1
|
Zulfiqar M, Singh V, Steinbeck C, Sorokina M. Review on computer-assisted biosynthetic capacities elucidation to assess metabolic interactions and communication within microbial communities. Crit Rev Microbiol 2024; 50:1053-1092. [PMID: 38270170 DOI: 10.1080/1040841x.2024.2306465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Microbial communities thrive through interactions and communication, which are challenging to study as most microorganisms are not cultivable. To address this challenge, researchers focus on the extracellular space where communication events occur. Exometabolomics and interactome analysis provide insights into the molecules involved in communication and the dynamics of their interactions. Advances in sequencing technologies and computational methods enable the reconstruction of taxonomic and functional profiles of microbial communities using high-throughput multi-omics data. Network-based approaches, including community flux balance analysis, aim to model molecular interactions within and between communities. Despite these advances, challenges remain in computer-assisted biosynthetic capacities elucidation, requiring continued innovation and collaboration among diverse scientists. This review provides insights into the current state and future directions of computer-assisted biosynthetic capacities elucidation in studying microbial communities.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Vinay Singh
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Data Science and Artificial Intelligence, Research and Development, Pharmaceuticals, Bayer, Berlin, Germany
| |
Collapse
|
2
|
You D, Rasul F, Wang T, Daroch M. Insufficient Acetyl-CoA Pool Restricts the Phototrophic Production of Organic Acids in Model Cyanobacteria. Int J Mol Sci 2024; 25:11769. [PMID: 39519321 PMCID: PMC11546870 DOI: 10.3390/ijms252111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cyanobacteria are promising biological chassis to produce biochemicals such as carboxylic acids and their derivatives from CO2. In this manuscript, we reflected on cyanobacterial acetyl-CoA pool and TCA cycle as an important source of precursor molecules for the biosynthesis of carboxylic acids such as 3-hydroxypropionate, 3-hydroxybutyrate, succinate, malate, fumarate and free fatty acids, each of which is an important platform chemical for bioeconomy. We further highlighted specific features of the cyanobacterial TCA cycle, how it differs in structure and function from widely described TCA cycles of heterotrophic model organisms, and methods to make it more suitable for the production of carboxylic acids from CO2. Currently, the yields of these compounds are significantly lower than those in heterotrophic organisms and it was concluded that the primary cause of this can be attributed to the limited flux toward acetyl-CoA. Strategies like overexpressing pyruvate dehydrogenase complex or introducing synthetic bypasses are being explored to overcome these limitations. While significant progress has been made, further research is needed to enhance the metabolic efficiency of cyanobacteria, making them viable for the large-scale, sustainable production of carboxylic acids and their derivatives.
Collapse
Affiliation(s)
| | | | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (D.Y.); (F.R.); (T.W.)
| |
Collapse
|
3
|
Guo W, Weng Y, Ma W, Chang C, Gao Y, Huang X, Zhang F. Improving Lipid Content in the Diatom Phaeodactylum tricornutum by the Knockdown of the Enoyl-CoA Hydratase Using CRISPR Interference. Curr Issues Mol Biol 2024; 46:10923-10933. [PMID: 39451529 PMCID: PMC11506698 DOI: 10.3390/cimb46100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The diatom Phaeodactylum tricornutum shows potential as a source for biofuel production because of its considerable lipid content. Fatty acid β-oxidation plays a critical role in lipid breakdown. However, we still have a limited understanding of the role of fatty acid β-oxidation in lipid content in this microalga. In our study, we utilized a CRISPR interference method to reduce the expression of enoyl-CoA hydratase (PtECH), which is involved in the hydration of trans-2-enoyl-CoA to produce 3-hydroxyacyl-CoA during the β-oxidation pathway. Using this method, we developed two transgenic lines, PtECH21 and PtECH1487, which resulted from interference at two different sites of the PtECH gene, respectively. RT-qPCR analysis confirmed that the mRNA levels of PtECH in both mutants were significantly lower compared to the wild type. Surprisingly, the lipid content of both mutants increased notably. Additionally, both knockdown mutants exhibited higher chlorophyll content and improved photosynthetic efficiency of the photosystem II compared to the wild type. This study introduces a new approach for enhancing lipid content in P. tricornutum and expands our knowledge of the functions of enoyl-CoA hydratase in microalgae.
Collapse
Affiliation(s)
- Wenfeng Guo
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Yuwei Weng
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China
| | - Wenkai Ma
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Chaofeng Chang
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Yuqing Gao
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Xuguang Huang
- College of Chemistry and Environmental Science, Minnan Normal University, Zhangzhou 363000, China
| | - Feng Zhang
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
4
|
Tiwari D, Kumar N, Bongirwar R, Shukla P. Nutraceutical prospects of genetically engineered cyanobacteria- technological updates and significance. World J Microbiol Biotechnol 2024; 40:263. [PMID: 38980547 DOI: 10.1007/s11274-024-04064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
Genetically engineered cyanobacterial strains that have improved growth rate, biomass productivity, and metabolite productivity could be a better option for sustainable bio-metabolite production. The global demand for biobased metabolites with nutraceuticals and health benefits has increased due to their safety and plausible therapeutic and nutritional utility. Cyanobacteria are solar-powered green cellular factories that can be genetically tuned to produce metabolites with nutraceutical and pharmaceutical benefits. The present review discusses biotechnological endeavors for producing bioprospective compounds from genetically engineered cyanobacteria and discusses the challenges and troubleshooting faced during metabolite production. This review explores the cyanobacterial versatility, the use of engineered strains, and the techno-economic challenges associated with scaling up metabolite production from cyanobacteria. Challenges to produce cyanobacterial bioactive compounds with remarkable nutraceutical values have been discussed. Additionally, this review also summarises the challenges and future prospects of metabolite production from genetically engineered cyanobacteria as a sustainable approach.
Collapse
Affiliation(s)
- Deepali Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Enright AL, Heelan WJ, Ward RD, Peters JM. CRISPRi functional genomics in bacteria and its application to medical and industrial research. Microbiol Mol Biol Rev 2024; 88:e0017022. [PMID: 38809084 PMCID: PMC11332340 DOI: 10.1128/mmbr.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
SUMMARYFunctional genomics is the use of systematic gene perturbation approaches to determine the contributions of genes under conditions of interest. Although functional genomic strategies have been used in bacteria for decades, recent studies have taken advantage of CRISPR (clustered regularly interspaced short palindromic repeats) technologies, such as CRISPRi (CRISPR interference), that are capable of precisely modulating expression of all genes in the genome. Here, we discuss and review the use of CRISPRi and related technologies for bacterial functional genomics. We discuss the strengths and weaknesses of CRISPRi as well as design considerations for CRISPRi genetic screens. We also review examples of how CRISPRi screens have defined relevant genetic targets for medical and industrial applications. Finally, we outline a few of the many possible directions that could be pursued using CRISPR-based functional genomics in bacteria. Our view is that the most exciting screens and discoveries are yet to come.
Collapse
Affiliation(s)
- Amy L. Enright
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - William J. Heelan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Boodaghian N, Park H, Cohen SE. Investigating the Roles for Essential Genes in the Regulation of the Circadian Clock in Synechococcus elongatus Using CRISPR Interference. J Biol Rhythms 2024; 39:308-317. [PMID: 38357890 DOI: 10.1177/07487304241228333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Circadian rhythms are found widely throughout nature where cyanobacteria are the simplest organisms, in which the molecular details of the clock have been elucidated. Circadian rhythmicity in cyanobacteria is carried out via the KaiA, KaiB, and KaiC core oscillator proteins that keep ~24 h time. A series of input and output proteins-CikA, SasA, and RpaA-regulate the clock by sensing environmental changes and timing rhythmic activities, including global rhythms of gene expression. Our previous work identified a novel set of KaiC-interacting proteins, some of which are encoded by genes that are essential for viability. To understand the relationship of these essential genes to the clock, we applied CRISPR interference (CRISPRi) which utilizes a deactivated Cas9 protein and single-guide RNA (sgRNA) to reduce the expression of target genes but not fully abolish their expression to allow for survival. Eight candidate genes were targeted, and strains were analyzed by quantitative real-time PCR (qRT-PCR) for reduction of gene expression, and rhythms of gene expression were monitored to analyze circadian phenotypes. Strains with reduced expression of SynPCC7942_0001, dnaN, which encodes for the β-clamp of the replicative DNA polymerase, or SynPCC7942_1081, which likely encodes for a KtrA homolog involved in K+ transport, displayed longer circadian rhythms of gene expression than the wild type. As neither of these proteins have been previously implicated in the circadian clock, these data suggest that diverse cellular processes, DNA replication and K+ transport, can influence the circadian clock and represent new avenues to understand clock function.
Collapse
Affiliation(s)
- Nouneh Boodaghian
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California
| | - Hyunsook Park
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California
| | - Susan E Cohen
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California
- Center for Circadian Biology, University of California, San Diego, San Diego, California
| |
Collapse
|
7
|
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, Show PL. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnology 2023; 21:370. [PMID: 37817254 PMCID: PMC10563294 DOI: 10.1186/s12951-023-02139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Yamane M, Osanai T. Nondiazotrophic cyanobacteria metabolic engineering for succinate and lactate production. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
9
|
Dallo T, Krishnakumar R, Kolker SD, Ruffing AM. High-Density Guide RNA Tiling and Machine Learning for Designing CRISPR Interference in Synechococcus sp. PCC 7002. ACS Synth Biol 2023; 12:1175-1186. [PMID: 36893454 DOI: 10.1021/acssynbio.2c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
While CRISPRi was previously established in Synechococcus sp. PCC 7002 (hereafter 7002), the design principles for guide RNA (gRNA) effectiveness remain largely unknown. Here, 76 strains of 7002 were constructed with gRNAs targeting three reporter systems to evaluate features that impact gRNA efficiency. Correlation analysis of the data revealed that important features of gRNA design include the position relative to the start codon, GC content, protospacer adjacent motif (PAM) site, minimum free energy, and targeted DNA strand. Unexpectedly, some gRNAs targeting upstream of the promoter region showed small but significant increases in reporter expression, and gRNAs targeting the terminator region showed greater repression than gRNAs targeting the 3' end of the coding sequence. Machine learning algorithms enabled prediction of gRNA effectiveness, with Random Forest having the best performance across all training sets. This study demonstrates that high-density gRNA data and machine learning can improve gRNA design for tuning gene expression in 7002.
Collapse
Affiliation(s)
- Tessa Dallo
- Molecular and Microbiology, Sandia National Laboratories, P.O. Box 5800, MS 1413, Albuquerque, New Mexico 87185, United States
| | - Raga Krishnakumar
- Systems Biology, Sandia National Laboratories, P.O. Box 969, MS 9292, Livermore, California 94551, United States
| | - Stephanie D Kolker
- Molecular and Microbiology, Sandia National Laboratories, P.O. Box 5800, MS 1413, Albuquerque, New Mexico 87185, United States
| | - Anne M Ruffing
- Molecular and Microbiology, Sandia National Laboratories, P.O. Box 5800, MS 1413, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
10
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Santos-Merino M, Yun L, Ducat DC. Cyanobacteria as cell factories for the photosynthetic production of sucrose. Front Microbiol 2023; 14:1126032. [PMID: 36865782 PMCID: PMC9971976 DOI: 10.3389/fmicb.2023.1126032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Biofuels and other biologically manufactured sustainable goods are growing in popularity and demand. Carbohydrate feedstocks required for industrial fermentation processes have traditionally been supplied by plant biomass, but the large quantities required to produce replacement commodity products may prevent the long-term feasibility of this approach without alternative strategies to produce sugar feedstocks. Cyanobacteria are under consideration as potential candidates for sustainable production of carbohydrate feedstocks, with potentially lower land and water requirements relative to plants. Several cyanobacterial strains have been genetically engineered to export significant quantities of sugars, especially sucrose. Sucrose is not only naturally synthesized and accumulated by cyanobacteria as a compatible solute to tolerate high salt environments, but also an easily fermentable disaccharide used by many heterotrophic bacteria as a carbon source. In this review, we provide a comprehensive summary of the current knowledge of the endogenous cyanobacterial sucrose synthesis and degradation pathways. We also summarize genetic modifications that have been found to increase sucrose production and secretion. Finally, we consider the current state of synthetic microbial consortia that rely on sugar-secreting cyanobacterial strains, which are co-cultivated alongside heterotrophic microbes able to directly convert the sugars into higher-value compounds (e.g., polyhydroxybutyrates, 3-hydroxypropionic acid, or dyes) in a single-pot reaction. We summarize recent advances reported in such cyanobacteria/heterotroph co-cultivation strategies and provide a perspective on future developments that are likely required to realize their bioindustrial potential.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Lisa Yun
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Tellechea-Luzardo J, Stiebritz MT, Carbonell P. Transcription factor-based biosensors for screening and dynamic regulation. Front Bioeng Biotechnol 2023; 11:1118702. [PMID: 36814719 PMCID: PMC9939652 DOI: 10.3389/fbioe.2023.1118702] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Advances in synthetic biology and genetic engineering are bringing into the spotlight a wide range of bio-based applications that demand better sensing and control of biological behaviours. Transcription factor (TF)-based biosensors are promising tools that can be used to detect several types of chemical compounds and elicit a response according to the desired application. However, the wider use of this type of device is still hindered by several challenges, which can be addressed by increasing the current metabolite-activated transcription factor knowledge base, developing better methods to identify new transcription factors, and improving the overall workflow for the design of novel biosensor circuits. These improvements are particularly important in the bioproduction field, where researchers need better biosensor-based approaches for screening production-strains and precise dynamic regulation strategies. In this work, we summarize what is currently known about transcription factor-based biosensors, discuss recent experimental and computational approaches targeted at their modification and improvement, and suggest possible future research directions based on two applications: bioproduction screening and dynamic regulation of genetic circuits.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Martin T. Stiebritz
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
13
|
Du X, McManus DP, French JD, Collinson N, Sivakumaran H, MacGregor SR, Fogarty CE, Jones MK, You H. CRISPR interference for sequence-specific regulation of fibroblast growth factor receptor A in Schistosoma mansoni. Front Immunol 2023; 13:1105719. [PMID: 36713455 PMCID: PMC9880433 DOI: 10.3389/fimmu.2022.1105719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Employing the flatworm parasite Schistosoma mansoni as a model, we report the first application of CRISPR interference (CRISPRi) in parasitic helminths for loss-of-function studies targeting the SmfgfrA gene which encodes the stem cell marker, fibroblast growth factor receptor A (FGFRA). SmFGFRA is essential for maintaining schistosome stem cells and critical in the schistosome-host interplay. The SmfgfrA gene was targeted in S. mansoni adult worms, eggs and schistosomula using a catalytically dead Cas9 (dCas9) fused to a transcriptional repressor KRAB. We showed that SmfgfrA repression resulted in considerable phenotypic differences in the modulated parasites compared with controls, including reduced levels of SmfgfrA transcription and decreased protein expression of SmFGFRA, a decline in EdU (thymidine analog 5-ethynyl-2'-deoxyuridine, which specifically stains schistosome stem cells) signal, and an increase in cell apoptosis. Notably, reduced SmfgfrA transcription was evident in miracidia hatched from SmfgfrA-repressed eggs, and resulted in a significant change in miracidial behavior, indicative of a durable repression effect caused by CRISPRi. Intravenous injection of mice with SmfgfrA-repressed eggs resulted in granulomas that were markedly reduced in size and a decline in the level of serum IgE, emphasizing the importance of SmFGFRA in regulating the host immune response induced during schistosome infection. Our findings show the feasibility of applying CRISPRi for effective, targeted transcriptional repression in schistosomes, and provide the basis for employing CRISPRi to selectively perturb gene expression in parasitic helminths on a genome-wide scale.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Juliet D. French
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Natasha Collinson
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Haran Sivakumaran
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Skye R. MacGregor
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Conor E. Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia,*Correspondence: Hong You,
| |
Collapse
|
14
|
Lee TM, Lin JY, Tsai TH, Yang RY, Ng IS. Clustered regularly interspaced short palindromic repeats (CRISPR) technology and genetic engineering strategies for microalgae towards carbon neutrality: A critical review. BIORESOURCE TECHNOLOGY 2023; 368:128350. [PMID: 36414139 DOI: 10.1016/j.biortech.2022.128350] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Carbon dioxide is the major greenhouse gas and regards as the critical issue of global warming and climate changes. The inconspicuous microalgae are responsible for 40% of carbon fixation among all photosynthetic plants along with a higher photosynthetic efficiency and convert the carbon into lipids, protein, pigments, and bioactive compounds. Genetic approach and metabolic engineering are applied to accelerate the growth rate and biomass of microalgae, hence achieve the mission of carbon neutrality. Meanwhile, CRISPR/Cas9 is efficiently to enhance the productivity of high-value compounds in microalgae for it is easier operation, more affordable and is able to regulate multiple genes simultaneously. The genetic engineering strategies provide the multidisciplinary concept to evolute and increase the CO2 fixation rate through Calvin-Benson-Bassham cycle. Therefore, the technologies, bioinformatics tools, systematic engineering approaches for carbon neutrality and circular economy are summarized and leading one step closer to the decarbonization society in this review.
Collapse
Affiliation(s)
- Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Han Tsai
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
15
|
Chen AY, Ku JT, Tsai TP, Hung JJ, Hung BC, Lan EI. Metabolic Engineering Design Strategies for Increasing Carbon Fluxes Relevant for Biosynthesis in Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:105-144. [PMID: 37093259 DOI: 10.1007/10_2023_218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cyanobacteria are promising microbial cell factories for the direct production of biochemicals and biofuels from CO2. Through genetic and metabolic engineering, they can be modified to produce a variety of both natural and non-natural compounds. To enhance the yield of these products, various design strategies have been developed. In this chapter, strategies used to enhance metabolic fluxes towards common precursors used in biosynthesis, including pyruvate, acetyl-CoA, malonyl-CoA, TCA cycle intermediates, and aromatics, are discussed. Additionally, strategies related to cofactor availability and mixotrophic conditions for bioproduction are also summarize.
Collapse
Affiliation(s)
- Arvin Y Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jason T Ku
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Teresa P Tsai
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jenny J Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Billy C Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ethan I Lan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.
| |
Collapse
|
16
|
Wang SY, Li X, Wang SG, Xia PF. Base editing for reprogramming cyanobacterium Synechococcus elongatus. Metab Eng 2023; 75:91-99. [PMID: 36403709 DOI: 10.1016/j.ymben.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Cyanobacteria can directly convert carbon dioxide (CO2) at the atmospheric level to biofuels, value-added chemicals and food products, making them ideal candidates to alleviate global climate change. Despite decades-long pioneering successes, the development of genome-editing tools, especially the CRISPR-Cas-based approaches, seems to lag behind other microbial chassis, slowing down the innovations of cyanobacteria. Here, we adapted and tailored base editing for cyanobacteria based on the CRISPR-Cas system and deamination. We achieved precise and efficient genome editing at a single-nucleotide resolution and demonstrated multiplex base editing in the model cyanobacterium Synechococcus elongatus. By using the base-editing tool, we successfully manipulated the glycogen metabolic pathway via the introduction of premature STOP codons in the relevant genes, building engineered strains with elevated potentials to produce chemicals and food from CO2. We present here the first report of base editing in the phylum of cyanobacteria, and a paradigm for applying CRISPR-Cas systems in bacteria. We believe that our work will accelerate the metabolic engineering and synthetic biology of cyanobacteria and drive more innovations to alleviate global climate change.
Collapse
Affiliation(s)
- Shu-Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, 266237, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
17
|
Ma Z, Cheah WY, Ng IS, Chang JS, Zhao M, Show PL. Microalgae-based biotechnological sequestration of carbon dioxide for net zero emissions. Trends Biotechnol 2022; 40:1439-1453. [PMID: 36216714 DOI: 10.1016/j.tibtech.2022.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Excessive carbon dioxide (CO2) emissions into the atmosphere have become a dire threat to the human race and environmental sustainability. The ultimate goal of net zero emissions requires combined efforts on CO2 sequestration (natural sinks, biomass fixation, engineered approaches) and reduction in CO2 emissions while delivering economic growth (CO2 valorization for a circular carbon bioeconomy, CCE). We discuss microalgae-based CO2 biosequestration, including flue gas cultivation, biotechnological approaches for enhanced CO2 biosequestration, technological innovations for microalgal cultivation, and CO2 valorization/biofuel productions. We highlight challenges to current practices and future perspectives with the goal of contributing to environmental sustainability, net zero emissions, and the CCE.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| | - Min Zhao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
18
|
Kumar N, Kar S, Shukla P. Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128104. [PMID: 36257524 DOI: 10.1016/j.biortech.2022.128104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are known for their metabolic potential and carbon capture and sequestration capabilities. These cyanobacteria are not only an effective source for carbon minimization and resource mobilization into value-added products for biotechnological gains. The present review focuses on the detailed description of carbon capture mechanisms exerted by the various cyanobacterial strains, the role of important regulatory pathways, and their subsequent genes responsible for such mechanisms. Moreover, this review will also describe effectual mechanisms of central carbon metabolism like isoprene synthesis, ethylene production, MEP pathway, and the role of Glyoxylate shunt in the carbon sequestration mechanisms. This review also describes some interesting facets of using carbon assimilation mechanisms for valuable bio-products. The role of regulatory pathways and multi-omics approaches in cyanobacteria will not only be crucial towards improving carbon utilization but also will give new insights into utilizing cyanobacterial bioresource for carbon neutrality.
Collapse
Affiliation(s)
- Niwas Kumar
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Navrangapura, Ahmedabad 380009, India
| | - Srabani Kar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
19
|
Lai MJ, Tsai JC, Lan EI. CRISPRi-enhanced direct photosynthetic conversion of carbon dioxide to succinic acid by metabolically engineered cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128131. [PMID: 36252759 DOI: 10.1016/j.biortech.2022.128131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Engineering photoautotrophic microorganisms to directly convert carbon dioxide into platform chemicals is an attractive approach for chemical sustainability and carbon mitigation. Here, an engineered cyanobacterium Synechococcus elongatus PCC 7942 was developed to produce succinic acid directly from ambient carbon dioxide. Inhibition of succinate dehydrogenase and glycogen synthase by CRIPSR interference increased carbon flux towards succinic acid. Dual inhibition of these two genes led to an 82 % increase in titer. The resulting strain produced 4.8 g/L of succinic acid in a 28-days cultivation. However, cells after the 28-days cultivation became non-viable and cannot continue production. This issue was addressed by re-inoculation with fresh cells into the production medium. This strategy enabled continuous succinic acid accumulation, reaching a final titer of 8.9 g/L. This study provides a sustainable route to succinic acid directly from carbon dioxide and a potential method to overcome the low titer limitation of cyanobacterial-based bioproduction for practical applications.
Collapse
Affiliation(s)
- Martin J Lai
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu City 300, Taiwan
| | - Jemmy C Tsai
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu City 300, Taiwan
| | - Ethan I Lan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu City 300, Taiwan.
| |
Collapse
|
20
|
Ameruoso A, Villegas Kcam MC, Cohen KP, Chappell J. Activating natural product synthesis using CRISPR interference and activation systems in Streptomyces. Nucleic Acids Res 2022; 50:7751-7760. [PMID: 35801861 PMCID: PMC9303295 DOI: 10.1093/nar/gkac556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/04/2023] Open
Abstract
The rise of antibiotic-resistant bacteria represents a major threat to global health, creating an urgent need to discover new antibiotics. Natural products derived from the genus Streptomyces represent a rich and diverse repertoire of chemical molecules from which new antibiotics are likely to be found. However, a major challenge is that the biosynthetic gene clusters (BGCs) responsible for natural product synthesis are often poorly expressed under laboratory culturing conditions, thus preventing the isolation and screening of novel chemicals. To address this, we describe a novel approach to activate silent BGCs through rewiring endogenous regulation using synthetic gene regulators based upon CRISPR-Cas. First, we refine CRISPR interference (CRISPRi) and create CRISPR activation (CRISPRa) systems that allow for highly programmable and effective gene repression and activation in Streptomyces. We then harness these tools to activate a silent BGC by perturbing its endogenous regulatory network. Together, this work advances the synthetic regulatory toolbox for Streptomyces and facilitates the programmable activation of silent BGCs for novel chemical discovery.
Collapse
Affiliation(s)
- Andrea Ameruoso
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
| | | | - Katherine Piper Cohen
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
| | - James Chappell
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, 6100 Main Street, MS 142, Houston, TX 77005, USA
| |
Collapse
|
21
|
Call SN, Andrews LB. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria. Front Genome Ed 2022; 4:892304. [PMID: 35813973 PMCID: PMC9260158 DOI: 10.3389/fgeed.2022.892304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) have become ubiquitous approaches to control gene expression in bacteria due to their simple design and effectiveness. By regulating transcription of a target gene(s), CRISPRi/a can dynamically engineer cellular metabolism, implement transcriptional regulation circuitry, or elucidate genotype-phenotype relationships from smaller targeted libraries up to whole genome-wide libraries. While CRISPRi/a has been primarily established in the model bacteria Escherichia coli and Bacillus subtilis, a growing numbering of studies have demonstrated the extension of these tools to other species of bacteria (here broadly referred to as non-model bacteria). In this mini-review, we discuss the challenges that contribute to the slower creation of CRISPRi/a tools in diverse, non-model bacteria and summarize the current state of these approaches across bacterial phyla. We find that despite the potential difficulties in establishing novel CRISPRi/a in non-model microbes, over 190 recent examples across eight bacterial phyla have been reported in the literature. Most studies have focused on tool development or used these CRISPRi/a approaches to interrogate gene function, with fewer examples applying CRISPRi/a gene regulation for metabolic engineering or high-throughput screens and selections. To date, most CRISPRi/a reports have been developed for common strains of non-model bacterial species, suggesting barriers remain to establish these genetic tools in undomesticated bacteria. More efficient and generalizable methods will help realize the immense potential of programmable CRISPR-based transcriptional control in diverse bacteria.
Collapse
Affiliation(s)
- Stephanie N. Call
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
22
|
Li H, Pham NN, Shen CR, Chang CW, Tu Y, Chang YH, Tu J, Nguyen MTT, Hu YC. Combinatorial CRISPR Interference Library for Enhancing 2,3-BDO Production and Elucidating Key Genes in Cyanobacteria. Front Bioeng Biotechnol 2022; 10:913820. [PMID: 35800335 PMCID: PMC9253771 DOI: 10.3389/fbioe.2022.913820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria can convert CO2 to chemicals such as 2,3-butanediol (2,3-BDO), rendering them promising for renewable production and carbon neutralization, but their applications are limited by low titers. To enhance cyanobacterial 2,3-BDO production, we developed a combinatorial CRISPR interference (CRISPRi) library strategy. We integrated the 2,3-BDO pathway genes and a CRISPRi library into the cyanobacterium PCC7942 using the orthogonal CRISPR system to overexpress pathway genes and attenuate genes that inhibit 2,3-BDO formation. The combinatorial CRISPRi library strategy allowed us to inhibit fbp, pdh, ppc, and sps (which catalyzes the synthesis of fructose-6-phosphate, acetyl-coenzyme A, oxaloacetate, and sucrose, respectively) at different levels, thereby allowing for rapid screening of a strain that enhances 2,3-BDO production by almost 2-fold to 1583.8 mg/L. Coupled with a statistical model, we elucidated that differentially inhibiting all the four genes enhances 2,3-BDO synthesis to varying degrees. fbp and pdh suppression exerted more profound effects on 2,3-BDO production than ppc and sps suppression, and these four genes can be repressed simultaneously without mutual interference. The CRISPRi library approach paves a new avenue to combinatorial metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Hung Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Claire R. Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi Tu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jui Tu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
- *Correspondence: Yu-Chen Hu, , orcid.org/0000-0002-9997-4467
| |
Collapse
|
23
|
Opel F, Siebert NA, Klatt S, Tüllinghoff A, Hantke JG, Toepel J, Bühler B, Nürnberg DJ, Klähn S. Generation of Synthetic Shuttle Vectors Enabling Modular Genetic Engineering of Cyanobacteria. ACS Synth Biol 2022; 11:1758-1771. [PMID: 35405070 DOI: 10.1021/acssynbio.1c00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyanobacteria have raised great interest in biotechnology due to their potential for a sustainable, photosynthesis-driven production of fuels and value-added chemicals. This has led to a concomitant development of molecular tools to engineer the metabolism of those organisms. In this regard, however, even cyanobacterial model strains lag behind compared to their heterotrophic counterparts. For instance, replicative shuttle vectors that allow gene transfer independent of recombination into host DNA are still scarce. Here, we introduce the pSOMA shuttle vector series comprising 10 synthetic plasmids for comprehensive genetic engineering of Synechocystis sp. PCC 6803. The series is based on the small endogenous plasmids pCA2.4 and pCB2.4, each combined with a replicon from Escherichia coli, different selection markers as well as features facilitating molecular cloning and the insulated introduction of gene expression cassettes. We made use of genes encoding green fluorescent protein (GFP) and a Baeyer-Villiger monooxygenase (BVMO) to demonstrate functional gene expression from the pSOMA plasmids in vivo. Moreover, we demonstrate the expression of distinct heterologous genes from individual plasmids maintained in the same strain and thereby confirmed compatibility between the two pSOMA subseries as well as with derivatives of the broad-host-range plasmid RSF1010. We also show that gene transfer into the filamentous model strain Anabaena sp. PCC 7120 is generally possible, which is encouraging to further explore the range of cyanobacterial host species that could be engineered via pSOMA plasmids. Altogether, the pSOMA shuttle vector series displays an attractive alternative to existing plasmid series and thus meets the current demand for the introduction of complex genetic setups and to perform extensive metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Franz Opel
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Nina A. Siebert
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabine Klatt
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Adrian Tüllinghoff
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Janis G. Hantke
- Institute of Experimental Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jörg Toepel
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Stephan Klähn
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
24
|
Le Y, Sun J. CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:1-30. [PMID: 35461662 DOI: 10.1016/bs.aambs.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Thermophiles, offering an attractive and unique platform for a broad range of applications in biofuels and environment protections, have received a significant attention and growing interest from academy and industry. However, the exploration and exploitation of thermophilic organisms have been hampered by the lack of a powerful genome manipulation tool to improve production efficiency. At current, the clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR associated (Cas) system has been successfully exploited as a competent, simplistic, and powerful tool for genome engineering both in eukaryotes and prokaryotes. Indeed, with the significant efforts made in recent years, some thermostable Cas9 proteins have been well identified and characterized and further, some thermostable Cas9-based editing tools have been successfully established in some representative obligate thermophiles. In this regard, we reviewed the current status and its progress in CRISPR/Cas-based genome editing system towards a variety of thermophilic organisms. Despite the potentials of these progresses, multiple factors/barriers still have to be overcome and optimized for improving its editing efficiency in thermophiles. Some insights into the roles of thermostable CRISPR/Cas technologies for the metabolic engineering of thermophiles as a thermophilic microbial cell factory were also fully analyzed and discussed.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| | - Jianzhong Sun
- Biofuels institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
25
|
Muthukrishnan L. Bio‐engineering of microalgae: Challenges and future prospects toward industrial and environmental applications. J Basic Microbiol 2022; 62:310-329. [DOI: 10.1002/jobm.202100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| |
Collapse
|
26
|
Sengupta A, Liu D, Pakrasi HB. CRISPR-Cas mediated genome engineering of cyanobacteria. Methods Enzymol 2022; 676:403-432. [DOI: 10.1016/bs.mie.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [DOI: 10.1007/10_2022_210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Naduthodi MIS, Südfeld C, Avitzigiannis EK, Trevisan N, van Lith E, Alcaide Sancho J, D’Adamo S, Barbosa M, van der Oost J. Comprehensive Genome Engineering Toolbox for Microalgae Nannochloropsis oceanica Based on CRISPR-Cas Systems. ACS Synth Biol 2021; 10:3369-3378. [PMID: 34793143 PMCID: PMC8689688 DOI: 10.1021/acssynbio.1c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Microalgae can produce
industrially relevant metabolites using
atmospheric CO2 and sunlight as carbon and energy sources,
respectively. Developing molecular tools for high-throughput genome
engineering could accelerate the generation of tailored strains with
improved traits. To this end, we developed a genome editing strategy
based on Cas12a ribonucleoproteins (RNPs) and homology-directed repair
(HDR) to generate scarless and markerless mutants of the microalga Nannochloropsis oceanica. We also developed an episomal
plasmid-based Cas12a system for efficiently introducing indels at
the target site. Additionally, we exploited the ability of Cas12a
to process an associated CRISPR array to perform multiplexed genome
engineering. We efficiently targeted three sites in the host genome
in a single transformation, thereby making a major step toward high-throughput
genome engineering in microalgae. Furthermore, a CRISPR interference
(CRISPRi) tool based on Cas9 and Cas12a was developed for effective
downregulation of target genes. We observed up to 85% reduction in
the transcript levels upon performing CRISPRi with dCas9 in N. oceanica. Overall, these developments substantially
accelerate genome engineering efforts in N. oceanica and potentially provide a general toolbox for improving other microalgal
strains.
Collapse
Affiliation(s)
- Mihris Ibnu Saleem Naduthodi
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, The Netherlands
- Bioprocess Engineering, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Christian Südfeld
- Bioprocess Engineering, Wageningen University, Wageningen 6708 PB, The Netherlands
| | | | - Nicola Trevisan
- Bioprocess Engineering, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Eduard van Lith
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Javier Alcaide Sancho
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Sarah D’Adamo
- Bioprocess Engineering, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Maria Barbosa
- Bioprocess Engineering, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
29
|
Shokravi H, Shokravi Z, Heidarrezaei M, Ong HC, Rahimian Koloor SS, Petrů M, Lau WJ, Ismail AF. Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions. CHEMOSPHERE 2021; 285:131535. [PMID: 34329137 DOI: 10.1016/j.chemosphere.2021.131535] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Genetic engineering applications in the field of biofuel are rapidly expanding due to their potential to boost biomass productivity while lowering its cost and enhancing its quality. Recently, fourth-generation biofuel (FGB), which is biofuel obtained from genetically modified (GM) algae biomass, has gained considerable attention from academic and industrial communities. However, replacing fossil resources with FGB is still beset with many challenges. Most notably, technical aspects of genetic modification operations need to be more fully articulated and elaborated. However, relatively little attention has been paid to GM algal biomass. There is a limited number of reviews on the progress and challenges faced in the algal genetics of FGB. Therefore, the present review aims to fill this gap in the literature by recapitulating the findings of recent studies and achievements on safe and efficient genetic manipulation in the production of FGB. Then, the essential issues and parameters related to genome editing in algal strains are highlighted. Finally, the main challenges to FGB pertaining to the diffusion risk and regulatory frameworks are addressed. This review concluded that the technical and biosafety aspects of FGB, as well as the complexity and diversity of the related regulations, legitimacy concerns, and health and environmental risks, are among the most important challenges that require a strong commitment at the national/international levels to reach a global consensus.
Collapse
Affiliation(s)
- Hoofar Shokravi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Zahra Shokravi
- Department of Microbiology, Faculty of Basic Science, Islamic Azad University, Science and Research Branch of Tehran, Markazi, Iran
| | - Mahshid Heidarrezaei
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CXI), Technical University of Liberec (TUL), Studentska 2, 461 17, Liberec, Czech Republic
| | - Michal Petrů
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CXI), Technical University of Liberec (TUL), Studentska 2, 461 17, Liberec, Czech Republic
| | - Woei Jye Lau
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
30
|
Tsai TH, Lin JY, Ng IS. Cooperation of phytoene synthase, pyridoxal kinase and carbonic anhydrase for enhancing carotenoids biosynthesis in genetic Chlamydomonas reinhardtii. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.104184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Sakkos JK, Hernandez-Ortiz S, Osteryoung KW, Ducat DC. Orthogonal Degron System for Controlled Protein Degradation in Cyanobacteria. ACS Synth Biol 2021; 10:1667-1681. [PMID: 34232633 DOI: 10.1021/acssynbio.1c00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Synechococcus elongatus PCC 7942 is a model cyanobacterium for study of the circadian clock, photosynthesis, and bioproduction of chemicals, yet nearly 40% of its gene identities and functions remain unknown, in part due to limitations of the existing genetic toolkit. While classical techniques for the study of genes (e.g., deletion or mutagenesis) can yield valuable information about the absence of a gene and its associated protein, there are limits to these approaches, particularly in the study of essential genes. Herein, we developed a tool for inducible degradation of target proteins in S. elongatus by adapting a method using degron tags from the Mesoplasma florum transfer-mRNA (tmRNA) system. We observed that M. florum lon protease can rapidly degrade exogenous and native proteins tagged with the cognate sequence within hours of induction. We used this system to inducibly degrade the essential cell division factor, FtsZ, as well as shell protein components of the carboxysome. Our results have implications for carboxysome biogenesis and the rate of carboxysome turnover during cell growth. Lon protease control of proteins offers an alternative approach for the study of essential proteins and protein dynamics in cyanobacteria.
Collapse
Affiliation(s)
- Jonathan K. Sakkos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sergio Hernandez-Ortiz
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Katherine W. Osteryoung
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
33
|
Villegas Kcam MC, Tsong AJ, Chappell J. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range. Nucleic Acids Res 2021; 49:4793-4802. [PMID: 33823546 PMCID: PMC8096225 DOI: 10.1093/nar/gkab211] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR-Cas activator (CRISPRa) systems that selectively turn on transcription of a target gene are a potentially transformative technology for programming cellular function. While in eukaryotes versatile CRISPRa systems exist, in bacteria these systems suffer from a limited ability to activate different genes due to strict distance-dependent requirements of functional target binding sites, and require greater customization to optimize performance in different genetic and cellular contexts. To address this, we apply a rational protein engineering approach to create a new CRISPRa platform that is highly modular to allow for easy customization and has increased targeting flexibility through harnessing engineered Cas proteins. We first demonstrate that transcription activation domains can be recruited by CRISPR-Cas through noncovalent protein-protein interactions, which allows each component to be encoded on separate and easily interchangeable plasmid elements. We then exploit this modularity to rapidly screen a library of different activation domains, creating new systems with distinct regulatory properties. Furthermore, we demonstrate that by harnessing a library of circularly permuted Cas proteins, we can create CRISPRa systems that have different target binding site requirements, which together, allow for expanded target range.
Collapse
Affiliation(s)
| | - Annette J Tsong
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
| | - James Chappell
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, MS 142, Houston, TX 77005, USA
| |
Collapse
|
34
|
Singh R, Chandel S, Ghosh A, Dey D, Chakravarti R, Roy S, Ravichandiran V, Ghosh D. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules. Mol Biotechnol 2021; 63:459-476. [PMID: 33774733 DOI: 10.1007/s12033-021-00310-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated Cas protein technology area is rapidly growing technique for genome editing and modulation of transcription of several microbes. Successful engineering in microbes requires an emphasis on the aspect of efficiency and targeted aiming, which can be employed using CRISPR/Cas system. Hence, this type of system is used to modify the genome of several microbes such as yeast and bacteria. In recent years, CRISPR/Cas systems have been chosen for metabolic engineering in microbes due to their specificity, orthogonality, and efficacy. Therefore, we need to review the scheme which was acquired for the execution of the CRISPR/Cas system for the modification and metabolic engineering in yeast and bacteria. In this review, we highlighted the application of the CRISPR/Cas system which has been used for the production of small molecules in the microbial system that is chemically and biologically important.
Collapse
Affiliation(s)
- Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata, 700009, India
| | - Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Syamal Roy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India.
| |
Collapse
|
35
|
Durall C, Kukil K, Hawkes JA, Albergati A, Lindblad P, Lindberg P. Production of succinate by engineered strains of Synechocystis PCC 6803 overexpressing phosphoenolpyruvate carboxylase and a glyoxylate shunt. Microb Cell Fact 2021; 20:39. [PMID: 33557832 PMCID: PMC7871529 DOI: 10.1186/s12934-021-01529-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cyanobacteria are promising hosts for the production of various industrially important compounds such as succinate. This study focuses on introduction of the glyoxylate shunt, which is naturally present in only a few cyanobacteria, into Synechocystis PCC 6803. In order to test its impact on cell metabolism, engineered strains were evaluated for succinate accumulation under conditions of light, darkness and anoxic darkness. Each condition was complemented by treatments with 2-thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase enzyme, and acetate, both in nitrogen replete and deplete medium. RESULTS We were able to introduce genes encoding the glyoxylate shunt, aceA and aceB, encoding isocitrate lyase and malate synthase respectively, into a strain of Synechocystis PCC 6803 engineered to overexpress phosphoenolpyruvate carboxylase. Our results show that complete expression of the glyoxylate shunt results in higher extracellular succinate accumulation compared to the wild type control strain after incubation of cells in darkness and anoxic darkness in the presence of nitrate. Addition of the inhibitor 2-thenoyltrifluoroacetone increased succinate titers in all the conditions tested when nitrate was available. Addition of acetate in the presence of the inhibitor further increased the succinate accumulation, resulting in high levels when phosphoenolpyruvate carboxylase was overexpressed, compared to control strain. However, the highest succinate titer was obtained after dark incubation of an engineered strain with a partial glyoxylate shunt overexpressing isocitrate lyase in addition to phosphoenolpyruvate carboxylase, with only 2-thenoyltrifluoroacetone supplementation to the medium. CONCLUSIONS Heterologous expression of the glyoxylate shunt with its central link to the tricarboxylic acid cycle (TCA) for acetate assimilation provides insight on the coordination of the carbon metabolism in the cell. Phosphoenolpyruvate carboxylase plays an important role in directing carbon flux towards the TCA cycle.
Collapse
Affiliation(s)
- Claudia Durall
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Kateryna Kukil
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Jeffrey A Hawkes
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Box 599, 751 20, Uppsala, Sweden
| | - Alessia Albergati
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20, Uppsala, Sweden.
| |
Collapse
|
36
|
Riley LA, Guss AM. Approaches to genetic tool development for rapid domestication of non-model microorganisms. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:30. [PMID: 33494801 PMCID: PMC7830746 DOI: 10.1186/s13068-020-01872-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/30/2020] [Indexed: 05/04/2023]
Abstract
Non-model microorganisms often possess complex phenotypes that could be important for the future of biofuel and chemical production. They have received significant interest the last several years, but advancement is still slow due to the lack of a robust genetic toolbox in most organisms. Typically, "domestication" of a new non-model microorganism has been done on an ad hoc basis, and historically, it can take years to develop transformation and basic genetic tools. Here, we review the barriers and solutions to rapid development of genetic transformation tools in new hosts, with a major focus on Restriction-Modification systems, which are a well-known and significant barrier to efficient transformation. We further explore the tools and approaches used for efficient gene deletion, DNA insertion, and heterologous gene expression. Finally, more advanced and high-throughput tools are now being developed in diverse non-model microbes, paving the way for rapid and multiplexed genome engineering for biotechnology.
Collapse
Affiliation(s)
- Lauren A Riley
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
37
|
Kim B, Kim, HJ, Lee SJ. Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference. J Microbiol Biotechnol 2020; 30:1919-1926. [PMID: 32958732 PMCID: PMC9728369 DOI: 10.4014/jmb.2008.08058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 12/15/2022]
Abstract
CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.
Collapse
Affiliation(s)
- Bumjoon Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun Ju Kim,
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
38
|
Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and Utilization. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0447-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C, Zhang X. CRISPR-based metabolic pathway engineering. Metab Eng 2020; 63:148-159. [PMID: 33152516 DOI: 10.1016/j.ymben.2020.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
A highly effective metabolic pathway is the key for an efficient cell factory. However, the engineered homologous or heterologous multi-gene pathway may be unbalanced, inefficient and causing the accumulation of potentially toxic intermediates. Therefore, pathways must be constructed optimally to minimize these negative effects and maximize catalytic efficiency. With the development of CRISPR technology, some of the problems of previous pathway engineering and genome editing techniques were resolved, providing higher efficiency, lower cost, and easily customizable targets. Moreover, CRISPR was demonstrated as robust and effective in various organisms including both prokaryotes and eukaryotes. In recent years, researchers in the field of metabolic engineering and synthetic biology have exploited various CRISPR-based pathway engineering approaches, which are both effective and convenient, as well as valuable from a theoretical standpoint. In this review, we systematically summarize novel pathway engineering techniques and strategies based on CRISPR nucleases system, CRISPR interference (CRISPRi), and CRISPR activation (CRISPRa), including figures and descriptions for easy understanding, with the aim to facilitate their broader application among fellow researchers.
Collapse
Affiliation(s)
- Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hang Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Naxin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ting Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
40
|
Wang F, Gao Y, Yang G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production. Bioengineered 2020; 11:1208-1220. [PMID: 33124500 PMCID: PMC8291842 DOI: 10.1080/21655979.2020.1837458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria are Gram-negative photoautotrophic prokaryotes and have shown great importance to the Earth’s ecology. Based on their capability in oxygenic photosynthesis and genetic merits, they can be engineered as microbial chassis for direct conversion of carbon dioxide to value-added biofuels and chemicals. In the last decades, attempts have given to the application of synthetic biology tools and approaches in the development of cyanobacterial cell factories. Despite the successful proof-of-principle studies, large-scale application is still a technical challenge due to low yields of bioproducts. Therefore, recent efforts are underway to characterize and develop genetic regulatory parts and strategies for the synthetic biology applications in cyanobacteria. In this review, we present the recent advancements and application in cyanobacterial synthetic biology toolboxes. We also discuss the limitations and future perspectives for using such novel tools in cyanobacterial biotechnology.
Collapse
Affiliation(s)
- Fen Wang
- Department of Surgery, College of Medicine, University of Florida , Gainesville, FL, USA
| | - Yuanyuan Gao
- Jining Academy of Agricultural Science , Jining, Shandong, China
| | - Guang Yang
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida , Gainesville, FL, USA
| |
Collapse
|
41
|
Pattharaprachayakul N, Lee M, Incharoensakdi A, Woo HM. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme Microb Technol 2020; 140:109619. [PMID: 32912679 DOI: 10.1016/j.enzmictec.2020.109619] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms that are capable of converting CO2 to value-added chemicals. Engineering of cyanobacteria with synthetic biology tools, including the CRISPR-Cas system, has allowed an opportunity for biological CO2 utilization. Here, we described natural CRISPR-Cas systems for understanding cyanobacterial genomics and synthetic CRISPR-Cas systems for metabolic engineering applications. The natural CRISPR-Cas systems in cyanobacteria have been identified as Class 1, with type I and III, and some Class 2, with type V, as an adaptive immune system against viral invasion. As synthetic tools, CRISPR-Cas9 and -Cas12a have been successfully established in cyanobacteria to delete a target gene without a selection marker. Deactivated Cas9 and Cas12a have also been used to repress genes for metabolic engineering. In addition, a perspective on how advanced CRISPR-Cas systems and a pool of the guide RNAs can be advantageous for precise genome engineering and understanding of unknown functions was discussed for advanced engineering of cyanobacteria.
Collapse
Affiliation(s)
- Napisa Pattharaprachayakul
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand; Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Mieun Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
42
|
Ciebiada M, Kubiak K, Daroch M. Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms. Int J Mol Sci 2020; 21:E7204. [PMID: 33003478 PMCID: PMC7582838 DOI: 10.3390/ijms21197204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are photoautotrophic bacteria commonly found in the natural environment. Due to the ecological benefits associated with the assimilation of carbon dioxide from the atmosphere and utilization of light energy, they are attractive hosts in a growing number of biotechnological processes. Biopolymer production is arguably one of the most critical areas where the transition from fossil-derived chemistry to renewable chemistry is needed. Cyanobacteria can produce several polymeric compounds with high applicability such as glycogen, polyhydroxyalkanoates, or extracellular polymeric substances. These important biopolymers are synthesized using precursors derived from central carbon metabolism, including the tricarboxylic acid cycle. Due to their unique metabolic properties, i.e., light harvesting and carbon fixation, the molecular and genetic aspects of polymer biosynthesis and their relationship with central carbon metabolism are somehow different from those found in heterotrophic microorganisms. A greater understanding of the processes involved in cyanobacterial metabolism is still required to produce these molecules more efficiently. This review presents the current state of the art in the engineering of cyanobacterial metabolism for the efficient production of these biopolymers.
Collapse
Affiliation(s)
- Maciej Ciebiada
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 4/40 Stefanowskiego Str, 90-924 Lodz, Poland
| | - Katarzyna Kubiak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 4/40 Stefanowskiego Str, 90-924 Lodz, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
| |
Collapse
|
43
|
Cheah YE, Xu Y, Sacco SA, Babele PK, Zheng AO, Johnson CH, Young JD. Systematic identification and elimination of flux bottlenecks in the aldehyde production pathway of Synechococcus elongatus PCC 7942. Metab Eng 2020; 60:56-65. [PMID: 32222320 PMCID: PMC7217728 DOI: 10.1016/j.ymben.2020.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/27/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Isotopically nonstationary metabolic flux analysis (INST-MFA) provides a versatile platform to quantitatively assess in vivo metabolic activities of autotrophic systems. By applying INST-MFA to recombinant aldehyde-producing cyanobacteria, we identified metabolic alterations that correlated with increased strain performance in order to guide rational metabolic engineering. We identified four reactions adjacent to the pyruvate node that varied significantly with increasing aldehyde production: pyruvate kinase (PK) and acetolactate synthase (ALS) fluxes were directly correlated with product formation, while pyruvate dehydrogenase (PDH) and phosphoenolpyruvate carboxylase (PPC) fluxes were inversely correlated. Overexpression of enzymes for PK or ALS did not result in further improvements to the previous best-performing strain, while downregulation of PDH expression (through antisense RNA expression) or PPC flux (through expression of the reverse reaction, phosphoenolpyruvate carboxykinase) provided significant improvements. These results illustrate the potential of INST-MFA to enable a systematic approach for iterative identification and removal of pathway bottlenecks in autotrophic host cells.
Collapse
Affiliation(s)
- Yi Ern Cheah
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yao Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Sarah A Sacco
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Piyoosh K Babele
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Amy O Zheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
44
|
Liu D, Johnson VM, Pakrasi HB. A Reversibly Induced CRISPRi System Targeting Photosystem II in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2020; 9:1441-1449. [PMID: 32379958 DOI: 10.1021/acssynbio.0c00106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 is used as a model organism to study photosynthesis, as it can utilize glucose as the sole carbon source to support its growth under heterotrophic conditions. CRISPR interference (CRISPRi) has been widely applied to repress the transcription of genes in a targeted manner in cyanobacteria. However, a robust and reversible induced CRISPRi system has not been explored in Synechocystis 6803 to knock down and recover the expression of a targeted gene. In this study, we built a tightly controlled chimeric promoter, P rhaBAD-RSW, in which a theophylline responsive riboswitch was integrated into a rhamnose-inducible promoter system. We applied this promoter to drive the expression of ddCpf1 (DNase-dead Cpf1 nuclease) in a CRISPRi system and chose the PSII reaction center gene psbD (D2 protein) to target for repression. psbD was specifically knocked down by over 95% of its native expression, leading to severely inhibited photosystem II activity and growth of Synechocystis 6803 under photoautotrophic conditions. Significantly, removal of the inducers rhamnose and theophylline reversed repression by CRISPRi. Expression of PsbD recovered following release of repression, coupled with increased photosystem II content and activity. This reversibly induced CRISPRi system in Synechocystis 6803 represents a new strategy for study of the biogenesis of photosynthetic complexes in cyanobacteria.
Collapse
Affiliation(s)
- Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Virginia M Johnson
- Department of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
45
|
Photosynthetic Co-Production of Succinate and Ethylene in A Fast-Growing Cyanobacterium, Synechococcus elongatus PCC 11801. Metabolites 2020; 10:metabo10060250. [PMID: 32560048 PMCID: PMC7345232 DOI: 10.3390/metabo10060250] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria are emerging as hosts for photoautotrophic production of chemicals. Recent studies have attempted to stretch the limits of photosynthetic production, typically focusing on one product at a time, possibly to minimise the additional burden of product separation. Here, we explore the simultaneous production of two products that can be easily separated: ethylene, a gaseous product, and succinate, an organic acid that accumulates in the culture medium. This was achieved by expressing a single copy of the ethylene forming enzyme (efe) under the control of PcpcB, the inducer-free super-strong promoter of phycocyanin β subunit. We chose the recently reported, fast-growing and robust cyanobacterium, Synechococcus elongatus PCC 11801, as the host strain. A stable recombinant strain was constructed using CRISPR-Cpf1 in a first report of markerless genome editing of this cyanobacterium. Under photoautotrophic conditions, the recombinant strain shows specific productivities of 338.26 and 1044.18 μmole/g dry cell weight/h for ethylene and succinate, respectively. These results compare favourably with the reported productivities for individual products in cyanobacteria that are highly engineered. Metabolome profiling and 13C labelling studies indicate carbon flux redistribution and suggest avenues for further improvement. Our results show that S. elongatus PCC 11801 is a promising candidate for metabolic engineering.
Collapse
|
46
|
Brito LF, Schultenkämper K, Passaglia LMP, Wendisch VF. CRISPR interference-based gene repression in the plant growth promoter Paenibacillus sonchi genomovar Riograndensis SBR5. Appl Microbiol Biotechnol 2020; 104:5095-5106. [PMID: 32274563 PMCID: PMC7229006 DOI: 10.1007/s00253-020-10571-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Gene repression using the endonucleolytically deactivated dCas9 protein and sgRNAs (CRISPR interference or CRISPRi) is a useful approach to study gene functions. Here, we established CRISPRi in Paenibacillus sonchi genomovar Riograndensis SBR5, a plant growth promoting bacterium. CRISPRi system with sgRNAs targeting SBR5 endogenous genes spo0A, yaaT and ydjJ and plasmid-borne gfpUV was constructed and analyzed. Flow cytometry analysis revealed a significant decrease of reporter protein GFPUV signal in P. sonchi strains expressing gfpUV sgRNA in comparison with non-targeting controls. CRISPRi-based repression of chromosomal genes for regulation of sporulation spo0A and yaaT decreased sporulation and increased biofilm formation in SBR5. Repression of the sorbitol catabolic gene ydjJ revealed decreased specific activity of YdjJ in crude cell extracts and reduced biomass formation from sorbitol in growth experiments. Our work on CRISPRi-based gene repression serves as basis for gene function studies of the plant growth promoter P. sonchi SBR5. To our knowledge, the present study presents the first tool for gene repression established in Paenibacillus species.Key points• CRISPRi toward gene repression was applied for the first time in Paenibacillus.• CRISPRi of spo0A and yaaT depleted spores and increased biofilms in SBR5.• CRISPRi-based ydjJ repression decreased specific activity of sorbitol dehydrogenase.
Collapse
Affiliation(s)
- Luciana F Brito
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kerstin Schultenkämper
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Luciane M P Passaglia
- Department of Genetics UFRGS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
47
|
Fatma Z, Schultz JC, Zhao H. Recent advances in domesticating non‐model microorganisms. Biotechnol Prog 2020; 36:e3008. [DOI: 10.1002/btpr.3008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Zia Fatma
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - J. Carl Schultz
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Departments of Chemistry, Biochemistry, and Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
48
|
Mo XH, Zhang H, Wang TM, Zhang C, Zhang C, Xing XH, Yang S. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis. Appl Microbiol Biotechnol 2020; 104:4515-4532. [PMID: 32215707 DOI: 10.1007/s00253-020-10543-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 02/04/2023]
Abstract
The methylotrophic bacterium Methylorubrum extorquens AM1 holds a great potential of a microbial cell factory in producing high value chemicals with methanol as the sole carbon and energy source. However, many gene functions remain unknown, hampering further rewiring of metabolic networks. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been demonstrated to be a robust tool for gene knockdown in diverse organisms. In this study, we developed an efficient CRISPRi system through optimizing the promoter strength of Streptococcus pyogenes-derived deactivated cas9 (dcas9). When the dcas9 and sgRNA were respectively controlled by medium PR/tetO and strong PmxaF-g promoters, dynamic repression efficacy of cell growth through disturbing a central metabolism gene glyA was achieved from 41.9 to 96.6% dependent on the sgRNA targeting sites. Furthermore, the optimized CRISPRi system was shown to effectively decrease the abundance of exogenous fluorescent protein gene mCherry over 50% and to reduce the expression of phytoene desaturase gene crtI by 97.7%. We then used CRISPRi technology combined with 26 sgRNAs pool to rapidly discover a new phytoene desaturase gene META1_3670 from 2470 recombinant mutants. The gene function was further verified through gene deletion and complementation as well as phylogenetic tree analysis. In addition, we applied CRISPRi to repress the transcriptional level of squalene-hopene cyclase gene shc involved in hopanoid biosynthesis by 64.9%, which resulted in enhancing 1.9-fold higher of carotenoid production without defective cell growth. Thus, the CRISPRi system developed here provides a useful tool in mining functional gene of M. extorquens as well as in biotechnology for producing high-valued chemicals from methanol. KEY POINTS: Developing an efficient CRISPRi to knockdown gene expression in C1-utilizing bacteria CRISPRi combined with sgRNAs pool to rapidly discover a new phytoene desaturase gene Improvement of carotenoid production by repressing a competitive pathway.
Collapse
Affiliation(s)
- Xu-Hua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Hui Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Tian-Min Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Chong Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Cong Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Xin-Hui Xing
- Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
49
|
Khan S, Fu P. Biotechnological perspectives on algae: a viable option for next generation biofuels. Curr Opin Biotechnol 2020; 62:146-152. [DOI: 10.1016/j.copbio.2019.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
50
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|