1
|
Cocconcelli E, Bernardinello N, Cameli P, Di Liberti R, Alhamad EH, Gregori D, Pianigiani T, Dartora C, Messina R, Di Leo I, Castelli G, La Blasca T, Scichilone N, Bargagli E, Spagnolo P, Balestro E. Prevalence and Predictors of Response to Antifibrotics in Long-Term Survivors with Idiopathic Pulmonary Fibrosis. Lung 2025; 203:35. [PMID: 39998625 DOI: 10.1007/s00408-025-00789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE The natural history of IPF remains unpredictable despite antifibrotic treatment. In addition, some patients discontinue treatment due to the occurrence of adverse events. To date, no data exist on either the effect of long-term treatment or predictors of treatment response. In the present study, we aim to evaluate the functional trajectory of IPF patients treated with antifibrotics for at least three years and to establish predictors of treatment response. METHODS This multicenter study enrolled long-term survivors IPF patients provided they had stopped treatment for no longer than one month during at least three-year study period. Based on the absolute decline of FVC%predicted (pred.) observed during the 3-year treatment and normalized per year, patients were defined as progressors (≥ 5%) or non-progressors (< 5%). RESULTS We identify 172 IPF patients who completed three years of antifibrotic treatment with no interruption. The 27% of these IPF patients progressed despite complete adherence to treatment. Progressors were more likely to be non-smokers compared to non-progressors, with higher occurrence of diarrhea and with a more preserved lung function at diagnosis. FVC %pred. and liters at diagnosis, a greater FVC decline in the 1-st year of follow up, being non-smokers, and complaining of diarrhea over treatment are independent predictors of progression. CONCLUSION Almost one third of IPF patients adherent to three years of antifibrotics experience progression. A functional decline at first year of treatment despite preserved lung function at diagnosis, non-smoking status, and occurrence of diarrhea over treatment are independent predictors of disease progression.
Collapse
Affiliation(s)
- Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Rosangela Di Liberti
- Division of Respiratory Medicine, Department PROMISE, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | - Esam H Alhamad
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | - Tommaso Pianigiani
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Cristina Dartora
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy
| | - Riccardo Messina
- Division of Respiratory Medicine, Department PROMISE, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | - Irene Di Leo
- Division of Respiratory Medicine, Department PROMISE, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy
| | - Tiziana La Blasca
- Division of Respiratory Medicine, Department PROMISE, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | - Nicola Scichilone
- Division of Respiratory Medicine, Department PROMISE, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy.
| |
Collapse
|
2
|
Ruan Z, Wang Y, Fan Y, Xu B, Yuan S, Cong X, Li D, Miao Q. The relationship between red blood cell distribution width and long-term prognosis of asthma: a population-based study. Sci Rep 2025; 15:6487. [PMID: 39987342 PMCID: PMC11846899 DOI: 10.1038/s41598-025-87469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/20/2025] [Indexed: 02/24/2025] Open
Abstract
Statistically, 30% of asthma deaths occur among asthmatics with insignificant symptoms, which creates a social burden. We aimed to analyze the role of erythrocyte distribution width (RDW) in the prognosis of asthma, especially in patients with insignificant symptoms. We included 3039 adult (≥ 20 years) asthma patients from the National Health and Nutrition Examination Survey (NHANES). Cox regression was used to assess the association between RDW and long-term mortality. We adjusted three models to reduce potential bias. Subgroup analysis is used to evaluate specific populations. In addition, receiver operating characteristic (ROC) curves were used to analyze the predictive effect of RDW on asthma mortality. After a mean follow-up of 130 months, we found a positive correlation between RDW and long-term mortality. After aliquoting RDW into thirds, the high RDW (RDW ≥ 13.0%) group had higher all-cause mortality (HR 1.66, 95% CI 1.18-2.34) and respiratory mortality (HR 8.69, 95% CI 2.03-37.3). There was a significant interaction of RDW in the male and wheezing subgroups for respiratory mortality. Combining RDW and wheezing, we found that patients with high RDW and wheezing had the most increased respiratory mortality, and patients with high RDW but no wheezing also had higher mortality. Furthermore, the area under the curve of the RDW in predicting respiratory death in asthmatics was greater than 80%. Our study showed an association between high RDW and poor prognosis in asthma patients. In combination with wheezing symptoms, RDW is expected to be a biomarker for asthma management.
Collapse
Affiliation(s)
- Zhishen Ruan
- Xiyuan Hospital of Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Wang
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, China
| | - Yiling Fan
- Xiyuan Hospital of Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Xu
- Xiyuan Hospital of Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shasha Yuan
- Xiyuan Hospital of Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodong Cong
- Xiyuan Hospital of Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Miao
- Xiyuan Hospital of Chinese Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Ay D, Başlılar Ş, Kulah G, Kaan Saylan B, Kalbaran Kismet G, Okutan O. Blood Cell Counts and Inflammatory Indexes in Idiopathic Pulmonary Fibrosis. Cureus 2025; 17:e78319. [PMID: 40034886 PMCID: PMC11873667 DOI: 10.7759/cureus.78319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Inflammatory cells play a role in several idiopathic pulmonary fibrosis (IPF) pathogenesis steps. We aimed to evaluate the predictive value of peripheral blood cell (PBC) counts and inflammation indexes in the prognosis and mortality of IPF. Materials and methods A total of 155 patients with IPF followed between 1 January 2016 and 1 January 2023 were evaluated retrospectively. The baseline values and annual changes for pulmonary function tests and the PBC counts, ratios, and inflammation indexes (leukocyte, neutrophil, platelet, monocyte, lymphocyte, red cell distribution width (RDW), neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), Systemic Immune Inflammation (SII) index, Systemic Inflammation Response Index (SIRI), the Aggregate Index of Systemic Inflammation (AISI)) were recorded. The relation between PBC, ratios, and inflammatory indexes with functional parameters (forced vital capacity (FVC), diffusing capacity of the lung for carbon monoxide (DLCO), 6-minute walking test (6MWT), Gender, Age, and Physiology (GAP) index, GAP stage) and mortality were examined. Results It was found that baseline RDW and neutrophil count were negatively correlated with survival time. The prognosis was worse in patients who had an RDW>13.6% and a neutrophil count>5.26×109/L (p = 0.0005 and p = 0.037, respectively). Significant correlations were observed between baseline peripheral blood cell counts, ratios, and index values (leukocyte, monocyte, neutrophil, platelet, monocyte, lymphocyte, NLR, PLR, MLR, SII, SIRI, AISI) and functional parameters (FVC, DLCO, 6MWT, GAP index, GAP stage). However, there was no significant correlation between the yearly changes. Conclusions Increased neutrophils and RDW may be related to the poor prognosis in IPF. Peripheral blood cell counts and inflammatory indices may provide useful information in identifying patients with worse functional status.
Collapse
Affiliation(s)
- Damla Ay
- Pulmonology, Kırsehir State Hospital, Kırsehir, TUR
| | - Şeyma Başlılar
- Pulmonology, Sultan 2. Abdülhamid Han Training and Research Hospital, Istanbul, TUR
| | - Gokce Kulah
- Pulmonology, University of Health Sciences, Istanbul, TUR
| | - Bengu Kaan Saylan
- Pulmonology, University of Health Sciences Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, TUR
| | | | | |
Collapse
|
4
|
Fernández-Jiménez R, Cabrera-Cesar E, Sanmartín-Sánchez A, Sánchez-Garcia A, Espildora-Hernandez F, Vegas-Aguilar I, del Mar Amaya-Campos M, Guirado-Pelaez P, Simón-Frapolli V, Murri M, Garrido-Sánchez L, Piñel-Jimenez L, Cano-Gamonoso MB, López-García J, Gómez-Rodríguez B, Velasco-Garrido JL, Tinahones FJ, García-Almeida JM. Rectus femoris cross sectional area and timed up and go test potential useful of as a predictor of sarcopenia and mortality in idiopathic pulmonary fibrosis. Front Nutr 2024; 11:1440402. [PMID: 39698245 PMCID: PMC11652176 DOI: 10.3389/fnut.2024.1440402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease often complicated by sarcopenia, significantly impacting patient outcomes. This study investigates the prevalence and clinical implications of sarcopenia in IPF patients using morphofunctional assessment methods. Materials and methods Eighty-four IPF patients (predominantly male) were evaluated for sarcopenia using the European Working Group on Sarcopenia in Older People 2 (EWGSOP2) criteria. Assessments included bioelectrical impedance vectorial analysis (Nutrilab, Akern), handgrip strength (HGS), Timed Up and Go test (TUG), and nutritional ultrasound (NU) measurements of rectus femoris and abdominal adipose tissue. Statistical analysis was performed (version 2.3.28 for macOS) to obtain sarcopenia cut-off points for the different techniques, and then the predictive capacity of these values for survival was analyzed using a Kaplan-Meier curve. Results Sarcopenia was prevalent in 20.2% of the cohort. Sarcopenic patients exhibited significantly lower forced vital capacity (FVC) (2,142 mL vs. 2745.6 mL, p < 0.05), higher GAP stages (p < 0.05), and worse quality of life (SGRQ impact scores: 45.2 vs. 27.5, p < 0.05). The identified cutoff values were 2.94 cm2 for RFCSA, 9.19 s for TUG, and 1.08 cm for the RF-Y-axis and body cell mass (BCM) cutoff of 25.4 kg. Kaplan-Meier analysis indicated a higher hazard ratio (HR) for mortality in sarcopenic patients. Specifically, RFCSA sarcopenia patients had a 2.37 times higher risk of events (HR = 2.37, 95% CI: 1.02-5.48, p = 0.045), and TUG sarcopenia presented a 4.89 times higher risk of adverse events (HR = 4.89, 95% CI: 1.43-16.70, p = 0.011). Conclusion Sarcopenia is prevalent in IPF patients and is associated with greater disease severity and reduced quality of life. RFCSA, BCM, and TUG are good predictors of sarcopenia and 12-month mortality, improving the prognostic value of classical diagnostics based on EWGSOP2 criteria. Despite limitations such as a predominantly male sample and cross-sectional design, the findings emphasize the importance of early detection and targeted interventions. Future research should focus on longitudinal studies to better understand sarcopenia progression in IPF and evaluate the efficacy of various therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Fernández-Jiménez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medicine and Dermatology, Málaga University, Malaga, Spain
- Department of Endocrinology and Nutrition, Quironsalud Málaga Hospital, Malaga, Spain
| | - Eva Cabrera-Cesar
- Department of Neumology, Virgen de la Victoria University Hospital, Málaga, Spain
| | - Alicia Sanmartín-Sánchez
- Department of Endocrinology and Nutrition, Son Espases Universitary Hospital, Carretera de Valldemossa, Palma, Spain
| | - Ana Sánchez-Garcia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | | | - Isabel Vegas-Aguilar
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Maria del Mar Amaya-Campos
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Patricia Guirado-Pelaez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Victor Simón-Frapolli
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medicine and Dermatology, Málaga University, Malaga, Spain
| | - Mora Murri
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, CIBEROBN, Carlos III Health Institute (ISCIII), University of Málaga, Malaga, Spain
- Heart Area, Victoria Virgen University Hospital; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Lourdes Garrido-Sánchez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, CIBEROBN, Carlos III Health Institute (ISCIII), University of Málaga, Malaga, Spain
| | - Lorena Piñel-Jimenez
- Department of Neumology, Virgen de la Victoria University Hospital, Málaga, Spain
| | | | - Javier López-García
- Department of Neumology, Virgen de la Victoria University Hospital, Málaga, Spain
| | | | | | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, CIBEROBN, Carlos III Health Institute (ISCIII), University of Málaga, Malaga, Spain
| | - José Manuel García-Almeida
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medicine and Dermatology, Málaga University, Malaga, Spain
- Department of Endocrinology and Nutrition, Quironsalud Málaga Hospital, Malaga, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, CIBEROBN, Carlos III Health Institute (ISCIII), University of Málaga, Malaga, Spain
| |
Collapse
|
5
|
Hou S, Wang X, Guo J, Han Y, You J, Tian Z, Zheng X, Zheng S, Ling Y, Pei L, Wu E. Triangle correlations of lung microbiome, host physiology and gut microbiome in a rat model of idiopathic pulmonary fibrosis. Sci Rep 2024; 14:28743. [PMID: 39567656 PMCID: PMC11579350 DOI: 10.1038/s41598-024-80023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Changes in lung and gut microbial communities have been associated with idiopathic pulmonary fibrosis (IPF). This study aimed to investigate correlations between microbial changes in the lung and gut and host physiological indices in an IPF model, exploring potential mechanisms of the lung-gut axis in IPF pathogenesis. IPF model rats were established via trans-tracheal injection of bleomycin, with assessments of hematological indices, serum cytokines, lung histopathology, and microbiome alterations. Significant differences in microbial structure and composition were observed in the IPF model compared to controls, with 14 lung and 7 gut microbial genera showing significant abundance changes. Further analysis revealed 20 significant correlations between pulmonary and gut genera. Notably, 11 pairs of correlated genera were linked to the same IPF-related physiological indices, such as hydroxyproline, mean corpuscular volume (MCV), and red cell distribution width-standard deviation (RDW-SD). We identified 24 instances where a lung and a gut genus were each associated with the same physiological index, forming "lung genus-index-gut genus" relationships. Mediation analysis showed that indices like hydroxyproline, MCV, and RDW-SD mediated correlations between 10 lung genera (e.g., Cetobacterium, Clostridium XVIII ) and the gut genus Allobaculum. This study first describes gut-lung microbial interactions in pulmonary fibrosis. Mediation analysis suggests pathways underlying "lung genus-host index-gut genus" and "gut genus-host index-lung genus" correlations, thus providing clues to further elucidate the mechanisms of the "gut-lung axis" in IPF pathogenesis.
Collapse
Affiliation(s)
- Sihan Hou
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xueer Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Jiarui Guo
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yue Han
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Jia You
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, Beijing, 100081, China
| | - Zhigang Tian
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, No.804 Shenglijie, Xingqing District, Yinchuan, 750004, China
| | - Xiwei Zheng
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, No.804 Shenglijie, Xingqing District, Yinchuan, 750004, China
| | - Siriguleng Zheng
- Department of Information Technology, Polytechnic College, Beijing, China
| | - Yaqing Ling
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Lingpeng Pei
- School of Pharmacy, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China.
| | - Enqi Wu
- School of Pharmacy, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China.
| |
Collapse
|
6
|
Zhou W, Xu X, Qi D, Zhang X, Zheng F. Elevated mtDNA content in RBCs promotes oxidative stress may be responsible for faster senescence in men. Arch Gerontol Geriatr 2024; 125:105504. [PMID: 38870707 DOI: 10.1016/j.archger.2024.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Both we and others have found that RBC counts are significantly lower in older compared to younger. However, when gender is factored in, a significant age-related decrease of RBC counts is observed only in men but not in women. METHODS qPCR and confocal microscopy were used to detect the presence of mtDNA in RBCs. Flow cytometry and specific inhibitors were used to determine how RBCs uptake cf-mtDNA. The peripheral blood was collected from 202 young adults and 207 older adults and RBC and plasma were isolated. The levels of TLR9+RBCs and apoptotic RBCs after uptake of cf-mtDNA by RBCs were measured by flow cytometry. The kit detects changes in SOD and MDA levels after cf-mtDNA uptake by RBCs. Young RBCs (YR) and old RBCs (OR) from single individuals were separated by Percoll centrifugation. RESULTS We found a significant decrease in RBC counts and a significant increase in the RDW with aging only in men. We also found that significantly elevated mtDNA content in RBCs was observed only in men during aging and was not found in women. Further studies demonstrated that RBCs could take up cf-mtDNA via TLR9, and the uptake of mtDNA might lead to a decrease in the RBC number and an increase in RDW due to an increase of oxidative stress. CONCLUSIONS The RBC mtDNA content might be a potential marker of RBC aging and the elevated RBC mtDNA content might be the cause of faster senescence in males than females.
Collapse
Affiliation(s)
- Wenjie Zhou
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China; School of Basic Medical Sciences, Wuhan University, Wuhan, PR China
| | - Xianqun Xu
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Daoxi Qi
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Fang Zheng
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|
7
|
Liu Y, Zhu X, Xue J, Maimaitituerxun R, Chen W, Dai W. Machine learning models for mortality prediction in critically ill patients with acute pancreatitis-associated acute kidney injury. Clin Kidney J 2024; 17:sfae284. [PMID: 39385947 PMCID: PMC11462445 DOI: 10.1093/ckj/sfae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Indexed: 10/12/2024] Open
Abstract
Background The occurrence of acute kidney injury (AKI) was associated with an increased mortality rate among acute pancreatitis (AP) patients, indicating the importance of accurately predicting the mortality rate of critically ill patients with acute pancreatitis-associated acute kidney injury (AP-AKI) at an early stage. This study aimed to develop and validate machine learning-based predictive models for in-hospital mortality rate in critically ill patients with AP-AKI by comparing their performance with the traditional logistic regression (LR) model. Methods This study used data from three clinical databases. The predictors were identified by the Recursive Feature Elimination algorithm. The LR and two machine learning models-random forest (RF) and eXtreme Gradient Boosting (XGBoost)-were developed using 10-fold cross-validation to predict in-hospital mortality rate in AP-AKI patients. Results A total of 1089 patients from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) and eICU Collaborative Research Database (eICU-CRD) were included in the training set and 176 patients from Xiangya Hospital were included in the external validation set. The in-hospital mortality rates of the training and external validation sets were 13.77% and 54.55%, respectively. Compared with the area under the curve (AUC) values of the LR model and the RF model, the AUC value of the XGBoost model {0.941 [95% confidence interval (CI) 0.931-0.952]} was significantly higher (both P < .001) and the XGBoost model had the smallest Brier score of 0.039 in the training set. In the external validation set, the performance of the XGBoost model was acceptable, with an AUC value of 0.724 (95% CI 0.648-0.800). However, it did not differ significantly from the LR and RF models. Conclusions The XGBoost model was superior to the LR and RF models in terms of both the discrimination and calibration in the training set. Whether the findings can be generalized needs to be further validated.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xu Zhu
- Department of Epidemiology and Health Statistics, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Xue
- Department of Scientific Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rehanguli Maimaitituerxun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Wenhang Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjie Dai
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Karampitsakos T, Tourki B, Jia M, Perrot CY, Visinescu B, Zhao A, Unterman A, Tzouvelekis A, Bandyopadhyay D, Juan-Guardela BM, Prasse A, Noth I, Liggett S, Kaminski N, Benos PV, Herazo-Maya JD. The transcriptome of CD14 + CD163 - HLA-DR low monocytes predicts mortality in Idiopathic Pulmonary Fibrosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311386. [PMID: 39211854 PMCID: PMC11361223 DOI: 10.1101/2024.08.07.24311386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rationale The association between immune-cell-specific transcriptomic profiles and Idiopathic Pulmonary Fibrosis (IPF) mortality is unknown. Objectives To determine immune-cell-specific transcriptomic profiles associated with IPF mortality. Methods We profiled peripheral blood mononuclear cells (PBMC) in 18 participants [University of South Florida: IPF, COVID-19, post-COVID-19 Interstitial Lung Disease (Post-COVID-19 ILD), controls] by single-cell RNA sequencing (scRNA-seq) and identified 16 immune-cell-specific transcriptomic profiles. The Scoring Algorithm of Molecular Subphenotypes (SAMS) was used to calculate Up-scores based on these 16 gene profiles. Their association with outcomes was investigated in peripheral blood, Bronchoalveolar Lavage (BAL) and lung tissue of N=416 IPF patients from six cohorts. Findings were validated in an independent IPF, PBMC scRNA-seq dataset (N=38). Measurements and main results Cox-regression models demonstrated that 230 genes from CD14 + CD163 - HLA-DR low circulating monocytes predicted IPF mortality [Pittsburgh (p=0.02), Chicago (p=0.003)]. PBMC proportions of CD14 + CD163 - HLA-DR low monocytes were higher in progressive versus stable IPF (Yale, 0.13±0.05 versus 0.09±0.05, p=0.034). Receiving operating characteristic identified a 230 gene, Up-score >41.84 (Pittsburgh) predictive of mortality in Chicago (HR: 6.58, 95%CI: 2.15-20.13, p=0.001) and in pooled analysis of BAL cohorts (HR: 2.20, 95%CI: 1.44-3.37, p=0.0003). High-risk patients had decreased expression of the T-cell co-stimulatory genes CD28 , ICOS , ITK and LCK (Pittsburgh and Chicago, p<0.01). 230 gene-up-scores negatively correlated with Forced Vital Capacity (FVC) in IPF lung tissues (LGRC, rho=-0.2, p=0.02). Results were replicated using a subset of 13 genes from the 230-gene signature (pooled PBMC cohorts - HR: 5.34, 95%CI: 2.83-10.06, p<0.0001). Conclusions The transcriptome of CD14 + CD163 - HLA-DR low monocytes is associated with increased IPF mortality.
Collapse
|
9
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
10
|
Bartold K, Iskierko Z, Sharma PS, Lin HY, Kutner W. Idiopathic pulmonary fibrosis (IPF): Diagnostic routes using novel biomarkers. Biomed J 2024; 47:100729. [PMID: 38657859 PMCID: PMC11340561 DOI: 10.1016/j.bj.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) diagnosis is still the diagnosis of exclusion. Differentiating from other forms of interstitial lung diseases (ILDs) is essential, given the various therapeutic approaches. The IPF course is now unpredictable for individual patients, although some genetic factors and several biomarkers have already been associated with various IPF prognoses. Since its early stages, IPF may be asymptomatic, leading to a delayed diagnosis. The present review critically examines the recent literature on molecular biomarkers potentially useful in IPF diagnostics. The examined biomarkers are grouped into breath and sputum biomarkers, serologically assessed extracellular matrix neoepitope markers, and oxidative stress biomarkers in lung tissue. Fibroblasts and complete blood count have also gained recent interest in that respect. Although several biomarker candidates have been profiled, there has yet to be a single biomarker that proved specific to the IPF disease. Nevertheless, various IPF biomarkers have been used in preclinical and clinical trials to verify their predictive and monitoring potential.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Taiwan
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland.
| |
Collapse
|
11
|
Kreuter M, Lee JS, Tzouvelekis A, Oldham JM, Molyneaux PL, Weycker D, Atwood M, Samara K, Kirchgässler KU, Maher TM. Modified blood cell GAP model as a prognostic biomarker in idiopathic pulmonary fibrosis. ERJ Open Res 2024; 10:00666-2023. [PMID: 39076530 PMCID: PMC11284599 DOI: 10.1183/23120541.00666-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/29/2024] [Indexed: 07/31/2024] Open
Abstract
Background The Gender, Age and Physiology (GAP) model is a simple mortality prediction tool in patients with idiopathic pulmonary fibrosis that uses demographic and physiological variables available at initial evaluation. White blood cell variables may have associations with idiopathic pulmonary fibrosis outcomes. We evaluated whether incorporating blood cell counts in modified GAP (cGAP) models would improve outcome prediction in patients with idiopathic pulmonary fibrosis. Patients and methods This retrospective analysis included pooled data from phase 3 randomised trials of pirfenidone in idiopathic pulmonary fibrosis (ASCEND, CAPACITY 004, CAPACITY 006). Study outcomes (disease progression, all-cause mortality, all-cause hospitalisation, respiratory-related hospitalisation) were evaluated during the initial 1-year period. Shared frailty models were used to evaluate associations between continuous and categorical baseline white and red blood cell parameters and study outcomes in a bivariate context, and to evaluate the impact of adding continuous monocyte count (cGAP1) or white and red blood cell parameters (cGAP2) to traditional GAP variables in a multivariable context based on C-statistics changes. Results Data were pooled from 1247 patients (pirfenidone, n=623; placebo, n=624). Significant associations (bivariate analyses) were idiopathic pulmonary fibrosis progression with neutrophil and eosinophil counts; all-cause mortality with monocyte and neutrophil counts; all-cause hospitalisation with monocyte count, neutrophil count and haemoglobin level; and respiratory-related hospitalisation with monocyte count, neutrophil count and haemoglobin level. In multivariate analyses, C-statistics were highest for the cGAP2 model for each of the outcomes. Conclusion Modified GAP models incorporating monocyte counts alone or plus other white and red blood cell variables may be useful to improve prediction of outcomes in patients with idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Michael Kreuter
- Center for Pulmonary Medicine, Departments of Pneumology, Mainz University Medical Center, and of Pulmonary, Critical Care and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Joyce S. Lee
- Department of Medicine, University of Colorado, Denver, CO, USA
| | | | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Philip L. Molyneaux
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospitals, Guy's and St Thomas’ NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Toby M. Maher
- National Heart and Lung Institute, Imperial College London, London, UK
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care, and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Polat G, Özdemir Ö, Ermin S, Serçe Unat D, Demirci Üçsular F. Predictive factors of mortality in patients with idiopathic pulmonary fibrosis treated with antifibrotics: a novel prognostic scoring system. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2024; 41:e2024021. [PMID: 38940720 PMCID: PMC11275550 DOI: 10.36141/svdld.v41i2.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/25/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND AND AIM Any test that provides sufficient prognostic information to guide treatment decisions in idiopathic pulmonary fibrosis (IPF) is not available. The aim of our study was to determine the predictive factors of mortality in patients with IPF treated with antifibrotics. METHODS Patients with diagnosis of IPF who were treated with antifibrotics between 2016 - 2021 were included in the study. Demographic, clinical and laboratory characteristics of the patients was derived from hospital records retrospectively. Kaplan Meier and multivariate cox regression analysis were achieved for detection of mortality predictors. RESULTS Study population was composed of 119 IPF patients with a male predominance of 80.7% (n=96). Mean age of the patients was 67.9 ± 7.07 years. On univariate analysis, sex was not a significant predictor of mortality (HR 1.79; 95% CI: 0.87 - 3.69, p =0.11). BMI ≤ 26,6 m2/kg, DLCO ≤ 3.11 ml/mmHg/min, age over 62 years, 6DWT ≤ 382 meters, NLR ≤ 2.67 and PDW ≤ 16.7% were found to be significant for predicting mortality. On multivariate cox regression analysis four parameters remained significant for prediction of mortality: RDW > 14%, NLR ≤ 2.67, BMI ≤ 26,6 m2/kg and DLCO ≤ 3.11 ml/mmHg/min (respectively, HR: 2.0. 95% CI: 1.02 - 3.91, p=0.44; HR: 2.68. 95% CI: 1.48 - 4.85, p=0.001, HR: 2.07. 95% CI: 1.14 - 3.76, p=0.02, HR: 3.46. 95% CI: 1.85 - 6.47, p<0.001). A scoring system with these parameters discriminated patients with worse prognosis with a sensitivity of 89.1 % and a specificity of 65.8 % when total point was over 2 (AUC0.83, p<0.001). Conclusions In this study, DLCO, BMI, RDW and NLR levels significantly predicted mortality in IPF patients. Along with GAP index, scoring system with these simple parameters may give information about the prognosis of an IPF patient treated with antifibrotics.
Collapse
Affiliation(s)
- Gülru Polat
- Department of Pulmonology, University of Health Sciences, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, Izmir, Turkey
| | - Özer Özdemir
- Department of Pulmonology, University of Health Sciences, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, Izmir, Turkey
| | - Sinem Ermin
- Department of Pulmonology, University of Health Sciences, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, Izmir, Turkey
| | - Damla Serçe Unat
- Department of Pulmonology, University of Health Sciences, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, Izmir, Turkey
| | - Fatma Demirci Üçsular
- Department of Pulmonology, University of Health Sciences, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
13
|
Dai J, Guo Y, Zhou Q, Duan XJ, Shen J, Zhang X. The relationship between red cell distribution width, serum calcium ratio, and in-hospital mortality among patients with acute respiratory failure: A retrospective cohort study of the MIMIC-IV database. Medicine (Baltimore) 2024; 103:e37804. [PMID: 38608105 PMCID: PMC11018187 DOI: 10.1097/md.0000000000037804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
To investigate the impact of RDW/CA (the ratio of red cell distribution width to calcium) on in-hospital mortality in patients with acute respiratory failure (ARF). This retrospective cohort study analyzed the data of 6981 ARF patients from the Medical Information Mart for Intensive Care (MIMIC-IV) database 2.0. Critically ill participants between 2008 and 2019 at the Beth Israel Deaconess Medical Center in Boston. The primary outcome of interest was in-hospital mortality. A Cox proportional hazards regression model was used to determine whether the RDW/CA ratio independently correlated with in-hospital mortality. The Kaplan-Meier method was used to plot the survival curves of the RDW/CA. Subgroup analyses were performed to measure the mortality across various subgroups. After adjusting for potential covariates, we found that a higher RDW/CA was associated with an increased risk of in-hospital mortality (HR = 1.17, 95% CI: 1.01-1.35, P = .0365) in ARF patients. A nonlinear relationship was observed between RDW/CA and in-hospital mortality, with an inflection point of 1.97. When RDW/CA ≥ 1.97 was positively correlated with in-hospital mortality in patients with ARF (HR = 1.554, 95% CI: 1.183-2.042, P = .0015). The Kaplan-Meier curve indicated the higher survival rates for RDW/CA < 1.97 and the lower for RDW/CA ≥ 1.97 after adjustment for age, gender, body mass index, and ethnicity. RDW/CA is an independent predictor of in-hospital mortality in patients with ARF. Furthermore, a nonlinear relationship was observed between RDW/CA and in-hospital mortality in patients with ARF.
Collapse
Affiliation(s)
- Jun Dai
- Department of Nursing, The First People’s Hospital of Changde City, Changde, Hunan Province, China
| | - Yafen Guo
- Department of Nursing, The First People’s Hospital of Changde City, Changde, Hunan Province, China
| | - Quan Zhou
- Department of Science and Education, The First People’s Hospital of Changde City, Changde, Hunan Province, China
| | - Xiang-Jie Duan
- Department of Infectious Diseases, The First People’s Hospital of Changde City, Changde, Hunan Province, China
| | - Jinhua Shen
- Department of Nursing, The First People’s Hospital of Changde City, Changde, Hunan Province, China
| | - Xueqing Zhang
- Department of Nursing, The First People’s Hospital of Changde City, Changde, Hunan Province, China
| |
Collapse
|
14
|
Jia Z, Jin C, Pan D, Chen D. Association between red blood cell distribution width and all-cause mortality of patients after intra-aortic balloon pump in the intensive care unit. Heliyon 2024; 10:e27498. [PMID: 38509938 PMCID: PMC10950574 DOI: 10.1016/j.heliyon.2024.e27498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Objectives This study aimed to explore the relationship between red blood cell distribution width (RDW) and all-cause mortality in critically ill patients undergoing intra-aortic balloon pumping (IABP) in the intensive care unit (ICU). Methods This study retrospectively analyzed data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The primary endpoint was the 30-day mortality rate, while the secondary endpoint was the in-hospital mortality rate. Restricted cubic splines were used to assess the dose-response relationship. The receiver operating characteristic (ROC) curve and Kaplan-Meier curve analysis were carried out to evaluate the predictive performance of RDW. Moreover, multiple logistic regression analyses and subgroup analyses were conducted to investigate the relationship between RDW and 30-day mortality. Finally, propensity score matching (PSM) was performed to adjust for the imbalance of covariates. Results In total, 732 patients were finally identified from the MIMIC-IV database in this study. The RDW of patients in the non-survivor group was significantly higher compared with those in the survivor group (P < 0.01). Multiple logistic regression analyses corroborated RDW was an independent predictor of all-cause 30-day mortality in critically ill patients post-IABP. Meanwhile, ROC analysis identified an RDW cutoff of 14.2%. High RDW patients exhibited a 131% (OR = 2.31, 95% CI: 1.49-3.61) elevated risk of 30-day mortality after adjusting for confounders in multivariable logistic regression. After PSM, 412 patients were included in the matched cohort. In the original and matched cohorts, the high RDW group had higher 30-day and in-hospital mortality rates, as well as longer ICU stays. Lastly, the area under the ROC curve for 30-day mortality was 0.686, with an optimal cutoff point of 14.2 for RDW (sensitivity: 69.09 % and specificity: 63.32%). Conclusion RDW could be a simple and valuable prognostic tool to predict mortality in critically ill patients after IABP.
Collapse
Affiliation(s)
- Zhongheng Jia
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| | - Can Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| | - Da Pan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| | - Daqing Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| |
Collapse
|
15
|
Gu X, Huang L, Li X, Zhou Y, Zhang H, Wang Y, Cui D, Yu T, Wang Y, Cao B. Association of Monocyte Count With Lung Function and Exercise Capacity Among Hospitalized COVID-19 Survivors: A 2-Year Cohort Study. Influenza Other Respir Viruses 2024; 18:e13263. [PMID: 38503498 PMCID: PMC10950557 DOI: 10.1111/irv.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Abnormal changes of monocytes have been observed in acute COVID-19, whereas associations of monocyte count with long COVID were not sufficiently elucidated. METHODS A cohort study was conducted among COVID-19 survivors discharged from hospital. The primary outcomes were core symptoms of long COVID, distance walked in 6 min, and lung function, and the secondary outcomes were health-related quality of life and healthcare use after discharge. Latent variable mixture modeling was used to classify individuals into groups with similar trajectory of monocyte count from discharge to 2-year after symptom onset. Multivariable adjusted generalized linear regression models and logistic regression models were used to estimate the associations of monocyte count trajectories and monocyte count at discharge with outcomes. RESULTS In total, 1389 study participants were included in this study. Two monocyte count trajectories including high to normal high and normal trajectory were identified. After multivariable adjustment, participants in high to normal high trajectory group had an odds ratio (OR) of 2.52 (95% CI, 1.44-4.42) for smell disorder, 2.27 (1.27-4.04) for 6-min walking distance less than lower limit of normal range, 2.45 (1.08-5.57) for total lung capacity (TLC) < 80% of predicted, 3.37 (1.16-9.76) for personal care problem, and 1.70 (1.12-2.58) for rehospitalization after discharge at 2-year follow-up compared with those in normal trajectory group. Monocyte count at discharge showed similar results, which was associated with smell disorder, TLC < 80% of predicted, diffusion impairment, and rehospitalization. CONCLUSIONS Monocyte count may serve as an easily accessible marker for long-term management of people recovering from COVID-19.
Collapse
Affiliation(s)
- Xiaoying Gu
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Clinical Research and Data Management, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Lixue Huang
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xia Li
- Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
| | - Yuting Zhou
- Department of Pulmonary and Critical Care Medicine, Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
| | - Hui Zhang
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
- Department of Pulmonary and Critical Care MedicineCapital Medical UniversityBeijingChina
| | - Yeming Wang
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Dan Cui
- Department of Pulmonary and Critical Care MedicineThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ting Yu
- Department of Pulmonary and Critical Care Medicine, Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
| | - Yimin Wang
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Bin Cao
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
- Department of Pulmonary and Critical Care MedicineCapital Medical UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| |
Collapse
|
16
|
Summer R, Todd JL, Neely ML, Lobo LJ, Namen A, Newby LK, Shafazand S, Suliman S, Hesslinger C, Keller S, Leonard TB, Palmer SM, Ilkayeva O, Muehlbauer MJ, Newgard CB, Roman J. Circulating metabolic profile in idiopathic pulmonary fibrosis: data from the IPF-PRO Registry. Respir Res 2024; 25:58. [PMID: 38273290 PMCID: PMC10809477 DOI: 10.1186/s12931-023-02644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The circulating metabolome, reflecting underlying cellular processes and disease biology, has not been fully characterized in patients with idiopathic pulmonary fibrosis (IPF). We evaluated whether circulating levels of metabolites correlate with the presence of IPF, with the severity of IPF, or with the risk of clinically relevant outcomes among patients with IPF. METHODS We analyzed enrollment plasma samples from 300 patients with IPF in the IPF-PRO Registry and 100 individuals without known lung disease using a set of targeted metabolomics and clinical analyte modules. Linear regression was used to compare metabolite and clinical analyte levels between patients with IPF and controls and to determine associations between metabolite levels and measures of disease severity in patients with IPF. Unadjusted and adjusted univariable Cox regression models were used to evaluate associations between circulating metabolites and the risk of mortality or disease progression among patients with IPF. RESULTS Levels of 64 metabolites and 5 clinical analytes were significantly different between patients with IPF and controls. Among analytes with greatest differences were non-esterified fatty acids, multiple long-chain acylcarnitines, and select ceramides, levels of which were higher among patients with IPF versus controls. Levels of the branched-chain amino acids valine and leucine/isoleucine were inversely correlated with measures of disease severity. After adjusting for clinical factors known to influence outcomes, higher levels of the acylcarnitine C:16-OH/C:14-DC were associated with all-cause mortality, lower levels of the acylcarnitine C16:1-OH/C14:1DC were associated with all-cause mortality, respiratory death, and respiratory death or lung transplant, and higher levels of the sphingomyelin d43:2 were associated with the risk of respiratory death or lung transplantation. CONCLUSIONS IPF has a distinct circulating metabolic profile characterized by increased levels of non-esterified fatty acids, long-chain acylcarnitines, and ceramides, which may suggest a more catabolic environment that enhances lipid mobilization and metabolism. We identified select metabolites that were highly correlated with measures of disease severity or the risk of disease progression and that may be developed further as biomarkers. TRIAL REGISTRATION ClinicalTrials.gov; No: NCT01915511; URL: www. CLINICALTRIALS gov .
Collapse
Affiliation(s)
- Ross Summer
- Thomas Jefferson University, Philadelphia, PA, USA.
| | - Jamie L Todd
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Megan L Neely
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - L Jason Lobo
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew Namen
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - L Kristin Newby
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | | | | | | | - Sascha Keller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Scott M Palmer
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Jesse Roman
- Jane and Leonard Korman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Karampitsakos T, Galaris A, Chrysikos S, Papaioannou O, Vamvakaris I, Barbayianni I, Kanellopoulou P, Grammenoudi S, Anagnostopoulos N, Stratakos G, Katsaras M, Sampsonas F, Dimakou K, Manali ED, Papiris S, Tourki B, Juan-Guardela BM, Bakakos P, Bouros D, Herazo-Maya JD, Aidinis V, Tzouvelekis A. Expression of PD-1/PD-L1 axis in mediastinal lymph nodes and lung tissue of human and experimental lung fibrosis indicates a potential therapeutic target for idiopathic pulmonary fibrosis. Respir Res 2023; 24:279. [PMID: 37964265 PMCID: PMC10648728 DOI: 10.1186/s12931-023-02551-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Mediastinal lymph node enlargement is prevalent in patients with idiopathic pulmonary fibrosis (IPF). Studies investigating whether this phenomenon reflects specific immunologic activation are lacking. METHODS Programmed cell death-1 (PD-1)/ programmed cell death ligand-1 (PD-L1) expression in mediastinal lymph nodes and lung tissues was analyzed. PD-1, PD-L1 mRNA expression was measured in tracheobronchial lymph nodes of mice following bleomycin-induced injury on day 14. Finally, the effect of the PD-1 inhibitor, pembrolizumab, in bleomycin-induced pulmonary fibrosis was investigated. RESULTS We analyzed mediastinal lymph nodes of thirty-three patients (n = 33, IPF: n = 14, lung cancer: n = 10, concomitant IPF and lung cancer: n = 9) and lung tissues of two hundred nineteen patients (n = 219, IPF: 123, controls: 96). PD-1 expression was increased, while PD-L1 expression was decreased, in mediastinal lymph nodes of patients with IPF compared to lung cancer and in IPF lungs compared to control lungs. Tracheobronchial lymph nodes isolated on day 14 from bleomycin-treated mice exhibited increased size and higher PD-1, PD-L1 mRNA levels compared to saline-treated animals. Pembrolizumab blunted bleomycin-induced lung fibrosis, as indicated by reduction in Ashcroft score and improvement in respiratory mechanics. CONCLUSIONS Mediastinal lymph nodes of patients with IPF exhibit differential expression profiles than those of patients with lung cancer indicating distinct immune-mediated pathways regulating fibrogenesis and carcinogenesis. PD-1 expression in mediastinal lymph nodes is in line with lung tissue expression. Lower doses of pembrolizumab might exert antifibrotic effects. Clinical trials aiming to endotype patients based on mediastinal lymph node profiling and accordingly implement targeted therapies such as PD-1 inhibitors are greatly anticipated.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Apostolos Galaris
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Serafeim Chrysikos
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Ourania Papaioannou
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Ioannis Vamvakaris
- Department of Pathology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Ilianna Barbayianni
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Sofia Grammenoudi
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Nektarios Anagnostopoulos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Grigoris Stratakos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthaios Katsaras
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Katerina Dimakou
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Effrosyni D Manali
- 2nd Pulmonary Medicine Department, Athens Medical School, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Papiris
- 2nd Pulmonary Medicine Department, Athens Medical School, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Bochra Tourki
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Petros Bakakos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Jose D Herazo-Maya
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Vassilis Aidinis
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Argyris Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece.
| |
Collapse
|
18
|
Karampitsakos T, Spagnolo P, Tzouvelekis A. Editorial: Immune-mediated lung injury. Front Med (Lausanne) 2023; 10:1292074. [PMID: 38020172 PMCID: PMC10655232 DOI: 10.3389/fmed.2023.1292074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Argyris Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
19
|
Perrot CY, Karampitsakos T, Herazo-Maya JD. Monocytes and macrophages: emerging mechanisms and novel therapeutic targets in pulmonary fibrosis. Am J Physiol Cell Physiol 2023; 325:C1046-C1057. [PMID: 37694283 PMCID: PMC10635664 DOI: 10.1152/ajpcell.00302.2023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Pulmonary fibrosis results from a plethora of abnormal pathogenetic events. In idiopathic pulmonary fibrosis (IPF), inhalational, environmental, or occupational exposures in genetically and epigenetically predisposed individuals trigger recurrent cycles of alveolar epithelial cell injury, activation of coagulation pathways, chemoattraction, and differentiation of monocytes into monocyte-derived alveolar macrophages (Mo-AMs). When these events happen intermittently and repeatedly throughout the individual's life cycle, the wound repair process becomes aberrant leading to bronchiolization of distal air spaces, fibroblast accumulation, extracellular matrix deposition, and loss of the alveolar-capillary architecture. The role of immune dysregulation in IPF pathogenesis and progression has been underscored in the past mainly after the disappointing results of immunosuppressant use in IPF patients; however, recent reports highlighting the prognostic and mechanistic roles of monocytes and Mo-AMs revived the interest in immune dysregulation in IPF. In this review, we will discuss the role of these cells in the onset and progression of IPF, as well as potential targeted therapies.
Collapse
Affiliation(s)
- Carole Y Perrot
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Theodoros Karampitsakos
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jose D Herazo-Maya
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
20
|
Min B, Grant-Orser A, Johannson KA. Peripheral blood monocyte count and outcomes in patients with interstitial lung disease: a systematic review and meta-analysis. Eur Respir Rev 2023; 32:230072. [PMID: 37673424 PMCID: PMC10481330 DOI: 10.1183/16000617.0072-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Peripheral blood monocyte counts have been associated with poor outcomes in interstitial lung disease (ILD). However, studies are limited by variable biomarker thresholds, analytic approaches and heterogenous populations. This systematic review and meta-analysis characterised the relationship between monocytes and clinical outcomes in ILD. METHODS Electronic database searches were performed. Two reviewers screened abstracts and extracted data. Pooled estimates (hazard ratios (HRs)) of monocyte count thresholds were calculated for their association with mortality using ≥0.6×109 and >0.9×109 cells·L-1 for unadjusted models and ≥0.95×109 cells·L-1 for adjusted models, using random effects, with heterogeneity and bias assessed. Disease progression associated with monocytes >0.9×109cells·L-1 was also calculated. RESULTS Of 3279 abstracts, 13 were included in the systematic review and eight in the meta-analysis. The pooled unadjusted HR for mortality for monocyte counts ≥0.6×109 cells·L-1 was 1.71 (95% CI 1.34-2.19, p<0.001, I2=0%) and for monocyte counts >0.90×109 cells·L-1 it was 2.44 (95% CI 1.53-3.87, p=0.0002, I2=52%). The pooled adjusted HR for mortality for monocyte counts ≥0.95×109 cells·L-1 was 1.93 (95% CI 1.24-3.01, p=0.0038 I2=69%). The pooled HR for disease progression associated with increased monocyte counts was 1.83 (95% CI 1.40-2.39, p<0.0001, I2=28%). CONCLUSIONS Peripheral blood monocyte counts were associated with an increased risk of mortality and disease progression in patients with ILD.
Collapse
Affiliation(s)
- Bohyung Min
- Department of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
| | - Amanda Grant-Orser
- Department of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
| | - Kerri A Johannson
- Department of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Karampitsakos T, Juan-Guardela BM, Tzouvelekis A, Herazo-Maya JD. Precision medicine advances in idiopathic pulmonary fibrosis. EBioMedicine 2023; 95:104766. [PMID: 37625268 PMCID: PMC10469771 DOI: 10.1016/j.ebiom.2023.104766] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous, unpredictable and ultimately lethal chronic lung disease. Over the last decade, two anti-fibrotic agents have been shown to slow disease progression, however, both drugs are administered uniformly with minimal consideration of disease severity and inter-individual molecular, genetic, and genomic differences. Advances in biological understanding of disease endotyping and the emergence of precision medicine have shown that "a one-size-fits-all approach" to the management of chronic lung diseases is no longer appropriate. While precision medicine approaches have revolutionized the management of other diseases such as lung cancer and asthma, the implementation of precision medicine in IPF clinical practice remains an unmet need despite several reports demonstrating a large number of diagnostic, prognostic and theragnostic biomarker candidates in IPF. This review article aims to summarize our current knowledge of precision medicine in IPF and highlight barriers to translate these research findings into clinical practice.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
22
|
Tsuneyoshi S, Zaizen Y, Tominaga M, Matama G, Umemoto S, Ohno S, Takaki R, Yano R, Murotani K, Okamoto M, Hoshino T. Clinical significance of high monocyte counts for the continuous treatment with nintedanib. BMC Pulm Med 2023; 23:242. [PMID: 37400801 PMCID: PMC10318667 DOI: 10.1186/s12890-023-02536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Nintedanib is now widely used to treat interstitial lung disease (ILD). Adverse events, which occur in not a few patients, make it difficult to continue nintedanib treatment, but the risk factors for adverse events are not well understood. METHODS In this retrospective cohort study, we enrolled 111 patients with ILDs treated with nintedanib and investigated the factors involved in starting dosage reduction, withdrawal, or discontinuation within 12 months, even with appropriate symptomatic treatment. We also examined the efficacy of nintedanib in reducing the frequency of acute exacerbations and the prevention of pulmonary function reduction. RESULTS Patients with high monocyte counts (> 0.454 × 109/L) had a significantly higher frequency of treatment failure, such as dosage reduction, withdrawal, or discontinuation. High monocyte count was as significant a risk factor as body surface area (BSA). Regarding efficacy, there was no difference in the frequency of acute exacerbations or the amount of decline in pulmonary function within 12 months between the normal (300 mg) and reduced (200 mg) starting dosage groups. CONCLUSION Our study results indicate that patients with higher monocyte counts (> 0.454 × 109/L) should very careful about side effects with regard to nintedanib administration. Like BSA, a higher monocyte count is considered a risk factor for nintedanib treatment failure. There was no difference in FVC decline and frequency of acute exacerbations between the starting doseage of nintedanib, 300 mg and 200 mg. Considering the risk of withdrawal periods and discontinuation, a reduced starting dosage may be acceptable in the patients with higher monocyte counts or small body sizes.
Collapse
Affiliation(s)
- Shingo Tsuneyoshi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Fukuoka, Japan
| | - Yoshiaki Zaizen
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Fukuoka, Japan.
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Masaki Tominaga
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Fukuoka, Japan
| | - Goushi Matama
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Fukuoka, Japan
| | - Shushi Umemoto
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Fukuoka, Japan
| | - Shuuhei Ohno
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Fukuoka, Japan
| | - Reiko Takaki
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Fukuoka, Japan
| | - Ryo Yano
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Fukuoka, Japan
| | - Kenta Murotani
- Biostatistics Center, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Masaki Okamoto
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Fukuoka, Japan
- Department of Respirology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyouhama, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Fukuoka, Japan
| |
Collapse
|
23
|
Karampitsakos T, Wijsenbeek M, Herazo-Maya JD, Tzouvelekis A, Kreuter M. Interstitial lung diseases: an overview. RARE DISEASES OF THE RESPIRATORY SYSTEM 2023. [DOI: 10.1183/2312508x.10017322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Sonaglioni A, Caminati A, Re M, Elia D, Trevisan R, Granato A, Zompatori M, Lombardo M, Harari S. Prognostic role of CHA 2DS 2-VASc score for mortality risk assessment in non-advanced idiopathic pulmonary fibrosis: a preliminary observation. Intern Emerg Med 2023; 18:755-767. [PMID: 36966265 PMCID: PMC10039767 DOI: 10.1007/s11739-023-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/05/2023] [Indexed: 03/27/2023]
Abstract
During the last decade, the CHA2DS2-VASc score has been used for stratifying the mortality risk in both atrial fibrillation (AF) and non-AF patients. However, no previous study considered this score as a prognostic indicator in non-AF patients with mild-to-moderate idiopathic pulmonary fibrosis (IPF). All consecutive non-AF patients with mild-to-moderate IPF, diagnosed between January 2016 and December 2018 at our Institution, entered this study. All patients underwent physical examination, blood tests, spirometry, high-resolution computed tomography and transthoracic echocardiography. CHA2DS2-VASc score, Gender-Age-Physiology (GAP) index and Charlson Comorbidity Index (CCI) were determined in all patients. Primary endpoint was all-cause mortality, while the secondary endpoint was the composite of all-cause mortality and rehospitalizations for all causes over mid-term follow-up. 103 consecutive IPF patients (70.7 ± 7.3 yrs, 79.6% males) were retrospectively analyzed. At the basal evaluation, CHA2DS2-VASc score, GAP index and CCI were 3.7 ± 1.6, 3.6 ± 1.2 and 5.5 ± 2.3, respectively. Mean follow-up was 3.5 ± 1.3 yrs. During the follow-up period, 29 patients died and 43 were re-hospitalized (44.2% due to cardiopulmonary causes). On multivariate Cox regression analysis, CHA2DS2-VASc score (HR 2.15, 95% CI 1.59-2.91) and left ventricular ejection fraction (LVEF) (HR 0.91, 95% CI 0.86-0.97) were independently associated with all-cause mortality in IPF patients. CHA2DS2-VASc score (HR 1.66, 95% CI 1.39-1.99) and LVEF (HR 0.94, 95% CI 0.90-0.98) also predicted the secondary endpoint in the same study group. CHA2DS2-VASc score > 4 was the optimal cut-off for predicting both outcomes. At mid-term follow-up, a CHA2DS2-VASc score > 4 predicts an increased risk of all-cause mortality and rehospitalizations for all causes in non-AF patients with mild-to-moderate IPF.
Collapse
Affiliation(s)
| | - Antonella Caminati
- Division of Pneumology, Semi-Intensive Care Unit, MultiMedica IRCCS, Milan, Italy.
| | - Margherita Re
- Division of Internal Medicine, MultiMedica IRCCS, Milan, Italy
| | - Davide Elia
- Division of Pneumology, Semi-Intensive Care Unit, MultiMedica IRCCS, Milan, Italy
| | | | - Alberto Granato
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | | | - Sergio Harari
- Division of Pneumology, Semi-Intensive Care Unit, MultiMedica IRCCS, Milan, Italy
- Division of Internal Medicine, MultiMedica IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Di Milano, Milan, Italy
| |
Collapse
|
25
|
C-type lectin Mincle initiates IL-17-mediated inflammation in acute exacerbations of idiopathic pulmonary fibrosis. Biomed Pharmacother 2023; 159:114253. [PMID: 36680813 DOI: 10.1016/j.biopha.2023.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
RATIONALE Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) has a poor prognosis and high mortality. However, there is limited information regarding the mechanisms of AE-IPF. AIMS We aimed to explore the function of macrophage-inducible C-type lectin (Mincle) in AE-IPF. METHODS In the present study, Mincle was detected in the lung tissues of AE-IPF patients. Mincle-deficient (Mincle-/-) mice and wild-type C57BL/6 mice were administered bleomycin (BLM), followed by HSV1 viral infection to establish the AE-IPF model. RESULTS Mincle was increased in the lung tissues of AE-IPF patients compared with those with stable IPF (P = 0.04) and healthy controls (P = 0.009). The survival rate of the Mincle-/-+BLM+HSV group was higher than that of the WT+BLM+HSV group. The mice in the Mincle-/-+BLM+HSV group exhibited milder inflammation and lower acute lung injury scores (P = 0.008). Mincle was expressed on inflammatory monocytes and neutrophils (CD11b+Gr1 +F4/80-) and monocyte-derived macrophages (Mo-AMs, CD11b+Gr1 +F4/80 +) in the BALF of AE-IPF mice. Mo-AMs were significantly increased in the WT+BLM+HSV group compared with the WT+BLM+PBS (P < 0.0001) and Mincle-/-+BLM+HSV (P = 0.0009) groups. Deletion of Mincle decreased the proportion of Th17 cells and Mo-AMs in the Mincle-/-+BLM+HSV group. CONCLUSIONS Mincle contributed to acute inflammation in AE-IPF by promoting Th17 differentiation.
Collapse
|
26
|
Karampitsakos T, Spagnolo P, Mogulkoc N, Wuyts WA, Tomassetti S, Bendstrup E, Molina-Molina M, Manali ED, Unat ÖS, Bonella F, Kahn N, Kolilekas L, Rosi E, Gori L, Ravaglia C, Poletti V, Daniil Z, Prior TS, Papanikolaou IC, Aso S, Tryfon S, Papakosta D, Tzilas V, Balestro E, Papiris S, Antoniou K, Bouros D, Wells A, Kreuter M, Tzouvelekis A. Lung cancer in patients with idiopathic pulmonary fibrosis: A retrospective multicentre study in Europe. Respirology 2023; 28:56-65. [PMID: 36117239 DOI: 10.1111/resp.14363] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE There remains a paucity of large databases for patients with idiopathic pulmonary fibrosis (IPF) and lung cancer. We aimed to create a European registry. METHODS This was a multicentre, retrospective study across seven European countries between 1 January 2010 and 18 May 2021. RESULTS We identified 324 patients with lung cancer among 3178 patients with IPF (prevalence = 10.2%). By the end of the 10 year-period following IPF diagnosis, 26.6% of alive patients with IPF had been diagnosed with lung cancer. Patients with IPF and lung cancer experienced increased risk of all-cause mortality than IPF patients without lung cancer (HR: 1.51, [95% CI: 1.22-1.86], p < 0.0001). All-cause mortality was significantly lower for patients with IPF and lung cancer with a monocyte count of either <0.60 or 0.60-<0.95 K/μl than patients with monocyte count ≥0.95 K/μl (HR [<0.60 vs. ≥0.95 K/μl]: 0.35, [95% CI: 0.17-0.72], HR [0.60-<0.95 vs. ≥0.95 K/μl]: 0.42, [95% CI: 0.21-0.82], p = 0.003). Patients with IPF and lung cancer that received antifibrotics presented with decreased all cause-mortality compared to those who did not receive antifibrotics (HR: 0.61, [95% CI: 0.42-0.87], p = 0.006). In the adjusted model, a significantly lower proportion of surgically treated patients with IPF and otherwise technically operable lung cancer experienced all-cause mortality compared to non-surgically treated patients (HR: 0.30 [95% CI: 0.11-0.86], p = 0.02). CONCLUSION Lung cancer exerts a dramatic impact on patients with IPF. A consensus statement for the management of patients with IPF and lung cancer is sorely needed.
Collapse
Affiliation(s)
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Nesrin Mogulkoc
- Department of Pulmonology, Ege University Hospital, Izmir, Turkey
| | - Wim A Wuyts
- Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Sara Tomassetti
- Department of Clinical and Experimental Medicine, Interventional Pulmonology Unit, Careggi University Hospital Florence, Florence, Italy
| | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Molina-Molina
- Respiratory Department, Unit of Interstitial Lung Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Effrosyni D Manali
- 2nd Pulmonary Medicine Department, 'ATTIKON' University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ömer Selim Unat
- Department of Pulmonology, Ege University Hospital, Izmir, Turkey
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumonology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik-University Clinic Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Lykourgos Kolilekas
- 7th Department of Respiratory Medicine, Hospital for Thoracic Diseases, 'SOTIRIA', Athens, Greece
| | - Elisabetta Rosi
- Department of Clinical and Experimental Medicine, Interventional Pulmonology Unit, Careggi University Hospital Florence, Florence, Italy
| | - Leonardo Gori
- Department of Clinical and Experimental Medicine, Interventional Pulmonology Unit, Careggi University Hospital Florence, Florence, Italy
| | - Claudia Ravaglia
- Thoracic Diseases Department, Morgagni Pierantoni Hospital, Forlì, Italy
| | - Venerino Poletti
- Thoracic Diseases Department, Morgagni Pierantoni Hospital, Forlì, Italy
| | - Zoe Daniil
- Department of Respiratory Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Thomas Skovhus Prior
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Samantha Aso
- Respiratory Department, Unit of Interstitial Lung Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Stavros Tryfon
- Pulmonary Clinic, NHS General Hospital 'G. Papanikolaou', Thessaloniki, Greece
| | - Despoina Papakosta
- Pulmonary Department, 'G Papanikolaou' General Hospital, Thessaloniki, Greece.,Aristotle University of Thessaloniki Medical School, Thessaloniki, Greece
| | - Vasillios Tzilas
- First Academic Department of Pneumonology, Hospital for Thoracic Diseases, 'SOTIRIA', Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Spyridon Papiris
- 2nd Pulmonary Medicine Department, 'ATTIKON' University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Antoniou
- Department of Thoracic Medicine, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Crete, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, Hospital for Thoracic Diseases, 'SOTIRIA', Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athol Wells
- Interstitial Lung Disease Unit, Ιmperial College London, Royal Brompton and Harefield, London, UK
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Department of Pneumology, Thoraxklinik-University Clinic Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Argyris Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
27
|
Zhang X, Ren Y, Xie B, Ye Q, Ban C, Zhang S, Zhu M, Liu Y, Wang S, Geng J, He X, Jiang D, He J, Shu S, Luo S, Wang X, Song D, Fan M, Sun H, Dai H. Blood monocyte counts as a prognostic biomarker and predictor in Chinese patients with idiopathic pulmonary fibrosis. Front Med (Lausanne) 2022; 9:955125. [PMID: 36425108 PMCID: PMC9679289 DOI: 10.3389/fmed.2022.955125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2023] Open
Abstract
OBJECTIVES We sought to evaluate the prognostic value of blood routine parameters and biochemical parameters, especially inflammation-related biomarkers, and establish an inflammation-related prognostic model in Chinese patients with idiopathic pulmonary fibrosis (IPF). MATERIAL/METHODS Patients diagnosed as IPF at Beijing Chaoyang Hospital and aged 40 years and older were consecutively enrolled from June 2000 to March 2015, and finally, a total of 377 patients were enrolled in the derivation cohort. The follow-up ended in December 2016. We used Cox proportional hazard model to calculate the hazard ratio (HR) and establish the prognostic model. The discrimination and calibration of the prognostic model were evaluated in an independent validation cohort enrolled from China-Japan Friendship Hospital between January 2015 and December 2019. RESULTS Multivariate analysis revealed that patients with elevated monocyte-to-red blood cell count ratio (MRR) and monocyte counts showed increased risk of mortality. The clinical-physiological-biomarker (CPB) index and CPB stage we established in this study were a significant predictor, and the C-index for CPB index and CPB stage in the validation cohort was 0.635 (95% CI: 0.558-0.712) and 0.619 (95% CI: 0.544-0.694), respectively. Patients in CPB stage III had the poorest survival. CONCLUSION We developed and validated a new inflammation-related prognostic model (CPB index and CPB stage) which was integration of age, gender, FVC (%, predicted), DLCO (%, predicted), Charlson Comorbidity Index, and blood monocyte counts. This prediction model exhibited strong ability in predicting mortality in Chinese patients with IPF.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Yanhong Ren
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Bingbing Xie
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Qiao Ye
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chenjun Ban
- Department of Respiration, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shu Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Min Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yan Liu
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shiyao Wang
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Jing Geng
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xuan He
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Dingyuan Jiang
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Jiarui He
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Shi Shu
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Sa Luo
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xin Wang
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Dingyun Song
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Mingming Fan
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- The Second Hospital of Jilin University, Changchun, China
| | - Haishuang Sun
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- The First Hospital of Jilin University, Changchun, China
| | - Huaping Dai
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Guo R, Zhou Y, Lin F, Li M, Tan C, Xu B. A novel gene signature based on the hub genes of COVID-19 predicts the prognosis of idiopathic pulmonary fibrosis. Front Pharmacol 2022; 13:981604. [PMID: 36147332 PMCID: PMC9489050 DOI: 10.3389/fphar.2022.981604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Increasing evidence has demonstrated that there was a strong correlation between COVID-19 and idiopathic pulmonary fibrosis (IPF). However, the studies are limited, and the real biological mechanisms behind the IPF progression were still uncleared.Methods: GSE70866 and GSE 157103 datasets were downloaded. The weight gene co-expression network analysis (WGCNA) algorithms were conducted to identify the most correlated gene module with COVID-19. Then the genes were extracted to construct a risk signature in IPF patients by performing Univariate and Lasso Cox Regression analysis. Univariate and Multivariate Cox Regression analyses were used to identify the independent value for predicting the prognosis of IPF patients. What’s more, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and gene set enrichment analysis (GSEA) were conducted to unveil the potential biological pathways. CIBERSORT algorithms were performed to calculate the correlation between the risk score and immune cells infiltrating levels.Results: Two hundred thirty three differentially expressed genes were calculated as the hub genes in COVID-19. Fourteen of these genes were identified as the prognostic differentially expressed genes in IPF. Three (MET, UCHL1, and IGF1) of the fourteen genes were chosen to construct the risk signature. The risk signature can greatly predict the prognosis of high-risk and low-risk groups based on the calculated risk score. The functional pathway enrichment analysis and immune infiltrating analysis showed that the risk signature may regulate the immune-related pathways and immune cells.Conclusion: We identified prognostic differentially expressed hub genes related to COVID-19 in IPF. A risk signature was constructed based on those genes and showed great value for predicting the prognosis in IPF patients. What’s more, three genes in the risk signature may be clinically valuable as potential targets for treating IPF patients and IPF patients with COVID-19.
Collapse
Affiliation(s)
- Run Guo
- Department of Respiratory Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Yuefei Zhou
- Department of Orthopedics Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fang Lin
- Department of Respiratory Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Mengxing Li
- Department of Respiratory Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Chunting Tan
- Department of Respiratory Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
- *Correspondence: Chunting Tan, ; Bo Xu,
| | - Bo Xu
- Department of Respiratory Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
- *Correspondence: Chunting Tan, ; Bo Xu,
| |
Collapse
|
29
|
Chikhoune L, Brousseau T, Morell-Dubois S, Farhat MM, Maillard H, Ledoult E, Lambert M, Yelnik C, Sanges S, Sobanski V, Hachulla E, Launay D. Association between Routine Laboratory Parameters and the Severity and Progression of Systemic Sclerosis. J Clin Med 2022; 11:jcm11175087. [PMID: 36079017 PMCID: PMC9457158 DOI: 10.3390/jcm11175087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Systemic sclerosis (SSc) is a heterogeneous connective tissue disease with a high mortality and morbidity rate. Identification of biomarkers that can predict the evolution of SSc is a key factor in the management of patients. The aim of this study was to assess the association of routine laboratory parameters, widely used in practice and easily available, with the severity and progression of SSc. (2) Methods: In this retrospective monocentric cohort study, 372 SSc patients were included. We gathered clinical and laboratory data including routine laboratory parameters: C-reactive-protein (CRP), erythrocyte sedimentation rate (ESR), complete blood count, serum sodium and potassium levels, creatinin, urea, ferritin, albumin, uric acid, N-terminal pro-brain natriuretic peptide (NTproBNP), serum protein electrophoresis, and liver enzymes. Associations between these routine laboratory parameters and clinical presentation and outcome were assessed. (3) Results: Median (interquartile range) age was 59.0 (50.0; 68.0) years. White blood cell, monocyte, and neutrophil absolute counts were significantly higher in patients with diffuse cutaneous SSc and with interstitial lung disease (ILD) (p < 0.001). CRP was significantly higher in patients with ILD (p < 0.001). Hemoglobin and ferritin were significantly lower in patients with pulmonary hypertension (PH) including pulmonary arterial hypertension and ILD associated PH (p = 0.016 and 0.046, respectively). Uric acid and NT pro BNP were significantly higher in patients with PH (<0.001). Monocyte count was associated with ILD progression over time. (4) Conclusions: Overall, our study highlights the association of routine laboratory parameters used in current practice with the severity and progression of SSc.
Collapse
Affiliation(s)
- Liticia Chikhoune
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
| | - Thierry Brousseau
- CHU Lille, Service de Biochimie Automatisée Protéines, F-59000 Lille, France
| | - Sandrine Morell-Dubois
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
| | - Meryem Maud Farhat
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
- U1286—INFINITE—Institute for Translational Research in Inflammation, Université de Lille, F-59000 Lille, France
- Inserm, F-59000 Lille, France
| | - Helene Maillard
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
| | - Emmanuel Ledoult
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
- U1286—INFINITE—Institute for Translational Research in Inflammation, Université de Lille, F-59000 Lille, France
- Inserm, F-59000 Lille, France
| | - Marc Lambert
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
| | - Cecile Yelnik
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
| | - Sebastien Sanges
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
- U1286—INFINITE—Institute for Translational Research in Inflammation, Université de Lille, F-59000 Lille, France
- Inserm, F-59000 Lille, France
| | - Vincent Sobanski
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
- U1286—INFINITE—Institute for Translational Research in Inflammation, Université de Lille, F-59000 Lille, France
- Inserm, F-59000 Lille, France
| | - Eric Hachulla
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
- U1286—INFINITE—Institute for Translational Research in Inflammation, Université de Lille, F-59000 Lille, France
- Inserm, F-59000 Lille, France
| | - David Launay
- CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), F-59000 Lille, France
- U1286—INFINITE—Institute for Translational Research in Inflammation, Université de Lille, F-59000 Lille, France
- Inserm, F-59000 Lille, France
- Correspondence: ; Tel.: +33-3-2044-4433
| |
Collapse
|
30
|
Qiu Y, Wang Y, Shen N, Wang Q, Chai L, Liu J, Chen Y, Li M. Association Between Red Blood Cell Distribution Width-Albumin Ratio and Hospital Mortality in Chronic Obstructive Pulmonary Disease Patients Admitted to the Intensive Care Unit: A Retrospective Study. Int J Chron Obstruct Pulmon Dis 2022; 17:1797-1809. [PMID: 35975033 PMCID: PMC9376003 DOI: 10.2147/copd.s371765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/31/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose High levels of red blood cell distribution width (RDW) and hypoalbuminemia are markers of poor prognosis in chronic obstructive pulmonary disease (COPD) patients. However, few studies have shown that the red blood cell distribution width–albumin ratio (RAR) is related to the mortality of COPD. This study aimed to explore the relationship between RAR and hospital mortality in COPD patients admitted to the intensive care unit (ICU). Patients and Methods Patients were retrospectively incorporated from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and divided into two groups by a cutoff value of RAR. Propensity score matching (PSM) was performed to adjust for the imbalance of covariates. Logistic regression models and subgroup analyses were carried out to investigate the relationship between RAR and hospital mortality. The receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of RAR and decision curve analysis (DCA) to assess the clinical utility. Results In total, 1174 patients were finally identified from the MIMIC-IV database. The cutoff value for RAR was 5.315%/g/dL. After PSM at a 1:1 ratio, 638 patients were included in the matched cohort. In the original and matched cohorts, the high RAR group had higher hospital mortality and longer hospital stays. Logistic regression analysis suggested that RAR was an independent risk factor for hospital mortality. The areas under the ROC curve in the original and matched cohorts were 0.706 and 0.611, respectively, which were larger than applying RDW alone (the original cohort: 0.600, the matched cohort: 0.514). The DCA indicated that RAR had a clinical utility. Conclusion A higher RAR (>5.315%/g/dL) was associated with hospital mortality in COPD patients admitted to ICU. As an easily available peripheral blood marker, RAR can predict hospital mortality in critically ill patients with COPD independently.
Collapse
Affiliation(s)
- Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
31
|
Chrysikos S, Papaioannou O, Karampitsakos T, Tavernaraki K, Thanou I, Filippousis P, Anyfanti M, Hillas G, Tzouvelekis A, Thanos L, Dimakou K. Diagnostic Accuracy of Multiple D-Dimer Cutoff Thresholds and Other Clinically Applicable Biomarkers for the Detection and Radiographic Evaluation of Pulmonary Embolism. Adv Respir Med 2022; 90:300-309. [PMID: 36004959 PMCID: PMC9717334 DOI: 10.3390/arm90040039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/08/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Background: Diagnostic work-up of pulmonary embolism (PE) remains a challenge. Methods: We retrospectively studied all patients referred for computed tomography pulmonary angiography (CTPA) with suspicion of PE during a 12-month period (2018). The diagnostic accuracy of different D-dimer (Dd) cutoff thresholds for ruling out PE was evaluated. Furthermore, the association of Dd and red cell distribution width (RDW) with embolus location, CTPA findings, and patient outcome was recorded. Results: One thousand seventeen (n = 1017) patients were finally analyzed (mean age: 64.6 years (SD = 11.8), males: 549 (54%)). PE incidence was 18.7%. Central and bilateral embolism was present in 44.7% and 59.5%, respectively. Sensitivity and specificity for conventional and age-adjusted Dd cutoff was 98.2%, 7.9%, and 98.2%, 13.1%, respectively. A cutoff threshold (2.1 mg/L) with the best (64.4%) specificity was identified based on Receiver Operating Characteristics analysis. Moreover, a novel proposed Dd cutoff (0.74 mg/L) emerged with increased specificity (20.5%) and equal sensitivity (97%) compared to 0.5 mg/L, characterized by concurrent reduction (17.2%) in the number of performed CTPAs. Consolidation/atelectasis and unilateral pleural effusion were significantly associated with PE (p < 0.05, respectively). Patients with consolidation/atelectasis or intrapulmonary nodule(s)/mass on CTPA exhibited significantly greater median Dd values compared to patients without the aforementioned findings (2.34, (IQR 1.29−4.22) vs. 1.59, (IQR 0.81−2.96), and 2.39, (IQR 1.45−4.45) vs. 1.66, (IQR 0.84−3.12), p < 0.001, respectively). RDW was significantly greater in patients who died during hospitalization (p = 0.012). Conclusions: Age-adjusted Dd increased diagnostic accuracy of Dd testing without significantly decreasing the need for imaging. The proposed Dd value (0.74 mg/L) showed promise towards reducing considerably the need of CTPA. Multiple radiographic findings have been associated with increased Dd values in our study.
Collapse
Affiliation(s)
- Serafeim Chrysikos
- 5th Respiratory Medicine Department, “Sotiria” Chest Diseases Hospital, 11527 Athens, Greece
- Correspondence:
| | - Ourania Papaioannou
- Department of Respiratory Medicine, University Hospital of Patras, 26504 Patras, Greece
| | | | - Kyriaki Tavernaraki
- Department of Medical Imaging and Interventional Radiology, “Sotiria” Chest Diseases Hospital, 11527 Athens, Greece
| | - Ioanna Thanou
- Department of Medical Imaging and Interventional Radiology, “Sotiria” Chest Diseases Hospital, 11527 Athens, Greece
| | - Petros Filippousis
- Department of Medical Imaging and Interventional Radiology, “Sotiria” Chest Diseases Hospital, 11527 Athens, Greece
| | - Maria Anyfanti
- ICU, G Gennimatas, General Hospital, 11527 Athens, Greece
| | - Georgios Hillas
- 5th Respiratory Medicine Department, “Sotiria” Chest Diseases Hospital, 11527 Athens, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Loukas Thanos
- Department of Medical Imaging and Interventional Radiology, “Sotiria” Chest Diseases Hospital, 11527 Athens, Greece
| | - Katerina Dimakou
- 5th Respiratory Medicine Department, “Sotiria” Chest Diseases Hospital, 11527 Athens, Greece
| |
Collapse
|
32
|
Achaiah A, Lyon P, Fraser E, Saunders P, Hoyles R, Benamore R, Ho LP. Increased monocyte level is a risk factor for radiological progression in patients with early fibrotic interstitial lung abnormality. ERJ Open Res 2022; 8:00226-2022. [PMID: 35795307 PMCID: PMC9251369 DOI: 10.1183/23120541.00226-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background Interstitial lung abnormalities (ILA) are specific spatial patterns on computed tomography (CT) scan potentially compatible with early interstitial lung disease. A proportion will progress; management involves risk stratification and surveillance. Elevated blood monocyte levels have been shown to associate with progression of idiopathic pulmonary fibrosis. The aims of the present study were: 1) to estimate the proportion of “early fibrotic” (EF)-ILAs (reticular±ground-glass opacities, excluding traction bronchiectasis and honeycombing) on CT scans of patients attending all-indications thoracic CTs, and proportion demonstrating radiological progression; and 2) to explore association between peripheral blood leukocyte levels and ILA progression. Methods We analysed all thoracic CT reports in individuals aged 45–75 years performed between January 2015 and December 2020 in one large teaching hospital (Oxford, UK) to identify patient CT reports consistent with EF-ILA. CT-contemporaneous blood leukocyte counts were examined to explore contribution to progression and all-cause mortality, using multivariate Cox regression. Results 40 711 patients underwent thoracic CT imaging during this period. 1259 (3.1%) demonstrated the EF-ILA pattern (mean±sd age 65.4±7.32 years; 735 (47.8%) male). EF-ILA was significantly associated with all-cause mortality (hazard ratio 1.87, 95% CI 1.25–2.78; p=0.002). 362 cases underwent at least one follow-on CT. Radiological progression was observed in 157 (43.4%) cases: increase in reticulation n=51, new traction bronchiectasis n=84, honeycombing n=22. Monocyte count, neutrophil count, monocyte:lymphocyte ratio, neutrophil:lymphocyte ratio and “systemic inflammatory response index” were significantly associated with radiological progression. Conclusion 3.1% of subjects requiring thoracic CT during a 6-year period demonstrated EF-ILA. Monocyte levels and blood leukocyte-derived indexes were associated with radiological progression and could indicate which patients may require closer follow-up. Monocyte levels are associated with radiological progression of early fibrotic ILA to established interstitial lung disease and could indicate which patients might require closer follow-uphttps://bit.ly/3LlS2ff
Collapse
|
33
|
Chung C, Kim J, Cho HS, Kim HC. Baseline serum Krebs von den Lungen-6 as a biomarker for the disease progression in idiopathic pulmonary fibrosis. Sci Rep 2022; 12:8564. [PMID: 35595812 PMCID: PMC9123161 DOI: 10.1038/s41598-022-12399-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
Disease progression (DP) is an important parameter for the prognosis of idiopathic pulmonary fibrosis (IPF). This study aimed to evaluate the baseline serum biomarkers for predicting the DP in IPF. Seventy-four patients who were diagnosed with IPF and had their serum Krebs von den Lungen-6 (KL-6) and monocyte count, which might be associated with prognosis of IPF, checked more than twice were included. KL-6 ≥ 1000 U/mL and monocyte ≥ 600/μL were arbitrarily set as the cut-off values for DP. The DP was defined as a 10% reduction in forced vital capacity, a 15% reduction in diffusing capacity of the lung for carbon monoxide relative to the baseline, or disease-related mortality. Of the 74 patients, 18 (24.3%) were defined as having DP. The baseline KL-6 level was significantly increased in the DP group compared to the stable disease group (median, 1228.0 U/mL vs. 605.5 U/mL, P = 0.019). Multivariate Cox analyses demonstrated that a high KL-6 level (KL-6 ≥ 1000 U/mL; hazard ratio, 2.761 or 2.845; P = 0.040 or 0.045) was independently associated with DP in each model. The baseline serum KL-6 level might be a useful biomarker for DP in IPF.
Collapse
Affiliation(s)
- Chiwook Chung
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jiwon Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyo Sin Cho
- University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
34
|
Touman A, Kahyat M, Bulkhi A, Khairo M, Alyamani W, Aldobyany AM, Ghaleb N, Ashi H, Alsobaie M, Alqurashi E. Post COVID-19 Chronic Parenchymal Lung Changes. Cureus 2022; 14:e25197. [PMID: 35747023 PMCID: PMC9209776 DOI: 10.7759/cureus.25197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Persistent parenchymal lung changes are an important long-term sequela of COVID-19. There are limited data on this COVID-19 infection sequela characteristics and trajectories. This study aims to evaluate persistent COVID-19-related parenchymal lung changes 10 weeks after acute viral pneumonia and to identify associated risk factors. METHODS This is a retrospective case-control observational study involving 38 COVID-19 confirmed cases using nasopharyngeal swab reverse transcriptase-polymerase chain reaction (RT-PCR) at King Abdullah Medical City (KAMC) Hospital, Makkah. Patients were recruited from the post-COVID-19 interstitial lung disease (ILD) clinic. Referral to this clinic was based on the pulmonology consultant's assessment of hospitalized patients suspected of developing COVID-19-related ILD changes during hospitalization. RESULTS Thirty-eight patients with parenchymal lung changes were evaluated at the ILD clinic. Nineteen patients who had persistent parenchymal changes 10 weeks after the acute illness (group 1) were compared with 19 control patients who had accelerated clinical and/or radiological improvement (group 2). Group 1 was found to have the more severe clinical and radiological disease, with a higher peak value of inflammatory biomarkers. Two risk factors were identified, neutrophil-lymphocyte ratio (NLR) > 3.13 at admission increases the odds ratio (OR) of chronic parenchymal changes by 6.42 and 5.92 in the univariate and multivariate analyses, respectively. Invasive mechanical ventilation had a more profound effect with ORs of 13.09 and 44.5 in the univariate and multivariate analyses, respectively. CONCLUSION Herein, we found that only receiving invasive mechanical ventilation and having NLR >3.13 at admission were strong risk factors for persistent parenchymal lung changes. Neither the clinical severity of the acute illness nor the radiological one is found to predict this outcome. None of the medications received during the acute illness were found to alter the risk for this post-COVID-19 infection sequelae.
Collapse
Affiliation(s)
| | - Mohammed Kahyat
- Department of Pulmonology, King Abdullah Medical City, Makkah, SAU
| | - Adeeb Bulkhi
- Department of Internal Medicine, Umm Al-Qura University, Makkah, SAU
| | - Mutaz Khairo
- Department of Radiology, King Abdullah Medical City, Makkah, SAU
| | - Wael Alyamani
- Department of Radiology, King Abdullah Medical City, Makkah, SAU
| | | | - Nabil Ghaleb
- Department of Pulmonology, King Abdullah Medical City, Makkah, SAU
| | - Hadeel Ashi
- Department of Pulmonology, King Abdullah Medical City, Makkah, SAU
| | | | - Eid Alqurashi
- Department of Pulmonology, King Abdullah Medical City, Makkah, SAU
| |
Collapse
|
35
|
Kreuter M, Maher TM. Fatum Inexorabile: Do Monocytes Predict the Fate of Interstitial Lung Abnormalities? Am J Respir Crit Care Med 2022; 205:743-744. [PMID: 35148483 PMCID: PMC9836216 DOI: 10.1164/rccm.202201-0049ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, ThoraxklinikUniversity of HeidelbergHeidelberg, Germany,German Center for Lung Research (DZL)Heidelberg, Germany
| | - Toby M. Maher
- Keck School of MedicineUniversity of Southern California Los AngelesLos Angeles, California,Interstitial Lung Disease UnitRoyal Brompton HospitalLondon, United Kingdom,National Heart and Lung InstituteImperial College LondonLondon, United Kingdom
| |
Collapse
|
36
|
Kim JS, Axelsson GT, Moll M, Anderson MR, Bernstein EJ, Putman RK, Hida T, Hatabu H, Hoffman EA, Raghu G, Kawut SM, Doyle MF, Tracy R, Launer LJ, Manichaikul A, Rich SS, Lederer DJ, Gudnason V, Hobbs BD, Cho MH, Hunninghake GM, Garcia CK, Gudmundsson G, Barr RG, Podolanczuk AJ. Associations of Monocyte Count and Other Immune Cell Types with Interstitial Lung Abnormalities. Am J Respir Crit Care Med 2022; 205:795-805. [PMID: 34929108 PMCID: PMC10394677 DOI: 10.1164/rccm.202108-1967oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Higher blood monocyte counts are associated with worse survival in adults with clinically diagnosed pulmonary fibrosis. Their association with the development and progression of interstitial lung abnormalities (ILA) in humans is unknown. Objectives: We evaluated the associations of blood monocyte count, and other immune cell types, with ILA, high-attenuation areas, and FVC in four independent cohorts. Methods: We included participants with measured monocyte counts and computed tomographic (CT) imaging enrolled in MESA (Multi-Ethnic Study of Atherosclerosis, n = 484), AGES-Reykjavik (Age/Gene Environment Susceptibility Study, n = 3,547), COPDGene (Genetic Epidemiology of COPD, n = 2,719), and the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points, n = 646). Measurements and Main Results: After adjustment for covariates, a 1-SD increment in blood monocyte count was associated with ILA in MESA (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.0-1.8), AGES-Reykjavik (OR, 1.2; 95% CI, 1.1-1.3), COPDGene (OR, 1.3; 95% CI, 1.2-1.4), and ECLIPSE (OR, 1.2; 95% CI, 1.0-1.4). A higher monocyte count was associated with ILA progression over 5 years in AGES-Reykjavik (OR, 1.2; 95% CI, 1.0-1.3). Compared with participants without ILA, there was a higher percentage of activated monocytes among those with ILA in MESA. Higher monocyte count was associated with greater high-attenuation areas in MESA and lower FVC in MESA and COPDGene. Associations of other immune cell types were less consistent. Conclusions: Higher blood monocyte counts were associated with the presence and progression of interstitial lung abnormalities and lower FVC.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, and.,Department of Medicine, Columbia University, New York, New York
| | - Gísli Thor Axelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | - Matthew Moll
- Division of Pulmonary and Critical Care and.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Tomoyuki Hida
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Eric A Hoffman
- Department of Radiology.,Department of Medicine, and.,Department of Biomedical Engineering, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Ganesh Raghu
- Department of Medicine, University of Washington, Seattle, Washington
| | - Steven M Kawut
- Department of Medicine and.,Department of Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Colchester, Vermont
| | - Russell Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Colchester, Vermont
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute of on Aging, National Institutes of Health, Bethesda, Maryland
| | - Ani Manichaikul
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stephen S Rich
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | - Brian D Hobbs
- Division of Pulmonary and Critical Care and.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael H Cho
- Division of Pulmonary and Critical Care and.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
| | - R Graham Barr
- Department of Medicine, Columbia University, New York, New York.,Department of Epidemiology, Mailman School of Public Health, New York, New York; and
| | - Anna J Podolanczuk
- Department of Medicine, Columbia University, New York, New York.,Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
37
|
Kang MS, Kim SH, Yang MJ, Kim HY, Kim IH, Kang JW, Choi HS, Jin SW, Park EJ. Polyhexamethylene guanidine phosphate-induced necrosis may be linked to pulmonary fibrosis. Toxicol Lett 2022; 362:1-16. [DOI: 10.1016/j.toxlet.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/05/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
38
|
White ES, Thomas M, Stowasser S, Tetzlaff K. Challenges for Clinical Drug Development in Pulmonary Fibrosis. Front Pharmacol 2022; 13:823085. [PMID: 35173620 PMCID: PMC8841605 DOI: 10.3389/fphar.2022.823085] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a pathologic process associated with scarring of the lung interstitium. Interstitial lung diseases (ILDs) encompass a large and heterogenous group of disorders, a number of which are characterized by progressive pulmonary fibrosis that leads to respiratory failure and death. Idiopathic pulmonary fibrosis (IPF) has been described as an archetype of progressive fibrosing ILD, and the development of pirfenidone and nintedanib has been a major breakthrough in the treatment of patients with this deadly disease. Both drugs principally target scar-forming fibroblasts and have been shown to significantly slow down the accelerated decline of lung function by approximately 50%. In addition, nintedanib has been approved for patients with other progressive fibrosing ILDs and systemic sclerosis-associated ILD. However, there is still no cure for pulmonary fibrosis and no meaningful improvement of symptoms or quality of life has been shown. Advancement in research, such as the advent of single cell sequencing technology, has identified additional pathologic cell populations beyond the fibroblast which could be targeted for therapeutic purposes. The preclinical and clinical development of novel drug candidates is hampered by profound challenges such as a lack of sensitive clinical outcomes or suitable biomarkers that would provide an early indication of patient benefit. With the availability of these anti-fibrotic treatments, it has become even more difficult to demonstrate added efficacy, in particular in short-term clinical studies. Patient heterogeneity and the paucity of biomarkers of disease activity further complicate clinical development. It is conceivable that future treatment of pulmonary fibrosis will need to embrace more precision in treating the right patient at the right time, explore novel measures of efficacy, and likely combine treatment options.
Collapse
Affiliation(s)
- Eric S. White
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Matthew Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Susanne Stowasser
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Kay Tetzlaff
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
- Department of Sports Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Lv X, Jin Y, Zhang D, Li Y, Fu Y, Wang S, Ye Y, Wu W, Ye S, Yan B, Chen X. Low Circulating Monocytes Is in Parallel With Lymphopenia Which Predicts Poor Outcome in Anti-melanoma Differentiation-Associated Gene 5 Antibody-Positive Dermatomyositis-Associated Interstitial Lung Disease. Front Med (Lausanne) 2022; 8:808875. [PMID: 35111785 PMCID: PMC8802832 DOI: 10.3389/fmed.2021.808875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive dermatomyositis (DM)-associated interstitial lung disease (ILD) may progress rapidly and lead to high mortality within 6 or 12 months. Except for reported prognostic factors, simple but powerful prognostic biomarkers are still in need in practice. In this study, we focused on circulating monocyte and lymphocyte counts and their variation tendency in the early stage of ILD. A total of 351 patients from two inception anti-MDA5 antibody-positive cohorts were included in this study, with various treatment choices. Lymphocyte count remained lower in the first month after admission in the non-survivor patients. Although baseline monocyte count showed no significant differences, average monocyte count in the following 4 weeks was also lower in the non-survivor group. Based on the C-index and analysis by the “survminer” R package in the discovery cohort, we chose 0.24 × 109/L as the cutoff value for Mono W0-2, 0.61 × 109/L as the cutoff value for lymph W0-2, and 0.78 × 109/L as the cutoff value for peripheral blood mononuclear cell (PBMC) W0-2, to predict the 6-month all-cause mortality. The Kaplan–Meier survival curves and adjusted hazard ratio with age, gender, and the number of immunosuppressants used all validated that patients with lower average monocyte count, lower average lymphocyte count, or lower average PBMC count in the first 2 weeks after admission had higher 6-month death risk, no matter in the validation cohort or in the pooled data. Furthermore, flow cytometry figured out that non-classical monocytes in patients with anti-MDA5 antibody-positive DM were significantly lower than healthy controls and patients with DM without anti-MDA5 antibodies. In conclusion, this study elucidated the predictive value of monocyte and lymphocyte counts in the early stage and may help rheumatologists to understand the possible pathogenesis of this challenging disease.
Collapse
Affiliation(s)
- Xia Lv
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuyang Jin
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Danting Zhang
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yixuan Li
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yakai Fu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Suli Wang
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Ye
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wanlong Wu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing Yan
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, China
- Bing Yan
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Xiaoxiang Chen
| |
Collapse
|
40
|
Zhu S. Monocyte as a prognostic marker in patients with idiopathic pulmonary fibrosis. Respir Res 2021; 22:270. [PMID: 34674703 PMCID: PMC8529790 DOI: 10.1186/s12931-021-01869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 11/10/2022] Open
Abstract
This letter raised some concerns about the study by Karampitsakos et al. in a recent issue of Respiratory Research.
Collapse
Affiliation(s)
- Shiping Zhu
- Department of Respiratory Medicine, Hangzhou Hospital of Traditional Chinese Medicine, No. 453, Tiyuchang Road, Hangzhou, Postal-code: 310000, Zhejiang, China.
| |
Collapse
|
41
|
Karampitsakos T, Kalogeropoulou C, Tzilas V, Papaioannou O, Kazantzi A, Koukaki E, Katsaras M, Bouros E, Tsiri P, Tsirikos G, Zarkadi E, Ntoulias N, Sotiropoulou V, Efthymiou P, Chrysikos S, Malakounidou E, Sampsonas F, Bouros D, Tzouvelekis A. Safety and Effectiveness of Mycophenolate Mofetil in Interstitial Lung Diseases: Insights from a Machine Learning Radiographic Model. Respiration 2021; 101:262-271. [PMID: 34592744 DOI: 10.1159/000519215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Treatment of interstitial lung diseases (ILDs) other than idiopathic pulmonary fibrosis (IPF) often includes systemic corticosteroids. Use of steroid-sparing agents is amenable to avoid potential side effects. METHODS Functional indices and high-resolution computed tomography (HRCT) patterns of patients with non-IPF ILDs receiving mycophenolate mofetil (MMF) with a minimum follow-up of 1 year were analyzed. Two independent radiologists and a machine learning software system (Imbio 1.4.2.) evaluated HRCT patterns. RESULTS Fifty-five (n = 55) patients were included in the analysis (male: 30 [55%], median age: 65.0 [95% CI: 59.7-70.0], mean forced vital capacity %predicted [FVC %pred.] ± standard deviation [SD]: 69.4 ± 18.3, mean diffusing capacity of lung for carbon monoxide %pred. ± SD: 40.8 ± 14.3, hypersensitivity pneumonitis: 26, connective tissue disease-ILDs [CTD-ILDs]: 22, other ILDs: 7). There was no significant difference in mean FVC %pred. post-6 months (1.59 ± 2.04) and 1 year (-0.39 ± 2.49) of treatment compared to baseline. Radiographic evaluation showed no significant difference between baseline and post-1 year %ground glass opacities (20.0 [95% CI: 14.4-30.0] vs. 20.0 [95% CI: 14.4-25.6]) and %reticulation (5.0 [95% CI: 2.0-15.6] vs. 7.5 [95% CI: 2.0-17.5]). A similar performance between expert radiologists and Imbio software analysis was observed in assessing ground glass opacities (intraclass correlation coefficient [ICC] = 0.73) and reticulation (ICC = 0.88). Fourteen patients (25.5%) reported at least one side effect and 8 patients (14.5%) switched to antifibrotics due to disease progression. CONCLUSION Our data suggest that MMF is a safe and effective steroid-sparing agent leading to disease stabilization in a proportion of patients with non-IPF ILDs. Machine learning software systems may exhibit similar performance to specialist radiologists and represent fruitful diagnostic and prognostic tools.
Collapse
Affiliation(s)
| | | | - Vasilios Tzilas
- First Academic Department of Pneumonology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Athens Medical Center, Athens, Greece
| | - Ourania Papaioannou
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | | | - Evangelia Koukaki
- First Academic Department of Pneumonology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthaios Katsaras
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Evangelos Bouros
- First Academic Department of Pneumonology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Athens Medical Center, Athens, Greece
| | - Panagiota Tsiri
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Georgios Tsirikos
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Eirini Zarkadi
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Nikolaos Ntoulias
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | | | - Panagiotis Efthymiou
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Serafeim Chrysikos
- 5th Department of Pneumonology, Hospital for Thoracic Diseases "SOTIRIA,", Athens, Greece
| | - Elli Malakounidou
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Athens Medical Center, Athens, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
42
|
Boutou AK, Asimakos A, Kortianou E, Vogiatzis I, Tzouvelekis A. Long COVID-19 Pulmonary Sequelae and Management Considerations. J Pers Med 2021; 11:838. [PMID: 34575615 PMCID: PMC8469288 DOI: 10.3390/jpm11090838] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
The human coronavirus 2019 disease (COVID-19) and the associated acute respiratory distress syndrome (ARDS) are responsible for the worst global health crisis of the last century. Similarly, to previous coronaviruses leading to past pandemics, including severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS), a growing body of evidence support that a substantial minority of patients surviving the acute phase of the disease present with long-term sequelae lasting for up to 6 months following acute infection. The clinical spectrum of these manifestations is widespread across multiple organs and consists of the long-COVID-19 syndrome. The aim of the current review is to summarize the current state of knowledge on the pulmonary manifestations of the long COVID-19 syndrome including clinical symptoms, parenchymal, and functional abnormalities, as well as highlight epidemiology, risk factors, and follow-up strategies for early identification and timely therapeutic interventions. The literature data on management considerations including the role of corticosteroids and antifibrotic treatment, as well as the therapeutic potential of a structured and personalized pulmonary rehabilitation program are detailed and discussed.
Collapse
Affiliation(s)
- Afroditi K. Boutou
- Department of Respiratory Medicine, “G. Papanikolaou” Hospital, 57010 Thessaloniki, Greece;
| | - Andreas Asimakos
- Critical Care Department and Pulmonary Unit, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| | - Eleni Kortianou
- Physiotherapy Department, University of Thessaly, 35100 Lamia, Greece;
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK;
| | - Argyris Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
43
|
Evaluation of the Prognostic Value of Red Cell Distribution Width to Total Serum Calcium Ratio in Patients with Acute Pancreatitis. Gastroenterol Res Pract 2021; 2021:6699421. [PMID: 34354747 PMCID: PMC8331275 DOI: 10.1155/2021/6699421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/16/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction Acute pancreatitis (AP) is a sudden inflammatory process in the pancreas with variable involvement of nearby organs or other organ systems, and it is a common cause for hospitalization of gastrointestinal origin. Early prediction of the prognosis of patients with AP is important to help physicians triage the patients and decrease mortality. Red cell distribution width (RDW) and total serum calcium (TSC) have been reported to be useful predictors of the severity of AP, but if these parameters are associated with the prognosis of AP is unknown. The objective of the study was to evaluate whether RDW/TSC can be used to predict the prognosis of patients with AP at an early stage. Methods We retrospectively enrolled AP patients admitted to the emergency department of West China Hospital of Sichuan University from January 1, 2016, to June 30, 2016. According to the prognosis, AP patients were divided into ICU group and non-ICU group, surgery group and nonsurgery group, and hospital survival group and hospital death group. Demographic information and clinical and laboratory parameters of all enrolled patients after being admitted to ED were compared between the groups. The receiver operator characteristic (ROC) curves were used to evaluate the prognostic values of RDW, TSC, and RDW/TSC in patients with AP. Results A total of 666 AP patients were enrolled in this study, with an average age of 47.99 ± 14.11 years, including 633 patients who survived to discharge and 33 patients who died during hospitalization. The areas under the curve (AUC) of RDW and RDW/TSC predict that patients need to be admitted to ICU (0.773 vs. 0.824 vs. 0.723), patients need surgery treatment (0.744 vs. 0.768 vs. 0.690), and patients survived to hospital discharge (0.809 vs. 0.855 vs. 0.780) were greater than that of TSC, with RDW/TSC being the greatest. Conclusions RDW/TSC may be a new method to identify the AP patients who need to be transferred to the ICU, accompanying complications which need surgery treatment, or may be died in hospital at an early stage, and we should pay more attention to RDW/TSC in patients with AP, for they may have a worse prognosis.
Collapse
|