive Center, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Elmsjö A, Vikingsson S, Söderberg C, Kugelberg FC, Green H. Post-Mortem Metabolomics: A Novel Approach in Clinical Biomarker Discovery and a Potential Tool in Death Investigations. Chem Res Toxicol 2021; 34:1496-1502. [PMID: 33890460 DOI: 10.1021/acs.chemrestox.0c00448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metabolomics can be defined as the scientific field aiming at characterizing all low-weight molecules (so-called metabolites) in a biological system. At the time of death, the level and type of metabolites present will most likely reflect the events leading up to death.In this proof of concept study, we investigated the potential of post-mortem metabolomics by identifying post-mortem biomarkers, correlated these identified biomarkers with those reported in clinical metabolomics studies, and finally validated the models predictability of unknown autopsy cases. In this post-mortem metabolomics setting, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry data from 404 post-mortem samples, including pneumonia cases and control cases, were processed using XCMS (R). Potential biomarkers were evaluated using principal component analysis and orthogonal partial least squares-discriminant analysis. Biomarkers were putatively annotated using an in-house database and the online databases METLIN and HMDB. The results showed that clear group separation was observed between pneumonia cases and control cases. The metabolites responsible for group separation belonged to a broad set of biological classes, such as amino acids, carnitines, lipids, nicotinamides, nucleotides, and steroids. Many of these metabolites have been reported as important in clinical manifestation of pneumonia. For the unknown autopsy cases, the sensitivity and specificity were 86 and 84%, respectively. This study successfully investigated the robustness and usability of post-mortem metabolomics in death investigations. The identified post-mortem biomarkers correlated well with biomarkers reported and identified through clinical research.
Collapse
Affiliation(s)
- Albert Elmsjö
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| | - Svante Vikingsson
- RTI International, Research Triangle Park, North Carolina 27709, United States.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Carl Söderberg
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden
| | - Fredrik C Kugelberg
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 58 Linköping, Sweden.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
9
|
Arginine and Arginine/ADMA Ratio Predict 90-Day Mortality in Patients with Out-of-Hospital Cardiac Arrest-Results from the Prospective, Observational COMMUNICATE Trial. J Clin Med 2020; 9:jcm9123815. [PMID: 33255752 PMCID: PMC7760544 DOI: 10.3390/jcm9123815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: In patients with shock, the L-arginine nitric oxide pathway is activated, causing an elevation of nitric oxide, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels. Whether these metabolites provide prognostic information in patients after out-of-hospital cardiac arrest (OHCA) remains unclear. (2) Methods: We prospectively included OHCA patients, recorded clinical parameters and measured plasma ADMA, SDMA and Arginine levels by liquid chromatography tandem mass spectrometry (LC-MS). The primary endpoint was 90-day mortality. (3) Results: Of 263 patients, 130 (49.4%) died within 90 days after OHCA. Compared to survivors, non-survivors had significantly higher levels of ADMA and lower Arginine and Arginine/ADMA ratios in univariable regression analyses. Arginine levels and Arginine/ADMA ratio were significantly associated with 90-day mortality (OR 0.51 (95%CI 0.34 to 0.76), p < 0.01 and OR 0.40 (95%CI 0.26 to 0.61), p < 0.001, respectively). These associations remained significant in several multivariable models. Arginine/ADMA ratio had the highest predictive value with an area under the curve (AUC) of 0.67 for 90-day mortality. Results for secondary outcomes were similar with significant associations with in-hospital mortality and neurological outcome. (4) Conclusion: Arginine and Arginine/ADMA ratio were independently associated with 90-day mortality and other adverse outcomes in patients after OHCA. Whether therapeutic modification of the L-arginine-nitric oxide pathway has the potential to improve outcome should be evaluated.
Collapse
|
10
|
Hochstrasser SR, Metzger K, Vincent AM, Becker C, Keller AKJ, Beck K, Perrig S, Tisljar K, Sutter R, Schuetz P, Bernasconi L, Neyer P, Marsch S, Hunziker S. Trimethylamine-N-oxide (TMAO) predicts short- and long-term mortality and poor neurological outcome in out-of-hospital cardiac arrest patients. Clin Chem Lab Med 2020; 59:393-402. [PMID: 32866111 DOI: 10.1515/cclm-2020-0159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Objectives Prior research found the gut microbiota-dependent and pro-atherogenic molecule trimethylamine-N-oxide (TMAO) to be associated with cardiovascular events as well as all-cause mortality in different patient populations with cardiovascular disease. Our aim was to investigate the prognostic value of TMAO regarding clinical outcomes in patients after out-of-hospital cardiac arrest (OHCA). Methods We included consecutive OHCA patients upon intensive care unit admission into this prospective observational study between October 2012 and May 2016. We studied associations of admission serum TMAO with in-hospital mortality (primary endpoint), 90-day mortality and neurological outcome defined by the Cerebral Performance Category (CPC) scale. Results We included 258 OHCA patients of which 44.6% died during hospitalization. Hospital non-survivors showed significantly higher admission TMAO levels (μmol L-1) compared to hospital survivors (median interquartile range (IQR) 13.2 (6.6-34.9) vs. 6.4 (2.9-15.9), p<0.001). After multivariate adjustment for other prognostic factors, TMAO levels were significantly associated with in-hospital mortality (adjusted odds ratios (OR) 2.1, 95%CI 1.1-4.2, p=0.026). Results for secondary outcomes were similar with significant associations with 90-day mortality and neurological outcome in univariate analyses. Conclusions In patients after OHCA, TMAO levels were independently associated with in-hospital mortality and other adverse clinical outcomes and may help to improve prognostication for these patients in the future. Whether TMAO levels can be influenced by nutritional interventions should be addressed in future studies.
Collapse
Affiliation(s)
- Seraina R Hochstrasser
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Kerstin Metzger
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Alessia M Vincent
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Christoph Becker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Annalena K J Keller
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland.,Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Katharina Beck
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Sebastian Perrig
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Kai Tisljar
- Medical Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Raoul Sutter
- Medical Intensive Care Unit, University Hospital Basel, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Philipp Schuetz
- Department of Neurology, University Hospital Basel, Basel, Switzerland.,Kantonsspital Aarau, Department of Internal Medicine, Aarau, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Stephan Marsch
- Medical Intensive Care Unit, University Hospital Basel, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Sabina Hunziker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland.,Faculty of Medicine, University of Basel, Basel, Switzerland.,Medical Intensive Care Unit, University Hospital Basel, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
Herzog N, Laager R, Thommen E, Widmer M, Vincent AM, Keller A, Becker C, Beck K, Perrig S, Bernasconi L, Neyer P, Marsch S, Schuetz P, Sutter R, Tisljar K, Hunziker S. Association of Taurine with In-Hospital Mortality in Patients after Out-of-Hospital Cardiac Arrest: Results from the Prospective, Observational COMMUNICATE Study. J Clin Med 2020; 9:jcm9051405. [PMID: 32397548 PMCID: PMC7290691 DOI: 10.3390/jcm9051405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Studies have suggested that taurine may have neuro- and cardio-protective functions, but there is little research looking at taurine levels in patients after out-of-hospital cardiac arrest (OHCA). Our aim was to evaluate the association of taurine with mortality and neurological deficits in a well-defined cohort of OHCA patients. Methods: We prospectively measured serum taurine concentration in OHCA patients upon admission to the intensive care unit (ICU) of the University Hospital Basel (Switzerland). We analyzed the association of taurine levels and in-hospital mortality (primary endpoint). We further evaluated neurological outcomes assessed by the cerebral performance category scale. We calculated logistic regression analyses and report odds ratios (OR) and 95% confidence intervals (CI). We calculated different predefined multivariable regression models including demographic variables, comorbidities, initial vital signs, initial blood markers and resuscitation measures. We assessed discrimination by means of area under the receiver operating curve (ROC). Results: Of 240 included patients, 130 (54.2%) survived until hospital discharge and 110 (45.8%) had a favorable neurological outcome. Taurine levels were significantly associated with higher in-hospital mortality (adjusted OR 4.12 (95%CI 1.22 to 13.91), p = 0.02). In addition, a significant association between taurine concentration and a poor neurological outcome was observed (adjusted OR of 3.71 (95%CI 1.13 to 12.25), p = 0.03). Area under the curve (AUC) suggested only low discrimination for both endpoints (0.57 and 0.57, respectively). Conclusion: Admission taurine levels are associated with mortality and neurological outcomes in OHCA patients and may help in the risk assessment of this vulnerable population. Further studies are needed to assess whether therapeutic modulation of taurine may improve clinical outcomes after cardiac arrest.
Collapse
Affiliation(s)
- Naemi Herzog
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Rahel Laager
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Emanuel Thommen
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Madlaina Widmer
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Alessia M. Vincent
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Annalena Keller
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Christoph Becker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; (S.M.); (P.S.); (R.S.)
- Emergency Department, University Hospital Basel, 4031 Basel, Switzerland
| | - Katharina Beck
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Sebastian Perrig
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, 5000 Aarau, Switzerland; (L.B.); (P.N.)
| | - Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, 5000 Aarau, Switzerland; (L.B.); (P.N.)
| | - Stephan Marsch
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; (S.M.); (P.S.); (R.S.)
- Department of Intensive Care, University Hospital Basel, 4031 Basel, Switzerland;
| | - Philipp Schuetz
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; (S.M.); (P.S.); (R.S.)
- Department of Internal Medicine, Kantonsspital Aarau, 5000 Aarau, Switzerland
| | - Raoul Sutter
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; (S.M.); (P.S.); (R.S.)
- Department of Intensive Care, University Hospital Basel, 4031 Basel, Switzerland;
- Department of Neurology, University Hospital Basel, 4031 Basel, Switzerland
| | - Kai Tisljar
- Department of Intensive Care, University Hospital Basel, 4031 Basel, Switzerland;
| | - Sabina Hunziker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, 4031 Basel, Switzerland; (N.H.); (R.L.); (E.T.); (M.W.); (A.M.V.); (A.K.); (C.B.); (K.B.); (S.P.)
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland; (S.M.); (P.S.); (R.S.)
- Department of Intensive Care, University Hospital Basel, 4031 Basel, Switzerland;
- Correspondence: ; Tel.: +41-61-265-25-25
| |
Collapse
|
12
|
Widmer M, Thommen EB, Becker C, Beck K, Vincent AM, Perrig S, Keller A, Bernasconi L, Neyer P, Marsch S, Pargger H, Sutter R, Tisljar K, Hunziker S. Association of acyl carnitines and mortality in out-of-hospital-cardiac-arrest patients: Results of a prospective observational study. J Crit Care 2020; 58:20-26. [PMID: 32279017 DOI: 10.1016/j.jcrc.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Out-of-hospital cardiac arrest (OHCA) is a leading cause of mortality, yet the prediction of its outcome remains challenging. Serum Acyl Carnitines (ACs), a biomarker of beta-oxidation, have been associated with cardiovascular events. We evaluated the association of different AC species with mortality and neurological outcome in a cohort of OHCA patients. MATERIAL AND METHODS We consecutively included OHCA patients in this prospective observational study upon admission to the intensive care unit. We studied the association of thirty-nine different ACs measured at admission and 30-day mortality (primary endpoint), as well as neurological outcome at hospital discharge (secondary endpoint) using the Cerebral Performance Category scale. Multivariate models were adjusted for age, gender, comorbidities and shock markers. RESULTS Of 281 included patients, 137 (48.8%) died within 30 days and of the 144 survivors (51.2%), 15 (10.4%) had poor neurological outcome. While several ACs were associated with mortality, AC C2 had the highest prognostic value for mortality (fully-adjusted odds ratio 4.85 (95%CI 1.8 to 13.06, p < .01), area under curve (AUC) 0.65) and neurological outcome (fully-adjusted odds ratio 3.96 (95%CI 1.47 to 10.66, p < .01), AUC 0.63). CONCLUSIONS ACs are interesting surrogate biomarkers that are associated with mortality and poor neurological outcome in patients after OHCA and may help to improve the understanding of pathophysiological mechanisms and risk stratification.
Collapse
Affiliation(s)
- Madlaina Widmer
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Emanuel B Thommen
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Christoph Becker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland; Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Emergency Department, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Katharina Beck
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Alessia M Vincent
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Sebastian Perrig
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Annalena Keller
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Stephan Marsch
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Hans Pargger
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Raoul Sutter
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Kai Tisljar
- Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Sabina Hunziker
- Department of Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031 Basel, Switzerland; Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland; Departement of Intensive Care, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
| |
Collapse
|
13
|
Low Plasma Sphingomyelin Levels Show a Weak Association with Poor Neurological Outcome in Cardiac Arrest Patients: Results from the Prospective, Observational COMMUNICATE Trial. J Clin Med 2020; 9:jcm9040897. [PMID: 32218134 PMCID: PMC7230482 DOI: 10.3390/jcm9040897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 11/30/2022] Open
Abstract
There is interest in novel blood markers to improve risk stratification in patients presenting with cardiac arrest. We assessed associations of different plasma sphingomyelin concentrations and neurological outcome in patients with cardiac arrest. In this prospective observational study, adult patients with cardiac arrest were included upon admission to the intensive care unit (ICU). We studied associations of admission plasma levels of 15 different sphingomyelin species with neurological outcome at hospital discharge (primary endpoint) defined by the modified Rankin Scale by the calculation of univariable and multivariable logistic regression models adjusted for age, gender, and clinical shock markers. We included 290 patients (72% males, median age 65 years) with 162 (56%) having poor neurological outcome at hospital discharge. The three sphingomyelin species SM C24:0, SM(OH) C22:1, and SM(OH) C24:1 were significantly lower in patients with poor neurological outcome compared to patients with favorable outcome with areas under the curve (AUC) of 0.58, 0.59, and 0.59. SM(OH) C24:1 was independently associated with poor neurological outcome in a fully-adjusted regression model (adjusted odds ratio per log-transformed unit increase in SM(OH) C24:1 blood level 0.18, 95% CI 0.04 to 0.87, p = 0.033). Results were similar for 1-year mortality. Low admission sphingomyelin levels showed a weak association with poor neurological outcome in patients after cardiac arrest. If validated in future studies, a better understanding of biological sphingomyelin function during cardiac arrest may help to further advance the therapeutic approach and risk stratification in this vulnerable patient group.
Collapse
|
14
|
Viswan A, Singh C, Kayastha AM, Azim A, Sinha N. An NMR based panorama of the heterogeneous biology of acute respiratory distress syndrome (ARDS) from the standpoint of metabolic biomarkers. NMR IN BIOMEDICINE 2020; 33:e4192. [PMID: 31733128 DOI: 10.1002/nbm.4192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/16/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS), manifested by intricate etiology and pathophysiology, demands careful clinical surveillance due to its high mortality and imminent life support measures. NMR based metabolomics provides an approach for ARDS which culminates from a wide spectrum of illness thereby confounding early manifestation and prognosis predictors. 1 H NMR with its manifold applications in critical disease settings can unravel the biomarker of ARDS thus holding potent implications by providing surrogate endpoints of clinical utility. NMR metabolomics which is the current apogee platform of omics trilogy is contributing towards the possible panacea of ARDS by subsequent validation of biomarker credential on larger datasets. In the present review, the physiological derangements that jeopardize the whole metabolic functioning in ARDS are exploited and the biomarkers involved in progression are addressed and substantiated. The following sections of the review also outline the clinical spectrum of ARDS from the standpoint of NMR based metabolomics which is an emerging element of systems biology. ARDS is the main premise of intensivists textbook, which has been thoroughly reviewed along with its incidence, progressive stages of severity, new proposed diagnostic definition, and the preventive measures and the current pitfalls of clinical management. The advent of new therapies, the need for biomarkers, the methodology and the contemporary promising approaches needed to improve survival and address heterogeneity have also been evaluated. The review has been stepwise illustrated with potent biometrics employed to selectively pool out differential metabolites as diagnostic markers and outcome predictors. The following sections have been drafted with an objective to better understand ARDS mechanisms with predictive and precise biomarkers detected so far on the basis of underlying physiological parameters having close proximity to diseased phenotype. The aim of this review is to stimulate interest in conducting more studies to help resolve the complex heterogeneity of ARDS with biomarkers of clinical utility and relevance.
Collapse
Affiliation(s)
- Akhila Viswan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
- Faculty of Engineering and Technology, Dr. A. P. J Abdul Kalam Technical University, Lucknow, India
| | - Chandan Singh
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Afzal Azim
- Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) - Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
15
|
Del Borrello G, Stocchero M, Giordano G, Pirillo P, Zanconato S, Da Dalt L, Carraro S, Esposito S, Baraldi E. New insights into pediatric community-acquired pneumonia gained from untargeted metabolomics: A preliminary study. Pediatr Pulmonol 2020; 55:418-425. [PMID: 31821737 PMCID: PMC7168041 DOI: 10.1002/ppul.24602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Available diagnostics often fail to distinguish viral from bacterial causes of pediatric community-acquired pneumonia (pCAP). Metabolomics, which aims at characterizing diseases based on their metabolic signatures, has been applied to expand pathophysiological understanding of many diseases. In this exploratory study, we used the untargeted metabolomic analysis to shed new light on the etiology of pCAP. METHODS Liquid chromatography coupled with mass spectrometry was used to quantify the metabolite content of urine samples collected from children hospitalized for CAP of pneumococcal or viral etiology, ascertained using a conservative algorithm combining microbiological and biochemical data. RESULTS Fifty-nine children with CAP were enrolled over 16 months. Pneumococcal and viral cases were distinguished by means of a multivariate model based on 93 metabolites, 20 of which were identified and considered as putative biomarkers. Among these, six metabolites belonged to the adrenal steroid synthesis and degradation pathway. CONCLUSIONS This preliminary study suggests that viral and pneumococcal pneumonia differently affect the systemic metabolome, with a stronger disruption of the adrenal steroid pathway in pneumococcal pneumonia. This finding may lead to the discovery of novel diagnostic biomarkers and bring us closer to personalized therapy for pCAP.
Collapse
Affiliation(s)
| | - Matteo Stocchero
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Institute of Pediatric Research (IRP), Fondazione Città della Speranza, Padova, Italy
| | - Giuseppe Giordano
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Institute of Pediatric Research (IRP), Fondazione Città della Speranza, Padova, Italy
| | - Paola Pirillo
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Institute of Pediatric Research (IRP), Fondazione Città della Speranza, Padova, Italy
| | - Stefania Zanconato
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Liviana Da Dalt
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Silvia Carraro
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Susanna Esposito
- Department of Surgical and Biomedical Sciences, Pediatric Clinic, University of Perugia, Perugia, Italy
| | - Eugenio Baraldi
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Institute of Pediatric Research (IRP), Fondazione Città della Speranza, Padova, Italy
| |
Collapse
|
16
|
Baumgartner T, Zurauskaite G, Steuer C, Bernasconi L, Huber A, Mueller B, Schuetz P. Association of serum sphingomyelin profile with clinical outcomes in patients with lower respiratory tract infections: results of an observational, prospective 6-year follow-up study. Clin Chem Lab Med 2019; 57:679-689. [PMID: 30267624 DOI: 10.1515/cclm-2018-0509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023]
Abstract
Background Sphingolipids - the structural cell membrane components - and their metabolites are involved in signal transduction and participate in the regulation of immunity. We investigated the prognostic implications of sphingolipid metabolic profiling on mortality in a large cohort of patients with lower respiratory tract infections (LRTIs). Methods We measured 15 different sphingomyelin (SM) types in patients with LRTIs from a previous Swiss multicenter trial that examined the impact of procalcitonin-guided antibiotic therapy on total antibiotic use and rates and duration of hospitalization. Primary and secondary end points were adverse outcomes - defined as death or intensive care unit admission within 30 days - and 6-year mortality. Results Of 360 patients, 8.9% experienced an adverse outcome within 30 days and 46% died within 6 years. Levels of all SM types were significantly lower in pneumonia patients vs. those with chronic obstructive pulmonary disease (COPD) exacerbation (p<0.0001 for all comparisons). Sphingomyelin subspecies SM (OH) C22:1 and SM (OH) C22:2 were associated with lower risk for short-term adverse outcomes (sex-, gender- and comorbidity-adjusted odds ratios [OR]: 0.036; 95% confidence interval [CI], 0.002-0.600; p=0.021 and 0.037; 95% CI, 0.001-0.848; p=0.039, respectively). We found no significant associations with 6-year mortality for any SM. Conclusions Circulating sphingolipid levels are lower in inflammatory conditions such as pneumonia and correlate with adverse short-term outcomes. Further characterization of the physiological, pathophysiological and metabolic roles of sphingolipids under inflammatory conditions may facilitate understanding of their roles in infectious disease.
Collapse
Affiliation(s)
- Thomas Baumgartner
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland, Phone: 0041 62 838 68 32, Fax: 0041 62 838 98 73.,University Department of Internal Medicine, Kantonsspital Aarau, Tellstr., 5001 Aarau, Switzerland
| | - Giedre Zurauskaite
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Christian Steuer
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Andreas Huber
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Beat Mueller
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Schuetz
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
17
|
Neyer P, Bernasconi L, Fuchs JA, Allenspach MD, Steuer C. Derivatization-free determination of short-chain volatile amines in human plasma and urine by headspace gas chromatography-mass spectrometry. J Clin Lab Anal 2019; 34:e23062. [PMID: 31595561 PMCID: PMC7031570 DOI: 10.1002/jcla.23062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Short-chain volatile amines (SCVA) are an interesting compound class playing crucial roles in physiological and toxicological human settings. Dimethylamine (DMA), trimethylamine (TMA), diethylamine (DEA), and triethylamine (TEA) were investigated in detail. METHODS Headspace gas chromatography coupled to mass spectrometry (HS-GC-MS) was used for the simultaneous qualitative and quantitative determination of four SCVA in different human body fluids. Four hundred microliters of Li-heparin plasma and urine were analyzed after liberation of volatile amines under heated conditions in an aqueous alkaline and saline environment. Target analytes were separated on a volatile amine column and detected on a Thermo DSQ II mass spectrometer scheduled in single ion monitoring mode. RESULTS Chromatographic separation of selected SCVA was done within 7.5 minutes. The method was developed and validated with respect to accuracy, precision, recovery and stability. Accuracy and precision criteria were below 12% for all target analytes at low and high levels. The selected extraction procedure provided recoveries of more than 92% from both matrices for TMA, DEA and TEA. The recovery of DMA from Li-heparin plasma was lower but still in the acceptable range (>75%). The newly validated method was successfully applied to plasma and urine samples from healthy volunteers. Detected concentrations of endogenous metabolites DMA and TMA are comparable to already known reference ranges. CONCLUSION Herein, we describe the successful development and validation of a reliable and broadly applicable HS-GC-MS procedure for the simultaneous and quantitative determination of SCVA in human plasma and urine without relying on derivatization chemistry.
Collapse
Affiliation(s)
- Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Jens A Fuchs
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Christian Steuer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Chen C, Li H, Niu Y, Liu C, Lin Z, Cai J, Li W, Ge W, Chen R, Kan H. Impact of short-term exposure to fine particulate matter air pollution on urinary metabolome: A randomized, double-blind, crossover trial. ENVIRONMENT INTERNATIONAL 2019; 130:104878. [PMID: 31200160 DOI: 10.1016/j.envint.2019.05.072] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/18/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Metabolomics is a novel tool to explore the biological mechanisms of the health effects of fine particulate matter (PM2.5) air pollution. Very few studies have examined the urinary metabolomic changes associated with PM2.5 exposure. OBJECTIVE To assess the alternation in urine metabolomics in response to short-term PM2.5 exposure. METHODS We conducted a randomized, double-blind, crossover trial of 9-day real or sham indoor air purification among 45 healthy college students in Shanghai, China. Urine samples were collected immediately at the end of each intervention stage and were analyzed for metabolomics using ultrahigh performance liquid chromatography-mass spectrometry. Orthogonal partial least square-discriminant analysis and linear mixed effect models were used to examine metabolomic changes between interventional scenarios and their associations with continuous PM2.5 exposure. RESULTS The time-weighted average personal PM2.5 exposure in the real-purified scenario was 50% lower than in the sham-purified air scenario (28.3 μg/m3 VS 56.9 μg/m3). A total of 40 differentiated urinary metabolites at a false discovery rate <0.05 were identified for the effects of both intervention and continuous PM2.5 exposure, including 16 lipids, 5 purine metabolites, 2 neurotransmitters, and 3 coenzymes. CONCLUSIONS This real-world randomized crossover trial demonstrated that short-term PM2.5 exposure could result in significant changes in urinary metabolomic profile, which may further lead to perturbation in energy metabolism, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Chen Chen
- School of Public Health, Key Lab of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; NHC Key Lab of Health Technology Assessment, Ministry of Health, Fudan University, Shanghai 200032, China
| | - Huichu Li
- School of Public Health, Key Lab of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; NHC Key Lab of Health Technology Assessment, Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; NHC Key Lab of Health Technology Assessment, Ministry of Health, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; NHC Key Lab of Health Technology Assessment, Ministry of Health, Fudan University, Shanghai 200032, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; NHC Key Lab of Health Technology Assessment, Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; NHC Key Lab of Health Technology Assessment, Ministry of Health, Fudan University, Shanghai 200032, China
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
| | - Wenzhen Ge
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown NY10605, United States
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Wu Z, Wang X, Chen M, Hu H, Cao J, Chai T, Wang H. A Study on Tissue-Specific Metabolite Variations in Polygonum cuspidatum by High-Resolution Mass Spectrometry-Based Metabolic Profiling. Molecules 2019; 24:E1058. [PMID: 30889850 PMCID: PMC6471859 DOI: 10.3390/molecules24061058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
Polygonum cuspidatum Sieb. et Zucc. is a traditional Chinese herbal medicine widely used to treat tussis, hepatitis and arthralgia. This study identified and quantitatively described the bioactive compounds in different P. cuspidatum tissues. Metabolic profiles of root, stem, leaf, flower, rhizome and seed were determined using high-resolution mass spectrometry in combination with multivariate analyses. In total, 53 metabolites, 8 reported for the first time in this species, were putatively identified and classified mainly as stilbenes, anthraquinones and flavonoids. A principal component analysis, cluster analysis and heatmap were used to depict the correlations between specimens and the relative abundance levels of these compounds in different plant tissues. An orthogonal partial least square discriminant analysis found that 13 metabolites showed distinct differences among the six plant tissues, making them potential discriminative tissue-identification markers. This study will provide guidance in comparing, selecting and exploiting the medicinal uses of different P. cuspidatum tissues.
Collapse
Affiliation(s)
- Zhijun Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China.
- School of Life sciences and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Xiaowei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China.
| | - Mo Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China.
| | - Hongyan Hu
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China.
| | - Jie Cao
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China.
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beichen west Road, Beijing 100101, China.
| | - Hong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China.
| |
Collapse
|
20
|
Zurfluh S, Nickler M, Ottiger M, Steuer C, Kutz A, Christ-Crain M, Zimmerli W, Thomann R, Hoess C, Henzen C, Bernasconi L, Huber A, Mueller B, Schuetz P. Association of adrenal hormone metabolites and mortality over a 6-year follow-up in COPD patients with acute exacerbation. Clin Chem Lab Med 2018; 56:669-680. [PMID: 29220883 DOI: 10.1515/cclm-2017-0873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND The release of hormones from the adrenal gland is vital in acute and chronic illnesses such as chronic obstructive pulmonary disease (COPD) involving recurrent exacerbations. Using a metabolomic approach, we aim to investigate associations of different adrenal hormone metabolites with short- and long-term mortality in COPD patients. METHODS We prospectively followed 172 COPD patients (median age 75 years, 62% male) from a previous Swiss multicenter trial. At baseline, we measured levels of a comprehensive spectrum of adrenal hormone metabolites, including glucocorticoid, mineralocorticoid and androgen hormones by liquid chromatography coupled with tandem mass spectrometry (MS). We calculated Cox regression models adjusted for gender, age, comorbidities and previous corticosteroid therapy. RESULTS Mortality was 6.4% after 30 days and increased to 61.6% after 6 years. Higher initial androgen hormones predicted lower long-term mortality with significant results for dehydroepiandrosterone (DHEA) [adjusted hazard ratio (HR), 0.82; 95% confidence interval (CI), 0.70-0.98; p=0.026] and dehydroepiandrosterone sulfate (DHEA-S) (adjusted HR, 0.68; 95% CI, 0.50-0.91; p=0.009). An activation of stress hormones (particularly cortisol and cortisone) showed a time-dependent effect with higher levels pointing towards higher mortality at short term, but lower mortality at long term. Activation of the mineralocorticoid axis tended to be associated with increased short-term mortality (adjusted HR of aldosterone, 2.76; 95% CI, 0.79-9.65; p=0.111). CONCLUSIONS Independent of age, gender, corticosteroid exposure and exacerbation type, adrenal hormones are associated with mortality at short and long term in patients with COPD exacerbation with different time-dependent effects of glucocorticoids, androgens and mineralocorticoids. A better physiopathological understanding of the causality of these effects may have therapeutic implications.
Collapse
Affiliation(s)
- Seline Zurfluh
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Manuela Nickler
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Manuel Ottiger
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Christian Steuer
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Alexander Kutz
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Mirjam Christ-Crain
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Werner Zimmerli
- Basel University Medical Clinic Liestal, Liestal, Switzerland
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Claus Hoess
- Department of Internal Medicine, Kantonsspital Münsterlingen, Münsterlingen, Switzerland
| | - Christoph Henzen
- Department of Internal Medicine, Kantonsspital Lucerne, Lucerne, Switzerland
| | - Luca Bernasconi
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Andreas Huber
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Beat Mueller
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Schuetz
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
21
|
Baumgartner T, Zurauskaité G, Wirz Y, Meier M, Steuer C, Bernasconi L, Huber A, Christ-Crain M, Henzen C, Hoess C, Thomann R, Zimmerli W, Mueller B, Schuetz P. Association of the Tyrosine/Nitrotyrosine pathway with death or ICU admission within 30 days for patients with community acquired pneumonia. BMC Infect Dis 2018; 18:423. [PMID: 30143005 PMCID: PMC6109359 DOI: 10.1186/s12879-018-3335-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 08/15/2018] [Indexed: 01/20/2023] Open
Abstract
Background Oxidative stress is a modifiable risk-factor in infection causing damage to human cells. As an adaptive response, cells catabolize Tyrosine to 3-Nitrotyrosine (Tyr-NO2) by nitrosylation. We investigated whether a more efficient reduction in oxidative stress, mirrored by a lowering of Tyrosine, and an increase in Tyr-NO2 and the Tyrosine/Tyr-NO2 ratio was associated with better clinical outcomes in patients with community-acquired pneumonia (CAP). Methods We measured Tyrosine and Tyr-NO2 in CAP patients from a previous randomized Swiss multicenter trial. The primary endpoint was adverse outcome defined as death or ICU admission within 30-days; the secondary endpoint was 6-year mortality. Results Of 278 included CAP patients, 10.4% experienced an adverse outcome within 30 days and 45.0% died within 6 years. After adjusting for the pneumonia Severity Index [PSI], BMI and comorbidities, Tyrosine nitrosylation was associated with a lower risk for short-term adverse outcome and an adjusted OR of 0.44 (95% CI 0.20 to 0.96, p = 0.039) for Tyr-NO2 and 0.98 (95% CI 0.98 to 0.99, p = 0.043) for the Tyrosine/Tyr-NO2 ratio. There were no significant associations for long-term mortality over six-years for Tyr-NO2 levels (adjusted hazard ratio 0.81, 95% CI 0.60 to 1.11, p = 0.181) and Tyrosine/Tyr-NO2 ratio (adjusted hazard ratio 1.00, 95% CI 0.99 to 1.00, p = 0.216). Conclusions Tyrosine nitrosylation in our cohort was associated with better clinical outcomes of CAP patients at short-term, but not at long term. Whether therapeutic modulation of the Tyrosine/Tyr-NO2 pathway has beneficial effects should be evaluated in future studies. Trial registration ISRCTN95122877. Registered 31 July 2006.
Collapse
Affiliation(s)
- Thomas Baumgartner
- Division of Endocrinology, Diabetology and Metabolism, Kantonsspital Aarau, Medical University Department, Aarau, Switzerland.
| | - Giedré Zurauskaité
- Division of Endocrinology, Diabetology and Metabolism, Kantonsspital Aarau, Medical University Department, Aarau, Switzerland
| | - Yannick Wirz
- Division of Endocrinology, Diabetology and Metabolism, Kantonsspital Aarau, Medical University Department, Aarau, Switzerland
| | - Marc Meier
- Division of Endocrinology, Diabetology and Metabolism, Kantonsspital Aarau, Medical University Department, Aarau, Switzerland
| | - Christian Steuer
- Department of Laboratory Medicine Kantonsspital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Department of Laboratory Medicine Kantonsspital Aarau, Aarau, Switzerland
| | - Andreas Huber
- Department of Laboratory Medicine Kantonsspital Aarau, Aarau, Switzerland
| | - Mirjam Christ-Crain
- Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Christoph Henzen
- Department of Internal Medicine, Kantonsspital Luzern, Lucerne, Switzerland
| | - Claus Hoess
- Department of Internal Medicine, Kantonsspital Münsterlingen, Münsterlingen, Switzerland
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Werner Zimmerli
- Department of Internal Medicine, Kantonsspital Liestal, Liestal, Switzerland
| | - Beat Mueller
- Division of Endocrinology, Diabetology and Metabolism, Kantonsspital Aarau, Medical University Department, Aarau, Switzerland
| | - Philipp Schuetz
- Division of Endocrinology, Diabetology and Metabolism, Kantonsspital Aarau, Medical University Department, Aarau, Switzerland
| |
Collapse
|
22
|
Evangelatos N, Bauer P, Reumann M, Satyamoorthy K, Lehrach H, Brand A. Metabolomics in Sepsis and Its Impact on Public Health. Public Health Genomics 2018; 20:274-285. [PMID: 29353273 DOI: 10.1159/000486362] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022] Open
Abstract
Sepsis, with its often devastating consequences for patients and their families, remains a major public health concern that poses an increasing financial burden. Early resuscitation together with the elucidation of the biological pathways and pathophysiological mechanisms with the use of "-omics" technologies have started changing the clinical and research landscape in sepsis. Metabolomics (i.e., the study of the metabolome), an "-omics" technology further down in the "-omics" cascade between the genome and the phenome, could be particularly fruitful in sepsis research with the potential to alter the clinical practice. Apart from its benefit for the individual patient, metabolomics has an impact on public health that extends beyond its applications in medicine. In this review, we present recent developments in metabolomics research in sepsis, with a focus on pneumonia, and we discuss the impact of metabolomics on public health, with a focus on free/libre open source software.
Collapse
Affiliation(s)
- Nikolaos Evangelatos
- Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, Nuremberg, Germany.,UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands
| | - Pia Bauer
- Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Matthias Reumann
- UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands.,IBM Research - Zurich, Rueschlikon, Switzerland
| | | | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Angela Brand
- UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands.,Public Health Genomics, Department of International Health, Maastricht University, Maastricht, the Netherlands.,Manipal University, Madhav Nagar, Manipal, India
| |
Collapse
|
23
|
Gut, microbiota-dependent trimethylamine- N -oxide is associated with long-term all-cause mortality in patients with exacerbated chronic obstructive pulmonary disease. Nutrition 2018; 45:135-141.e1. [DOI: 10.1016/j.nut.2017.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
|
24
|
Asymmetric Dimethylarginine Predicts Long-Term Outcome in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Lung 2017; 195:717-727. [DOI: 10.1007/s00408-017-0047-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
|
25
|
Prat C, Lacoma A. Bacteria in the respiratory tract-how to treat? Or do not treat? Int J Infect Dis 2017; 51:113-122. [PMID: 27776777 DOI: 10.1016/j.ijid.2016.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Acute and chronic respiratory tract infections are a common cause of inappropriate antimicrobial prescription. Antimicrobial therapy leads to the development of resistance and the emergence of opportunistic pathogens that substitute the indigenous microbiota. METHODS This review explores the major challenges and lines of research to adequately establish the clinical role of bacteria and the indications for antimicrobial treatment, and reviews novel therapeutic approaches. RESULTS In patients with chronic pulmonary diseases and structural disturbances of the bronchial tree or the lung parenchyma, clinical and radiographic signs and symptoms are almost constantly present, including a basal inflammatory response. Bacterial adaptative changes and differential phenotypes are described, depending on the clinical role and niche occupied. The respiratory tract has areas that are potentially inaccessible to antimicrobials. Novel therapeutic approaches include new ways of administering antimicrobials that may allow intracellular delivery or delivery across biofilms, targeting the functions essential for infection, such as regulatory systems, or the virulence factors required to cause host damage and disease. Alternatives to antibiotics and antimicrobial adjuvants are under development. CONCLUSIONS Prudent treatment, novel targets, and improved drug delivery systems will contribute to reduce the emergence of antimicrobial resistance in lower respiratory tract infections.
Collapse
Affiliation(s)
- Cristina Prat
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Ctra del Canyet s/n, 08916 Badalona, Barcelona, Spain; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Alicia Lacoma
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Ctra del Canyet s/n, 08916 Badalona, Barcelona, Spain; CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Schuetz P. Personalized medicine of patients with respiratory infections through the measurement of specific blood biomarkers: fact or fiction? Expert Rev Respir Med 2017; 11:605-607. [PMID: 28610545 DOI: 10.1080/17476348.2017.1338953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Philipp Schuetz
- a Medical University Department , Kantonsspital Aarau, Endocrinology/Diabetes/Clinical Nutrition and Internal Medicine , Aarau , Switzerland
| |
Collapse
|
27
|
Nickler M, Ottiger M, Steuer C, Kutz A, Christ-Crain M, Zimmerli W, Thomann R, Hoess C, Henzen C, Bernasconi L, Huber A, Mueller B, Schuetz P. Time-dependent association of glucocorticoids with adverse outcome in community-acquired pneumonia: a 6-year prospective cohort study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:72. [PMID: 28335807 PMCID: PMC5364618 DOI: 10.1186/s13054-017-1656-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/28/2017] [Indexed: 01/21/2023]
Abstract
Background The hypothalamic-pituitary-adrenal stress axis plays a crucial role in community-acquired pneumonia (CAP), with high cortisol being associated with disease severity and corticosteroid treatment resulting in earlier time to recovery. Our aim in the present study was to compare different glucocorticoid hormones, including cortisol, 11-deoxycortisol, cortisone, and corticosterone, regarding their association with short- and long-term adverse outcomes in a well-defined CAP cohort. Methods We prospectively followed 285 patients with CAP from a previous Swiss multicenter trial for a median of 6.1 years and measured different admission glucocorticoid serum levels by liquid chromatography coupled with tandem mass spectrometry. We used adjusted Cox regression models to investigate associations between admission hormone levels and all-cause mortality at different time points. Results Mortality was 5.3% after 30 days and increased to 47.3% after 6 years. High admission cortisol was associated with adverse outcome after 30 days (adjusted OR 3.85, 95% CI 1.10–13.49, p = 0.035). In the long term (i.e.,), however, high admission cortisol was associated with better survival (adjusted HR after 3 years 0.53, 95% CI 0.32–0.89, p = 0.017; adjusted HR after 6 years 0.57, 95% CI 0.36–0.90, p = 0.015). Compared with 11-deoxycortisol, cortisone, and corticosterone, cortisol showed the highest association with mortality. Conclusions Among different glucocorticoid hormones, cortisol showed the highest association with mortality in CAP. Whereas a more pronounced glucocorticoid stress response on hospital admission was associated with higher short-term adverse outcome, long-term outcome was favorable in these patients. These data should support the correct interpretation of glucocorticoid blood data. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1656-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuela Nickler
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Manuel Ottiger
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Christian Steuer
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Alexander Kutz
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Mirjam Christ-Crain
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Medical Faculty, University of Basel, Basel, Switzerland
| | - Werner Zimmerli
- Basel University Medical Clinic Liestal, Liestal, Switzerland
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Claus Hoess
- Department of Internal Medicine, Kantonsspital Münsterlingen, Münsterlingen, Switzerland
| | - Christoph Henzen
- Department of Internal Medicine, Kantonsspital Lucerne, Lucerne, Switzerland
| | - Luca Bernasconi
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Andreas Huber
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Beat Mueller
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Aarau, Switzerland.,Medical Faculty, University of Basel, Basel, Switzerland
| | - Philipp Schuetz
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Aarau, Switzerland. .,Medical Faculty, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
28
|
Vögeli A, Ottiger M, Meier MA, Steuer C, Bernasconi L, Kulkarni P, Huber A, Christ-Crain M, Henzen C, Hoess C, Thomann R, Zimmerli W, Mueller B, Schuetz P. Admission levels of asymmetric and symmetric dimethylarginine predict long-term outcome in patients with community-acquired pneumonia. Respir Res 2017; 18:25. [PMID: 28114935 PMCID: PMC5259979 DOI: 10.1186/s12931-017-0502-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND During infection, there is an activation of the L-arginine-nitric-oxide pathway, with a shift from nitric oxide synthesis to a degradation of L-arginine to its metabolites, asymmetric and symmetric dimethylarginine (ADMA and SDMA). However, the prognostic implications for short-term or long-term survival remains unclear. We investigated the association of L-arginine, ADMA, and SDMA with adverse clinical outcomes in a well-defined cohort of patients with community-acquired pneumonia (CAP). METHODS We measured L-arginine, ADMA, and SDMA in 268 CAP patients from a Swiss multicenter trial by mass spectrometry and used Cox regression models to investigate associations between blood marker levels and disease severity as well as mortality over a period of 6 years. RESULTS Six-year mortality was 44.8%. Admission levels of ADMA and SDMA (μmol/L) were correlated with CAP severity as assessed by the pneumonia severity index (r = 0.32, p < 0.001 and r = 0.56, p < 0.001 for ADMA and SDMA, respectively) and higher in 6-year non-survivors versus survivors (median 0.62 vs. 0.48; p < 0.001 and 1.01 vs. 0.85; p < 0.001 for ADMA and SDMA, respectively). Both ADMA and SDMA were significantly associated with long-term mortality (hazard ratios [HR] 4.44 [95% confidence intervals (CI) 1.84 to 10.74] and 2.81 [95% CI 1.45 to 5.48], respectively). The effects were no longer significant after multivariate adjustment for age and comorbidities. No association of L-arginine with severity and outcome was found. CONCLUSIONS Both ADMA and SDMA show a severity-dependent increase in patients with CAP and are strongly associated with mortality. This association is mainly explained by age and comorbidities. TRIAL REGISTRATION ISRCTN95122877 . Registered 31 July 2006.
Collapse
Affiliation(s)
- Alaadin Vögeli
- Kantonsspital Aarau, University Department of Internal Medicine, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Manuel Ottiger
- Kantonsspital Aarau, University Department of Internal Medicine, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Marc A. Meier
- Kantonsspital Aarau, University Department of Internal Medicine, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Christian Steuer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Andreas Huber
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Mirjam Christ-Crain
- Endocrinology, Diabetology, and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Christoph Henzen
- Department of Internal Medicine, Kantonsspital Luzern, Luzern, Switzerland
| | - Claus Hoess
- Department of Internal Medicine, Kantonsspital Münsterlingen, Münsterlingen, Switzerland
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Werner Zimmerli
- Kantonsspital Baselland, University Department of Internal Medicine, Liestal, Switzerland
| | - Beat Mueller
- Kantonsspital Aarau, University Department of Internal Medicine, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Philipp Schuetz
- Kantonsspital Aarau, University Department of Internal Medicine, Tellstrasse, CH-5001 Aarau, Switzerland
| |
Collapse
|
29
|
Shaddock EJ. How and when to use common biomarkers in community-acquired pneumonia. Pneumonia (Nathan) 2016; 8:17. [PMID: 28702296 PMCID: PMC5471704 DOI: 10.1186/s41479-016-0017-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 10/18/2016] [Indexed: 12/13/2022] Open
Abstract
Community-acquired pneumonia (CAP) is a leading cause of death in both the developed and developing world. The very young and elderly are especially vulnerable. Even with appropriate early antibiotics we still have not improved the outcomes in these patients since the 1950s, with 30-day case fatality rates of between 10-12%. Interventions to improve outcomes include immunomodulatory agents such as macrolides and corticosteroids. Treating doctors identify CAP patients who are likely to have poor outcomes by using severity scores such as the pneumonia severity index and CURB-65, which allows these patients to be placed in ICU settings from the start of the admission. Another novel way to identify these patients is with the use of biomarkers. This review illustrates how various biomarkers have been shown to predict mortality, complications and response to treatment in CAP patients. The evidence using either procalcitonin or C-reactive protein to demonstrate response to treatment and hence that the antibiotics chosen are appropriate can play an important role in antibiotic stewardship.
Collapse
Affiliation(s)
- Erica J Shaddock
- Division of Pulmonology and Critical Care, Department of Internal Medicine, Area 552 Charlotte Maxeke Johannesburg Academic Hospital, Jubilee Road, Parktown, Johannesburg, 2193 South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Goveia J, Pircher A, Conradi LC, Kalucka J, Lagani V, Dewerchin M, Eelen G, DeBerardinis RJ, Wilson ID, Carmeliet P. Meta-analysis of clinical metabolic profiling studies in cancer: challenges and opportunities. EMBO Mol Med 2016; 8:1134-1142. [PMID: 27601137 PMCID: PMC5048364 DOI: 10.15252/emmm.201606798] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cell metabolism has received increasing attention. Despite a boost in the application of clinical metabolic profiling (CMP) in cancer patients, a meta‐analysis has not been performed. The primary goal of this study was to assess whether public accessibility of metabolomics data and identification and reporting of metabolites were sufficient to assess which metabolites were consistently altered in cancer patients. We therefore retrospectively curated data from CMP studies in cancer patients published during 5 recent years and used an established vote‐counting method to perform a semiquantitative meta‐analysis of metabolites in tumor tissue and blood. This analysis confirmed well‐known increases in glycolytic metabolites, but also unveiled unprecedented changes in other metabolites such as ketone bodies and amino acids (histidine, tryptophan). However, this study also highlighted that insufficient public accessibility of metabolomics data, and inadequate metabolite identification and reporting hamper the discovery potential of meta‐analyses of CMP studies, calling for improved standardization of metabolomics studies.
Collapse
Affiliation(s)
- Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Andreas Pircher
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Vincenzo Lagani
- Computer Science Department, University of Crete, Heraklion, Greece
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ian D Wilson
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| |
Collapse
|
31
|
Schuetz P, Hausfater P, Amin D, Amin A, Haubitz S, Faessler L, Kutz A, Conca A, Reutlinger B, Canavaggio P, Sauvin G, Bernard M, Huber A, Mueller B. Biomarkers from distinct biological pathways improve early risk stratification in medical emergency patients: the multinational, prospective, observational TRIAGE study. Crit Care 2015; 19:377. [PMID: 26511878 PMCID: PMC4625457 DOI: 10.1186/s13054-015-1098-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/10/2015] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Early risk stratification in the emergency department (ED) is vital to reduce time to effective treatment in high-risk patients and to improve patient flow. Yet, there is a lack of investigations evaluating the incremental usefulness of multiple biomarkers measured upon admission from distinct biological pathways for predicting fatal outcome and high initial treatment urgency in unselected ED patients in a multicenter and multinational setting. METHOD We included consecutive, adult, medical patients seeking ED care into this observational, cohort study in Switzerland, France and the USA. We recorded initial clinical parameters and batch-measured prognostic biomarkers of inflammation (pro-adrenomedullin [ProADM]), stress (copeptin) and infection (procalcitonin). RESULTS During a 30-day follow-up, 331 of 7132 (4.6 %) participants reached the primary endpoint of death within 30 days. In logistic regression models adjusted for conventional risk factors available at ED admission, all three biomarkers strongly predicted the risk of death (AUC 0.83, 0.78 and 0.75), ICU admission (AUC 0.67, 0.69 and 0.62) and high initial triage priority (0.67, 0.66 and 0.58). For the prediction of death, ProADM significantly improved regression models including (a) clinical information available at ED admission (AUC increase from 0.79 to 0.84), (b) full clinical information at ED discharge (AUC increase from 0.85 to 0.88), and (c) triage information (AUC increase from 0.67 to 0.83) (p <0.01 for each comparison). Similarly, ProADM also improved clinical models for prediction of ICU admission and high initial treatment urgency. Results were robust in regard to predefined patient subgroups by center, main diagnosis, presenting symptoms, age and gender. CONCLUSIONS Combination of clinical information with results of blood biomarkers measured upon ED admission allows early and more adequate risk stratification in individual unselected medical ED patients. A randomized trial is needed to answer the question whether biomarker-guided initial patient triage reduces time to initial treatment of high-risk patients in the ED and thereby improves patient flow and clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov NCT01768494 . Registered January 9, 2013.
Collapse
Affiliation(s)
- Philipp Schuetz
- Division of General and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland.
- Medical Faculty of the University of Basel, Basel, Switzerland.
| | - Pierre Hausfater
- Emergency Department, Groupe Hospitalier Pitié-Salpêtrière Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.
| | - Devendra Amin
- Department of critical care, Morton Plant Hospital, 300 Pinellas Street, Clearwater, FL, 33756, USA.
| | - Adina Amin
- Department of critical care, Morton Plant Hospital, 300 Pinellas Street, Clearwater, FL, 33756, USA.
| | - Sebastian Haubitz
- Division of General and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland.
| | - Lukas Faessler
- Division of General and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland.
| | - Alexander Kutz
- Division of General and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland.
| | - Antoinette Conca
- Department of Clinical Nursing Science, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland.
| | - Barbara Reutlinger
- Department of Clinical Nursing Science, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland.
| | - Pauline Canavaggio
- Emergency Department, Groupe Hospitalier Pitié-Salpêtrière Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.
| | - Gabrielle Sauvin
- Emergency Department, Groupe Hospitalier Pitié-Salpêtrière Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.
| | - Maguy Bernard
- Biochemistry Department, Hôpital Pitié-Salpêtrière and Univ-Paris Descartes, Paris, France.
| | - Andreas Huber
- Department of Laboratory Medicine, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland.
| | - Beat Mueller
- Division of General and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau, Tellstrasse, 5001, Aarau, Switzerland.
- Medical Faculty of the University of Basel, Basel, Switzerland.
| |
Collapse
|