1
|
Liu W, Wang X, Wu W. Role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer (Review). Oncol Rep 2024; 52:144. [PMID: 39219271 PMCID: PMC11378154 DOI: 10.3892/or.2024.8803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Interleukin‑17 (IL‑17), an inflammatory cytokine primarily secreted by T helper 17 cells, serves a crucial role in numerous inflammatory diseases and malignancies via its receptor, IL‑17R. In addition to stimulating inflammatory responses, IL‑17 exhibits dual functions in tumors, exerting both pro‑ and antitumor effects. Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy and accounts for >90% of pancreatic cancer cases. PDAC is characterized by a prominent stromal microenvironment with significant heterogeneity, which contributes to treatment resistance. IL‑17/IL‑17R signaling has a notable effect on tumorigenesis, the tumor microenvironment and treatment efficacy in various cancer types, including PDAC. However, the specific mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer remain uncertain. This review presents a brief overview of the current knowledge and recent advances in the role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer. Furthermore, the potential of IL‑17‑targeted therapeutic strategies for PDAC treatment is also discussed.
Collapse
Affiliation(s)
- Wanli Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
2
|
Manell H, Tsolakis N, Janson C, Malinovschi A, Alving K. Multiarray screening identifies plasma proteins associated with Th17 cell differentiation and viral defense in coincident asthma and obesity. Pediatr Allergy Immunol 2024; 35:e14187. [PMID: 38967090 DOI: 10.1111/pai.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND The immunological mechanisms behind the clinical association between asthma and obesity in adolescence are not fully understood. This study aimed to find new plasma protein biomarkers associated specifically with coincident asthma and obesity in adolescents. METHODS This was a cross-sectional study in children and adolescents 10-19 years old (N = 390). Relative plasma concentrations of 113 protein biomarkers related to inflammation and immune response were determined by proximity extension assay (Target 96; Olink, Uppsala, Sweden). Differences in protein concentrations between healthy controls (n = 84), subjects with asthma (n = 138), subjects with obesity (n = 107), and subjects with both asthma and obesity (AO; n = 58) were analyzed by ANCOVA, adjusting for age and sex, and in a separate model adjusting also for the sum of specific IgE antibody concentrations to a mix of food allergens (fx5) and aeroallergens (Phadiatop). Proteins elevated in the AO group but not in the obesity or asthma groups were considered specifically elevated in asthma and obesity. RESULTS Five proteins were elevated specifically in the AO group compared to controls (here sorted from largest to smallest effect of asthma and obesity combined): CCL8, IL-33, IL-17C, FGF-23, and CLEC7A. The effects of adjusting also for specific IgE were small but IL-33, IL-17C, and FGF-23 were no longer statistically significant. CONCLUSION We identified several new potential plasma biomarkers specifically elevated in coincident asthma and obesity in adolescents. Four of the proteins, CCL8, IL-33, IL-17C, and CLEC7A, have previously been associated with viral mucosal host defense and Th17 cell differentiation.
Collapse
Affiliation(s)
- Hannes Manell
- Department of Women's and Children's Health, Paediatrics, Uppsala University, Uppsala, Sweden
| | - Nikolaos Tsolakis
- Department of Women's and Children's Health, Paediatrics, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences, Respiratory-, Allergy- and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Kjell Alving
- Department of Women's and Children's Health, Paediatrics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Ritzmann F, Lunding LP, Bals R, Wegmann M, Beisswenger C. IL-17 Cytokines and Chronic Lung Diseases. Cells 2022; 11:2132. [PMID: 35883573 PMCID: PMC9318387 DOI: 10.3390/cells11142132] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
IL-17 cytokines are expressed by numerous cells (e.g., gamma delta (γδ) T, innate lymphoid (ILC), Th17, epithelial cells). They contribute to the elimination of bacteria through the induction of cytokines and chemokines which mediate the recruitment of inflammatory cells to the site of infection. However, IL-17-driven inflammation also likely promotes the progression of chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, cystic fibrosis, and asthma. In this review, we highlight the role of IL-17 cytokines in chronic lung diseases.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Lars Peter Lunding
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
| |
Collapse
|
4
|
Mou K, Chan SMH, Brassington K, Dobric A, De Luca SN, Seow HJ, Selemidis S, Bozinovski S, Vlahos R. Influenza A Virus-Driven Airway Inflammation may be Dissociated From Limb Muscle Atrophy in Cigarette Smoke-Exposed Mice. Front Pharmacol 2022; 13:859146. [PMID: 35370652 PMCID: PMC8971713 DOI: 10.3389/fphar.2022.859146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
Limb muscle dysfunction is a hallmark of Chronic Obstructive Pulmonary Disease (COPD) which is further worsened following a viral-induced acute exacerbation of COPD (AECOPD). An amplified airway inflammation underlies the aggravated respiratory symptoms seen during AECOPD, however, its contributory role to limb muscle dysfunction is unclear. The present study examined the impact of influenza A virus (IAV)-induced exacerbation on hind limb muscle parameters. Airway inflammation was established in male BALB/c mice by exposure to cigarette smoke (CS) for 8 weeks. Exacerbation was then induced via inoculation with IAV, and various lung and muscle parameters were assessed on day 3 (peak of airway inflammation) and day 10 (resolution phase) post-infection. IAV infection exacerbated CS-induced airway inflammation as evidenced by further increases in immune cell counts within bronchoalveolar lavage fluid. Despite no significant impact on muscle mass, IAV exacerbation worsened the force-generating capacity of the tibialis anterior (TA) muscle. Protein oxidation and myogenic disruption was observed in the TA following CS exposure, however, IAV exacerbation did not augment these detrimental processes. To further explore the contributory role of airway inflammation on myogenic signaling, cultured myotubes were exposed to conditioned medium (CM) derived from bronchial epithelial cells stimulated with polyinosinic:polycytidylic acid and cigarette smoke extract (CSE). Despite an amplified inflammatory response in the lung epithelial cells, the CM derived from these cells did not potentiate myogenic disruption in the C2C12 myotubes. In conclusion, our data suggest that certain parameters of limb muscle dysfunction seen during viral-induced AECOPD may be independent of airway inflammation.
Collapse
|
5
|
Hou JY, Wu JR, Xu D, Chen YB, Shang DD, Liu S, Fan GW, Cui YL. Integration of transcriptomics and system pharmacology to reveal the therapeutic mechanism underlying Qingfei Xiaoyan Wan to treat allergic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114302. [PMID: 34090911 DOI: 10.1016/j.jep.2021.114302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a chronic inflammatory disease, characterized by airway inflammation, hyperresponsiveness, and bronchial smooth muscle contraction. Qingfei Xiaoyan Wan (QFXYW), a traditional Chinese formula, has been shown to exert anti-asthma effects and immune response in multiple diseases. AIM OF THIS STUDY In this study, we evaluated the therapeutic mechanism of QFXYW in the suppression of allergic asthma by integrating of transcriptomics and system pharmacology. MATERIALS AND METHODS BALB/c mice were sensitized with ovalbumin (OVA) to establish the allergic asthma model, and its success was confirmed with behavioral observations. Lung histopathological analysis, inflammatory pathology scores, transcription factors were used to evaluate the effects of QFXYW on allergic asthma. The therapeutic mechanism of QFXYW in treating allergic asthma through integrated transcriptomics and system pharmacology was then determined: hub genes were screened out by topological analysis and functional enrichment analysis were performed to identify key signaling pathway. Subsequently, quantitative RP-PCR and protein array were performed to detect the mRNA of hub genes and to predict the key pathway in OVA-induced allergic asthma, respectively. RESULTS Our results demonstrated that QFXYW could significantly attenuate inflammatory cell infiltration, mucus secretion, and epithelial damage. The transcriptomics analysis found the six hub genes with the highest values- CXCL10, CXCL2, CXCL1, IL-6, CCL-5, and CCL-4 were screened out. Functional enrichment analysis showed that the differentially expressed genes (DEGs) were mainly enriched in the inflammatory response and cytokine signaling pathway. Moreover, the quantitative RT-PCR verification experiment found the CXCL2 and CXCL1 were significantly suppressed after treatment with QFXYW. The results of protein array showed that QFXYW inhibited the multi-cytokines of OVA-induced allergic asthma via cytokine signaling pathway. CONCLUSIONS QFXYW may have mediated OVA-induced allergic asthma mainly through the hub genes CXCL2, CXCL1, and the cytokine signaling pathway. This finding will offer a novel strategy to explore effective and safe mechanism of Traditional Chinese Medicine (TCM) formula to treat allergic asthma.
Collapse
Affiliation(s)
- Jing-Yi Hou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jia-Rong Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yi-Bing Chen
- Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Dan-Dan Shang
- Tianjin Zhongxin Pharmaceutical Group Corporation Limited Darentang Pharmaceutical Factory, Tianjin, 300193, China.
| | - Shu Liu
- Tianjin Zhongxin Pharmaceutical Group Corporation Limited Darentang Pharmaceutical Factory, Tianjin, 300193, China.
| | - Guan-Wei Fan
- Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Ritzmann F, Beisswenger C. Preclinical studies and the function of IL-17 cytokines in COPD. Ann Anat 2021; 237:151729. [PMID: 33798693 DOI: 10.1016/j.aanat.2021.151729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is among the leading causes of death worldwide and imposes a high economic burden to the health systems. COPD is characterized by chronic inflammation of the lung leading to airflow limitation, alveolar tissue destruction, and emphysema. Therefore, anti-inflammatory therapies for the treatment of COPD are of interest. In this review, we focus on the function of the IL-17 cytokines IL-17A and IL-17C, both known to mediate the recruitment of inflammatory cells, in the pathogenesis of COPD. We highlight that the expression of IL-17A and IL-17C is induced by pathogens frequently found in lungs of COPD patients and that targeting IL-17-signaling is an interesting option for the treatment of acute exacerbation of COPD.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
7
|
Vella G, Ritzmann F, Wolf L, Kamyschnikov A, Stodden H, Herr C, Slevogt H, Bals R, Beisswenger C. IL-17C contributes to NTHi-induced inflammation and lung damage in experimental COPD and is present in sputum during acute exacerbations. PLoS One 2021; 16:e0243484. [PMID: 33411748 PMCID: PMC7790230 DOI: 10.1371/journal.pone.0243484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation results in loss of lung function in chronic obstructive pulmonary disease (COPD). Gram-negative bacteria, such as nontypeable Haemophilus influenzae (NTHi), trigger acute exacerbations of COPD (AECOPD) and contribute to chronic lung inflammation. The pro-inflammatory cytokine interleukin-17C (IL-17C) is expressed by airway epithelial cells and regulates neutrophilic chemotaxis. Here, we explored the function of IL-17C in NTHi- and cigarette smoke (CS)-induced models of COPD. Neutrophilic inflammation and tissue destruction were decreased in lungs of IL-17C-deficient mice (Il-17c-/-) chronically exposed to NTHi. Numbers of pulmonary neutrophils were decreased in Il-17c-/- mice after acute exposure to the combination of NTHi and CS. However, Il-17c-/- mice were not protected from CS-induced lung inflammation. In a preliminary patient study, we show that IL-17C is present in sputum samples obtained during AECOPD and associates with disease severity. Concentrations of IL-17C were significantly increased during advanced COPD (GOLD III/IV) compared to moderate COPD (GOLD I/II). Concentrations of IL-17A and IL-17E did not associate with disease severity. Our data suggest that IL-17C promotes harmful pulmonary inflammation triggered by bacteria in COPD.
Collapse
Affiliation(s)
- Giovanna Vella
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Felix Ritzmann
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Lisa Wolf
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Andreas Kamyschnikov
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Hannah Stodden
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Robert Bals
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V – Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| |
Collapse
|