1
|
Lu J, Li Z, Yang Y, Wei F. Chronic exercise improves renal AT 1 and ETB receptor functions via modulating GRK4 expression in obese Zucker rats. Clin Exp Hypertens 2024; 46:2323532. [PMID: 38471134 DOI: 10.1080/10641963.2024.2323532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Physical activity has profound benefits on health, especially in patients with cardiovascular and metabolic disease. Exercise training can reduce oxidative stress, improve renal function, and thus lower blood pressure. However, the effect of exercise training on angiotensin II type 1 receptors (AT1R) and endothelin subtype B receptors (ETBR)-mediated diuresis and natriuresis in obese Zucker rats is unclear. METHODS Lean and obese Zucker rats were exercised or placed on a nonmoving treadmill for 8 weeks. Blood pressure was measured by tail-cuff plethysmography, and functions of AT1R and ETBR in the kidney were measured by natriuresis, respectively. RESULTS Our data showed that exercise training improved glucose and lipid metabolism, renal function and sodium excretion in obese Zucker rats, accompanied by decreased oxidative stress and GRK4 expression in obese Zucker rats. Moreover, exercise training reduced the Candesartan-induced an increase in diuresis and natriuresis and increased ETBR agonists (BQ3020)-mediated diuresis and natriuresis in obese Zucker rats, which were associated with decreased renal AT1R expression and ETBR phosphorylation levels. CONCLUSIONS The results demonstrate that exercise training lowers blood pressure via improving renal AT1R and ETBR function through modulating GRK4 expression in Obese Zucker Rats and provides potentially effective targets for obesity-related hypertension.
Collapse
Affiliation(s)
- Jingjing Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhengsheng Li
- Department of Nephrology, The Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yinan Yang
- Department of Nephrology, The Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fangning Wei
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Zhu J, Shao A, Wang C, Zeng C, Wang H. Inhibition of endoplasmic reticulum stress restores the balance of renal RAS components and lowers blood pressure in the spontaneously hypertensive rats. Clin Exp Hypertens 2023; 45:2202367. [PMID: 37144334 DOI: 10.1080/10641963.2023.2202367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of hypertension. However, the underlying mechanisms for lowering blood pressure (BP) by suppressing ER stress remain unclear. Here, we hypothesized that inhibition of ER stress could restore the balance between RAS components and lower BP in spontaneously hypertensive rats (SHRs). METHODS Wistar-Kyoto (WKY) rats and SHRs received vehicle or 4-PBA, an ER stress inhibitor, in the drinking water for 4 weeks. BP was measured by tail-cuff plethysmography, and the expression of RAS components was examined by Western blot. RESULTS Compared with vehicle-treated WKY rats, vehicle-treated SHRs exhibited higher blood pressure and increased renal ER stress and oxidative stress, accompanied by impaired diuresis and natriuresis. Moreover, SHRs had higher ACE and AT1R and lower AT2R, ACE2, and MasR expressions in the kidney. Interestingly, 4-PBA treatment improved impaired diuresis and natriuresis and lowered blood pressure in SHRs, accompanied by reducing ACE and AT1R protein expression and increasing AT2R, ACE2, and MasR expression in the kidneys of SHRs. In addition, these changes were associated with the reduction of ER stress and oxidative stress. CONCLUSIONS These results suggest that the imbalance of renal RAS components was associated with increased ER stress in SHRs. Inhibition of ER stress with 4-PBA reversed the imbalance of renal RAS components and restored the impaired diuresis and natriuresis, which, at least in part, explains the blood pressure-lowering effects of 4-PBA in hypertension.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, Shanghai Hospital Wanzhou District, Chongqing, China
| | - Anjing Shao
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan Wang
- Department of Surgery, Third People's Hospital, Kaizhou District, Chongqing, China
| | - Chensi Zeng
- Department of Hematology, Chongqing Cancer Hospital, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
3
|
Wu T, Zheng Y, Huang Q, Tian S. Paeonol improves renal and vascular angiotensin II type 1 receptor function via inhibiting oxidative stress in spontaneously hypertensive rats. Clin Exp Hypertens 2023; 45:2182884. [PMID: 36855263 DOI: 10.1080/10641963.2023.2182884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Oxidative stress has been shown to play a critical role in the pathogenesis of hypertension. Paeonol, a major phenolic component extracted from Moutan Cortex, exerts a beneficial effect in preventing cardiovascular disease via reducing oxidative stress. The present study investigated the protective mechanism of paeonol against high blood pressure in spontaneous hypertension rats (SHRs). METHODS Wistar-Kyoto (WKY) rats and SHRs received vehicle or peaonol in the drinking water for 5 weeks. Blood pressure was measured by tail-cuff plethysmography and oxidative stress in kidney and vascular tissue was examined by enzyme-linked immunosorbed assay. The functions of angiotensin II type 1 receptors (AT1R) in the kidney and mesenteric artery were measured by natriuresis and vasoconstrictor response, respectively. RESULTS Compared with vehicle-treated WKY rats, vehicle-treated SHRs exhibited higher blood pressure, increased oxidative stress, accompanied by exaggerated diuretic and natriuretic responses to candesartan (AT1 receptor antagonist) and vasoconstrictor responses to angiotensin II (Ang II). Moreover, SHRs had higher ACE and AT1R in the kidney and mesenteric artery, and higher Ang II and lower renin levels. Interestingly, paeonol treatment reduced the candesartan-induced increase in diuresis and natriuresis and vasoconstrictor responses to Ang II, and lowered blood pressure in SHRs, accompanied by reducing AT1R protein expression in the kidney and mesenteric artery of SHR, and Ang II levels in plasma and increasing renin levels in renal cortex. In addition, these changes were associated with reducing oxidative stress. CONCLUSIONS The present study suggests that paeonol improves renal and vascular AT1R functions by inhibition of oxidative stress, thus lowering blood pressure in SHRs.
Collapse
Affiliation(s)
- Tingchun Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Cardiology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Yuhua Zheng
- Department of Cardiology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Qianqian Huang
- Department of Cardiology, The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Shui Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
4
|
Young ON, Bourke JE, Widdop RE. Catch your breath: The protective role of the angiotensin AT 2 receptor for the treatment of idiopathic pulmonary fibrosis. Biochem Pharmacol 2023; 217:115839. [PMID: 37778444 DOI: 10.1016/j.bcp.2023.115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease whereby excessive deposition of extracellular matrix proteins (ECM) ultimately leads to respiratory failure. While there have been advances in pharmacotherapies for pulmonary fibrosis, IPF remains an incurable and irreversible disease. There remains an unmet clinical need for treatments that reverse fibrosis, or at the very least have a more tolerable side effect profile than currently available treatments. Transforming growth factor β1(TGFβ1) is considered the main driver of fibrosis in IPF. However, as our understanding of the role of the pulmonary renin-angiotensin system (PRAS) in the pathogenesis of IPF increases, it is becoming clear that targeting angiotensin receptors represents a potential novel treatment strategy for IPF - in particular, via activation of the anti-fibrotic angiotensin type 2 receptor (AT2R). This review describes the current understanding of the pathophysiology of IPF and the mediators implicated in its pathogenesis; focusing on TGFβ1, angiotensin II and related peptides in the PRAS and their contribution to fibrotic processes in the lung. Preclinical and clinical assessment of currently available AT2R agonists and the development of novel, highly selective ligands for this receptor will also be described, with a focus on compound 21, currently in clinical trials for IPF. Collectively, this review provides evidence of the potential of AT2R as a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivia N Young
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jane E Bourke
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
5
|
Gong Z, Liu W, Song R, Dong W, Zhang K, Li J, Zou H, Zhu J, Ma Y, Liu G, Liu Z. Nuclear factor-kappaB mediates the survival of rat kidney cells after cadmium exposure via promoting autophagy and inhibiting apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114465. [PMID: 38321684 DOI: 10.1016/j.ecoenv.2022.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2024]
Abstract
Cadmium (Cd) is a heavy metal pollutant in the environment, and the kidney is one of the target organs after Cd exposure. Previous studies have shown that apoptosis and autophagy disorders are the main mechanisms of Cd-induced nephrotoxicity in rats. As a transcription factor that balances cell survival and death, nuclear factor-kappaB (NF-κB) protein plays dual regulatory effects on apoptosis and autophagy in multiple renal diseases. However, the regulatory mechanisms of NF-κB in Cd-induced kidney injury remain unclear. Therefore, the normal rat kidney cell line (NRK-52E cells) was applied to investigate the above questions in this study. Here, we found that Cd promotes the nuclear translocation and activation of NF-κB in a concentration-dependent manner, and activated NF-κB mediates NRK-52E cells survival after Cd exposure. Next, our study elaborated the mechanisms of NF-κB in antagonizing Cd-induced renal cytotoxicity. Inhibition of NF-κB by inhibitor BAY 11-7082 (BAY) and NF-κB p65 siRNA (siNF-κB p65) exacerbate Cd-induced apoptosis and autophagy inhibition, and then aggravate Cd-induced NRK-52E cells injury. Activation of NF-κB by activator phorbol-12-myristate-13-acetate (PMA) alleviates Cd-induced apoptosis and autophagy inhibition, and then attenuates Cd-induced NRK-52E cells injury. In conclusion, Cd exposure promotes the activation of NF-κB, and activated NF-κB mediates the survival of NRK-52E cells after Cd exposure via promoting autophagy and inhibiting apoptosis.
Collapse
Affiliation(s)
- Zhonggui Gong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Wenjing Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions; Yangzhou, Jiangsu PR China.
| |
Collapse
|
6
|
Dawood AF, Maarouf A, Alzamil NM, Momenah MA, Shati AA, Bayoumy NM, Kamar SS, Haidara MA, ShamsEldeen AM, Yassin HZ, Hewett PW, Al-Ani B. Metformin Is Associated with the Inhibition of Renal Artery AT1R/ET-1/iNOS Axis in a Rat Model of Diabetic Nephropathy with Suppression of Inflammation and Oxidative Stress and Kidney Injury. Biomedicines 2022; 10:biomedicines10071644. [PMID: 35884947 PMCID: PMC9313150 DOI: 10.3390/biomedicines10071644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes is the most common cause of end-stage renal disease, also called kidney failure. The link between the renal artery receptor angiotensin II type I (AT1R) and endothelin-1 (ET-1), involved in vasoconstriction, oxidative stress, inflammation and kidney fibrosis (collagen) in diabetes-induced nephropathy with and without metformin incorporation has not been previously studied. Diabetes (type 2) was induced in rats and another group started metformin (200 mg/kg) treatment 2 weeks prior to the induction of diabetes and continued on metformin until being culled at week 12. Diabetes significantly (p < 0.0001) modulated renal artery tissue levels of AT1R, ET-1, inducible nitric oxide synthase (iNOS), endothelial NOS (eNOS), and the advanced glycation end products that were protected by metformin. In addition, diabetes-induced inflammation, oxidative stress, hypertension, ketonuria, mesangial matrix expansion, and kidney collagen were significantly reduced by metformin. A significant correlation between the AT1R/ET-1/iNOS axis, inflammation, fibrosis and glycemia was observed. Thus, diabetes is associated with the augmentation of the renal artery AT1R/ET-1/iNOS axis as well as renal injury and hypertension while being protected by metformin.
Collapse
Affiliation(s)
- Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (M.A.H.); (A.M.S.); (H.Z.Y.)
| | - Amro Maarouf
- Department of Clinical Biochemistry, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B9 5SS, UK;
| | - Norah M. Alzamil
- Department of Clinical Science, Family Medicine, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Maha A. Momenah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia;
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Samaa S. Kamar
- Department of Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt;
| | - Mohamed A. Haidara
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (M.A.H.); (A.M.S.); (H.Z.Y.)
| | - Asmaa M. ShamsEldeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (M.A.H.); (A.M.S.); (H.Z.Y.)
| | - Hanaa Z. Yassin
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 12613, Egypt; (M.A.H.); (A.M.S.); (H.Z.Y.)
| | - Peter W. Hewett
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
- Correspondence:
| |
Collapse
|
7
|
Suzuki K, Yamada H, Fujii R, Munetsuna E, Yamazaki M, Ando Y, Ohashi K, Ishikawa H, Mizuno G, Tsuboi Y, Hashimoto S, Hamajima N. Circulating microRNA-27a and -133a are negatively associated with incident hypertension: A five-year longitudinal population-based study. Biomarkers 2022; 27:496-502. [DOI: 10.1080/1354750x.2022.2070281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mirai Yamazaki
- Faculty of Health Sciences, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, Tokyo, Japan
| | - Yohiski Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Huang Y, Chen Q, Jiang Q, Zhao Z, Fang J, Chen L. Irisin lowers blood pressure in Zucker diabetic rats by regulating the functions of renal angiotensin II type 1 receptor via the inhibition of the NF-κB signaling pathway. Peptides 2022; 147:170688. [PMID: 34800756 DOI: 10.1016/j.peptides.2021.170688] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Irisin, a novel myokine, has been identified to exert a series of favorable effects on metabolic diseases, including diabetes and obesity. This study aimed to explore the effects of chronic irisin administration on blood pressure and the related underlying mechanisms in Zucker diabetic fatty (ZDF) rats. METHODS AND RESULTS Male ZDF rats and Zucker lean (ZL) rats received a continuous subcutaneous infusion of irisin or saline for 4 weeks. Compared with ZL counterparts, ZDF rats reported higher systolic blood pressure (SBP), severer renal inflammation, increased oxidative stress, and impaired natriuresis and diuresis; they also had an elevated AT1R expression in renal cortex and augmented candesartan-induced natriuresis and diuresis. The irisin administration lowered SBP, improved diuretic and natriuretic effects, and reduced renal inflammation and oxidative stress in ZDF rats, along with decreased renal expression of AT1R and restored candesartan-mediated natriuresis and diuresis. Further experiments showed that irisin inhibited the translocation of NF-κB from the cytosol to the nucleus and the activation of NF-κB signaling pathway, which may contribute to the reduced AT1R expression and function. CONCLUSIONS Irisin administration serves an anti-hypertensive role in ZDF rats by alleviating renal inflammation and oxidative stress, reducing the expression and impact of AT1R, and restoring natriuresis and diuresis. The underlying mechanism may involve the irisin-induced inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yu Huang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Qin Chen
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Qiong Jiang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Ziwen Zhao
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Jun Fang
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China
| | - Lianglong Chen
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China.
| |
Collapse
|
9
|
Albino AH, Zambom FFF, Foresto-Neto O, Oliveira KC, Ávila VF, Arias SCA, Seguro AC, Malheiros DMAC, Camara NOS, Fujihara CK, Zatz R. Renal Inflammation and Innate Immune Activation Underlie the Transition From Gentamicin-Induced Acute Kidney Injury to Renal Fibrosis. Front Physiol 2021; 12:606392. [PMID: 34305624 PMCID: PMC8293269 DOI: 10.3389/fphys.2021.606392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
Subjects recovering from acute kidney injury (AKI) are at risk of developing chronic kidney disease (CKD). The mechanisms underlying this transition are unclear and may involve sustained activation of renal innate immunity, with resulting renal inflammation and fibrosis. We investigated whether the NF-κB system and/or the NLRP3 inflammasome pathway remain activated after the resolution of AKI induced by gentamicin (GT) treatment, thus favoring the development of CKD. Male Munich-Wistar rats received daily subcutaneous injections of GT, 80 mg/kg, for 9 days. Control rats received vehicle only (NC). Rats were studied at 1, 30, and 180 days after GT treatment was ceased. On Day 1, glomerular ischemia (ISCH), tubular necrosis, albuminuria, creatinine retention, and tubular dysfunction were noted, in association with prominent renal infiltration by macrophages and myofibroblasts, along with increased renal abundance of TLR4, IL-6, and IL1β. Regression of functional and structural changes occurred on Day 30. However, the renal content of IL-1β was still elevated at this time, while the local renin-angiotensin system remained activated, and interstitial fibrosis became evident. On Day 180, recurring albuminuria and mild glomerulosclerosis were seen, along with ISCH and unabated interstitial fibrosis, whereas macrophage infiltration was still evident. GT-induced AKI activates innate immunity and promotes renal inflammation. Persistence of these abnormalities provides a plausible explanation for the transition of AKI to CKD observed in a growing number of patients.
Collapse
Affiliation(s)
- Amanda Helen Albino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Orestes Foresto-Neto
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Karin Carneiro Oliveira
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Victor Ferreira Ávila
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone Costa Alarcon Arias
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio Carlos Seguro
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clarice Kazue Fujihara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Kaul L, Süss R, Zannettino A, Richter K. The revival of dithiocarbamates: from pesticides to innovative medical treatments. iScience 2021; 24:102092. [PMID: 33598645 PMCID: PMC7868997 DOI: 10.1016/j.isci.2021.102092] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dithiocarbamates (DTCs) have been used for various applications, including as hardening agents in rubber manufacturing, as fungicide in agriculture, and as medications to treat alcohol misuse disorder. The multi-faceted effects of DTCs rely mainly on metal binding abilities and a high reactivity with thiol groups. Therefore, the list of potential applications is still increasing, exemplified by the US Food and Drug Administration approval of disulfiram (Antabuse) and its metabolite diethyldithiocarbamate in clinical trials against cancer, human immunodeficiency virus, and Lyme disease, as well as new DTC-related compounds that have been synthesized to target diseases with unmet therapeutic needs. In this review, we will discuss the latest progress of DTCs as anti-cancer agents and provide a summary of the mechanisms of action. We will explain the expansion of DTCs' activity in the fields of microbiology, neurology, cardiology, and ophthalmology, thereby providing evidence for the important role and therapeutic potential of DTCs as innovative medical treatments.
Collapse
Affiliation(s)
- Laurine Kaul
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA 5011, Australia
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| | - Andrew Zannettino
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5011, Australia
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
A narrative review of the potential pharmacological influence and safety of ibuprofen on coronavirus disease 19 (COVID-19), ACE2, and the immune system: a dichotomy of expectation and reality. Inflammopharmacology 2020; 28:1141-1152. [PMID: 32797326 PMCID: PMC7427497 DOI: 10.1007/s10787-020-00745-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 19 (COVID-19) pandemic is currently the most acute healthcare challenge in the world. Despite growing knowledge of the nature of Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), treatment options are still poorly defined. The safety of non-steroidal anti-inflammatory drugs (NSAIDs), specifically ibuprofen, has been openly questioned without any supporting evidence or clarity over dose, duration, or temporality of administration. This has been further conflicted by the initiation of studies to assess the efficacy of ibuprofen in improving outcomes in severe COVID-19 patients. To clarify the scientific reality, a literature search was conducted alongside considerations of the pharmacological properties of ibuprofen in order to construct this narrative review. The literature suggests that double-blind, placebo-controlled study results must be reported and carefully analysed for safety and efficacy in patients with COVID-19 before any recommendations can be made regarding the use of ibuprofen in such patients. Limited studies have suggested: (i) no direct interactions between ibuprofen and SARS-CoV-2 and (ii) there is no evidence to suggest ibuprofen affects the regulation of angiotensin-converting-enzyme 2 (ACE2), the receptor for COVID-19, in human studies. Furthermore, in vitro studies suggest ibuprofen may facilitate cleavage of ACE2 from the membrane, preventing membrane-dependent viral entry into the cell, the clinical significance of which is uncertain. Additionally, in vitro evidence suggests that inhibition of the transcription factor nuclear factor-κB (NF-kB) by ibuprofen may have a role in reducing excess inflammation or cytokine release in COVID-19 patients. Finally, there is no evidence that ibuprofen will aggravate or increase the chance of infection of COVID-19.
Collapse
|
12
|
Lachaux M, Soulié M, Hamzaoui M, Bailly A, Nicol L, Rémy‐Jouet I, Renet S, Vendeville C, Gluais‐Dagorn P, Hallakou‐Bozec S, Monteil C, Richard V, Mulder P. Short-and long-term administration of imeglimin counters cardiorenal dysfunction in a rat model of metabolic syndrome. Endocrinol Diabetes Metab 2020; 3:e00128. [PMID: 32704553 PMCID: PMC7375119 DOI: 10.1002/edm2.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Imeglimin, a glucose-lowering agent targeting mitochondrial bioenergetics, decreases reactive oxygen species (ROS) overproduction and improves glucose homeostasis. We investigated whether this is associated with protective effects on metabolic syndrome-related left ventricular (LV) and vascular dysfunctions. METHODS We used Zucker fa/fa rats to assess the effects on LV function, LV tissue perfusion, LV oxidative stress and vascular function induced by imeglimin administered orally for 9 or 90 days at a dose of 150 mg/kg twice daily. RESULTS Compared to untreated animals, 9- and 90-day imeglimin treatment decreased LV end-diastolic pressure and LV end-diastolic pressure-volume relation, increased LV tissue perfusion and decreased LV ROS production. Simultaneously, imeglimin restored acetylcholine-mediated coronary relaxation and mesenteric flow-mediated dilation. One hour after imeglimin administration, when glucose plasma levels were not yet modified, imeglimin reduced LV mitochondrial ROS production and improved LV function. Ninety-day imeglimin treatment reduced related LV and kidney fibrosis and improved kidney function. CONCLUSION In a rat model, mimicking Human metabolic syndrome, imeglimin immediately countered metabolic syndrome-related cardiac diastolic and vascular dysfunction by reducing oxidative stress/increased NO bioavailability and improving myocardial perfusion and after 90-day treatment myocardial and kidney structure, effects that are, at least in part, independent from glucose control.
Collapse
Affiliation(s)
| | | | | | - Anaëlle Bailly
- UNIROUENInserm U1096FHU‐REMOD‐VHFNormandie UnivRouenFrance
| | - Lionel Nicol
- UNIROUENInserm U1096FHU‐REMOD‐VHFNormandie UnivRouenFrance
| | | | - Sylvanie Renet
- UNIROUENInserm U1096FHU‐REMOD‐VHFNormandie UnivRouenFrance
| | | | | | | | | | | | - Paul Mulder
- UNIROUENInserm U1096FHU‐REMOD‐VHFNormandie UnivRouenFrance
| |
Collapse
|
13
|
Pereira BP, do Valle GT, Salles BCC, Costa KCM, Ângelo ML, Torres LHL, Novaes RD, Ruginsk SG, Tirapelli CR, de Araújo Paula FB, Ceron CS. Pyrrolidine dithiocarbamate reduces alloxan-induced kidney damage by decreasing nox4, inducible nitric oxide synthase, and metalloproteinase-2. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1899-1910. [PMID: 32440769 DOI: 10.1007/s00210-020-01906-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
Abstract
We examined the effect of the NFκB inhibitor pyrrolidine-1-carbodithioic acid (PDTC) on inducible nitric oxide synthase (iNOS), matrix metalloproteinase-2 (MMP-2) activity, and oxidative and inflammatory kidney damage in alloxan-induced diabetes. Two weeks after diabetes induction (alloxan-130 mg/kg), control and diabetic rats received PDTC (100 mg/kg) or vehicle for 8 weeks. Body weight, glycemia, urea, and creatinine were measured. Kidney changes were measured in hematoxylin/eosin sections and ED1 by immunohistochemistry. Kidney thiobarbituric acid reactive substances (TBARS), superoxide anion (O2-), and nitrate/nitrite (NOx) levels, and catalase and superoxide dismutase (SOD) activities were analyzed. Also, kidney nox4 and iNOS expression, and NFkB nuclear translocation were measured by western blot, and MMP-2 by zymography. Glycemia and urea increased in alloxan rats, which were not modified by PDTC treatment. However, PDTC attenuated kidney structural alterations and macrophage infiltration in diabetic rats. While diabetes increased both TBARS and O2- levels, PDTC treatment reduced TBARS in diabetic and O2- in control kidneys. A decrease in NOx levels was found in diabetic kidneys, which was prevented by PDTC. Diabetes reduced catalase activity, and PDTC increased catalase and SOD activities in both control and diabetic kidneys. PDTC treatment reduced MMP-2 activity and iNOS and p65 NFκB nuclear expression found increased in diabetic kidneys. Our results show that the NFκB inhibitor PDTC reduces renal damage through reduction of Nox4, iNOS, macrophages, and MMP-2 in the alloxan-induced diabetic model. These findings suggest that PDTC inhibits alloxan kidney damage via antioxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Gabriel Tavares do Valle
- Escola de Enfermagem de Ribeirão Preto (EERP), Universidade de São Paulo - USP, Sao Paulo, Brazil
| | - Bruno César Côrrea Salles
- Departamento de Análises Clínicas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Karla Cristinne Mancini Costa
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Marilene Lopes Ângelo
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Larissa Helena Lobo Torres
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Rômulo Dias Novaes
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Sílvia Graciela Ruginsk
- Departamento de Ciências Fisiológicas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Carlos Renato Tirapelli
- Escola de Enfermagem de Ribeirão Preto (EERP), Universidade de São Paulo - USP, Sao Paulo, Brazil
| | | | - Carla Speroni Ceron
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil.
| |
Collapse
|
14
|
Liu Q, Hua B, Su W, Di B, Yu S, Gao S, Liu H, Zhao X, Li W, Li H. AGEs impair Kv channel-mediated vasodilation of coronary arteries by activating the NF-κB signaling pathway in ZDF rats. Biomed Pharmacother 2019; 120:109527. [PMID: 31629953 DOI: 10.1016/j.biopha.2019.109527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/13/2023] Open
Abstract
Excessive formation of advanced glycation end products (AGEs) impairs voltage-gated potassium (Kv) channels in rat coronary artery smooth muscle cells (CSMCs), resulting in weakened Kv-mediated coronary vasodilation. We hypothesized that induction of the nuclear factor-κB (NF-κB) signaling pathway by AGEs plays a significant role in the regulation of Kv channel-mediated vasodilation in Zucker diabetic fatty (ZDF) rats. Assays of mRNA transcripts, protein expression, and intracellular localization as well as patch-clamp experiments in cultured CSMCs revealed that AGEs significantly induced activation of the NF-κB signaling pathway, reduced Kv1.2/1.5 expression, and inhibited Kv currents. In addition, silencing of the receptor for AGEs (RAGE) or p65 with siRNA and treatment with alagrebrium (ALA) or pyrrolidine dithiocarbamate (PDTC) alleviated the AGE-induced impairment of Kv channels in CSMCs. Compared with Zucker lean (ZL) rats, the amount of AGEs, RAGE protein expression, and NF-κB activity in coronary arteries were higher in ZDF rats; whereas Kv1.2/1.5 expression was significantly lower in ZDF rats. Reduced Kv1.2/1.5 expression in coronary arteries and impaired Kv-mediated coronary relaxation tested by wire myography in ZDF rats were markedly improved by treatment with aminoguanidine (AG), ALA, or PDTC. These effects were accompanied by diminished NF-κB activity, inflammation, and oxidative stress. Taken together, these results indicate that an increased interaction between AGEs and RAGE in diabetic rats leads to impaired Kv channel-mediated coronary vasodilation. Moreover, activation of the NF-κB signaling pathway and a subsequent increase of inflammation and oxidative stress may play an important role in AGE-induced impairment of coronary vasodilation in diabetes.
Collapse
Affiliation(s)
- Qingbo Liu
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Bing Hua
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Wen Su
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Beibing Di
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Shandong Yu
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Side Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Huirong Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Disease, Beijing 100069, PR China
| | - Xueqiao Zhao
- Clinical Atherosclerosis Research Lab, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China; Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Disease, Beijing 100069, PR China.
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China; Department of Internal Medicine, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China; Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Disease, Beijing 100069, PR China.
| |
Collapse
|
15
|
Cuevas S, Villar VAM, Jose PA. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. THE PHARMACOGENOMICS JOURNAL 2019; 19:315-336. [PMID: 30723314 PMCID: PMC6650341 DOI: 10.1038/s41397-019-0082-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Translational Science, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010, USA.
| | - Van Anthony M Villar
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
16
|
Chen H, Zhou W, Ruan Y, Yang L, Xu N, Chen R, Yang R, Sun J, Zhang Z. Reversal of angiotensin ll-induced β-cell dedifferentiation via inhibition of NF-κb signaling. Mol Med 2018; 24:43. [PMID: 30134927 PMCID: PMC6092859 DOI: 10.1186/s10020-018-0044-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by pancreatic β-cell failure, which arises from metabolic stress and results in β cell dedifferentiation, leading to β-cell death. Pathological activation of the renin–angiotensin system (RAS) contributes to increase cell stress, while RAS intervention reduces the onset of T2DM in high-risk populations and promotes insulin secretion in rodents. In this study, we investigated whether and how RAS induces β-cell dedifferentiation and the mechanism underlying this process. Methods In vitro, with the methods of quantitative real-time reverse transcriptase-PCR (qRT-PCR) and western blotting, we examined the change of cell identity-related gene expression, progenitor like gene expression, cellular function, and nuclear factor kappa b (NF-κb) signaling activity in β cell lines after exposure to angiotensin II (AngII) and disruption of RAS. In vivo, parallel studies were performed using db/db mice. Related protein expression was detected by Immunofluorescence analysis. Result Activation of RAS induced dedifferentiation and impaired insulin secretion, eventually leading to β-cell failure. Mechanistically, Angll induced β-cell dedifferentiation via NF-κb signaling, while treatment with lrbesartan and sc-514 reversed the progenitor state of β cells. Conclusion The present study found that RAS might induce β-cell dedifferentiation via angiotensin II receptor type 1 activation, which was promoted by NF-κb signaling. Therefore, blocking RAS or NF-kb signaling efficiently reversed the dedifferentiated status of β cells, suggesting a potential therapy for patients with type 2 diabetes. Electronic supplementary material The online version of this article (10.1186/s10020-018-0044-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Wenjun Zhou
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuting Ruan
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Lei Yang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Ningning Xu
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Rui Yang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China.
| | - Zhen Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, 253, Gongyedadao Middle, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
17
|
Tang L, Zheng S, Ren H, He D, Zeng C, Wang WE. Activation of angiotensin II type 1 receptors increases D 4 dopamine receptor expression in rat renal proximal tubule cells. Hypertens Res 2017; 40:652-657. [PMID: 28230199 DOI: 10.1038/hr.2017.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022]
Abstract
Both the dopaminergic and renin-angiotensin systems play important roles in the regulation of blood pressure. Our previous study showed that the stimulation of dopaminergic D4 receptors reduced angiotensin II type 1 (AT1) receptor expression in renal proximal tubule (RPT) cells. In this study, we tested whether AT1 receptors, in return, would regulate D4 receptor expression and function in RPT cells. Expression of the D4 receptor from Wistar-Kyoto (WKY) or spontaneously hypertensive rats (SHRs) RPT cells and renal cortex tissues were determined by western blot, and Na+-K+ ATPase activity was determined using an enzyme assay. Urine volume and urine sodium of WKY rats and SHRs treated with or without D4 receptor stimulation were measured. Thus, activation of AT1 receptors with angiotensin II (Ang II) increased D4 receptor protein expression in RPT cells, and this increase was blocked by nicardipine, a calcium influx blocker. The D4 receptor agonist PD168077 inhibited Na+-K+ ATPase activity in WKY RPT cells but not in SHR RPT cells. Ang II pre-treatment promoted D4 receptor-mediated inhibition of Na+-K+ ATPase in RPT cells in WKY rats but not in SHRs. Meanwhile, Ang II pre-treatment augmented the natriuretic effect of PD168077 in WKY rats but not in SHRs. In conclusion, AT1 stimulation can regulate the expression and natriuretic function of dopaminergic D4 receptors in RPT cells and might be involved in the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- Luxun Tang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Duofen He
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
18
|
Carlo Magliano D, Bringhenti I, Souza-Mello V. GW501516 Ameliorates A Fructose-Induced Inflammation Independent of AT1r Downregulation in Kidney. NUCLEAR RECEPTOR RESEARCH 2016. [DOI: 10.11131/2016/101206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- D’Angelo Carlo Magliano
- Departament of Morphology, Biomedical Institute, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil
| | - Isabele Bringhenti
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Al Disi SS, Anwar MA, Eid AH. Anti-hypertensive Herbs and their Mechanisms of Action: Part I. Front Pharmacol 2016; 6:323. [PMID: 26834637 PMCID: PMC4717468 DOI: 10.3389/fphar.2015.00323] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 12/27/2022] Open
Abstract
The use of herbal therapies for treatment and management of cardiovascular diseases (CVDs) is increasing. Plants contain a bounty of phytochemicals that have proven to be protective by reducing the risk of various ailments and diseases. Indeed, accumulating literature provides the scientific evidence and hence reason d'etre for the application of herbal therapy in relation to CVDs. Slowly, but absolutely, herbal remedies are being entrenched into evidence-based medical practice. This is partly due to the supporting clinical trials and epidemiological studies. The rationale for this expanding interest and use of plant based treatments being that a significant proportion of hypertensive patients do not respond to Modern therapeutic medication. Other elements to this equation are the cost of medication, side-effects, accessibility, and availability of drugs. Therefore, we believe it is pertinent to review the literature on the beneficial effects of herbs and their isolated compounds as medication for treatment of hypertension, a prevalent risk factor for CVDs. Our search utilized the PubMed and ScienceDirect databases, and the criterion for inclusion was based on the following keywords and phrases: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine (CAM), nitric oxide, vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B, oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with herb in question, and where possible with its constituent molecule(s). In this first of a two-part review, we provide a brief introduction of hypertension, followed by a discussion of the molecular and cellular mechanisms. We then present and discuss the plants that are most commonly used in the treatment and management of hypertension.
Collapse
Affiliation(s)
- Sara S. Al Disi
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
| | - M. Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|