1
|
Thenmozhi Kulasekaran N, Sankara Subramanian SH, Thilakam ML, Gopal D, Lee JK, Marimuthu J. Functional analysis of a putative type III polyketide synthase from deep-sea sediment metagenome. J Biosci Bioeng 2024; 137:239-244. [PMID: 38307768 DOI: 10.1016/j.jbiosc.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 02/04/2024]
Abstract
Type III polyketide synthases (type III PKSs) are single homodimeric enzymes that produce diverse products such as phloroglucinol, pyrones, resorcinols and chalcones which are biotechnologically important molecules. In an attempt to identify new type III PKS from extreme environments, the deep-sea sediment metagenome from Bay of Bengal was screened for type III PKS genes. BLASTX analyses of Nanopore sequence derived metagenome with the in-house created PKS database revealed a full length type III PKS from a 5 kb fragment. The annotated full length type III PKS, S9PKS showed 25-30 % sequence identity towards previously characterized enzymes. To functionally characterize the gene, it was synthesized, cloned into pET28a and pColdI vectors under T7 and csp promoters, respectively, and expressed in Escherichia coli Rosetta(DE3) pLysS. The optimized PKS (OptiPKS) was expressed as inclusion bodies under both promoters. The inclusion bodies were successfully solubilised using low concentration of urea, refolded and purified using Ni-NTA Agarose resin. The purified OptiPKS was tested for functionality using fatty acyl-CoA substrates at various temperatures. High performance liquid chromatography (HPLC) analyses revealed that OptiPKS produced tri and tetraketide pyrones using C4 to C10 acyl-CoA starter substrates. Further characterization and mutation of the enzyme would reveal its functional significance. Thus, the study could be a lead for the annotation and functional characterization of putative type III PKS from environmental metagenome data.
Collapse
Affiliation(s)
| | | | - Mary Leema Thilakam
- Marine Biotechnology Division, National Institute of Ocean Technology, Pallikaranai, Chennai-600100, Tamilnadu, India
| | - Dharani Gopal
- Marine Biotechnology Division, National Institute of Ocean Technology, Pallikaranai, Chennai-600100, Tamilnadu, India
| | - Jung Kul Lee
- Department of Chemical Engineering, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeya Marimuthu
- Marine Biotechnology Division, National Institute of Ocean Technology, Pallikaranai, Chennai-600100, Tamilnadu, India.
| |
Collapse
|
2
|
Hussain A, Sravanthi R, Katta S, Ramachary DB. Two-step, high-yielding total synthesis of antibiotic pyrones. Org Biomol Chem 2024; 22:554-560. [PMID: 38116605 DOI: 10.1039/d3ob01923c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A simple two-step dialkylation protocol was developed to synthesize biologically active antibiotics photopyrones, pseudopyronines, and violapyrones from bio-renewable triacetate lactone in excellent yields. These pyrones are functionally modified into another set of pyrone natural products by a single O-methylation reaction. The high-yielding gram scale synthesis of four natural products [pseudopyronine A, photopyrone A, pseudopyronine B and photopyrone C] demonstrated the viability for industrial applications.
Collapse
Affiliation(s)
- Akram Hussain
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | - Revoju Sravanthi
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
- Pharmacognosy and Phytochemistry Division, Gitam Institute of Pharmacy, Gitam Deemed to be University, Visakhapatnam, 530 045, Andhra Pradesh, India
| | - Sunitha Katta
- Pharmacognosy and Phytochemistry Division, Gitam Institute of Pharmacy, Gitam Deemed to be University, Visakhapatnam, 530 045, Andhra Pradesh, India
| | | |
Collapse
|
3
|
Mazumdar R, Saikia K, Thakur D. Potentiality of Actinomycetia Prevalent in Selected Forest Ecosystems in Assam, India to Combat Multi-Drug-Resistant Microbial Pathogens. Metabolites 2023; 13:911. [PMID: 37623855 PMCID: PMC10456813 DOI: 10.3390/metabo13080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Actinomycetia are known for their ability to produce a wide range of bioactive secondary metabolites having significant therapeutic importance. This study aimed to explore the potential of actinomycetia as a source of bioactive compounds with antimicrobial properties against multi-drug-resistant (MDR) clinical pathogens. A total of 65 actinomycetia were isolated from two unexplored forest ecosystems, namely the Pobitora Wildlife Sanctuary (PWS) and the Deepor Beel Wildlife Sanctuary (DBWS), located in the Indo-Burma mega-biodiversity hotspots of northeast India, out of which 19 isolates exhibited significant antimicrobial activity. 16S rRNA gene sequencing was used for the identification and phylogenetic analysis of the 19 potent actinomycetia isolates. The results reveal that the most dominant genus among the isolates was Streptomyces (84.21%), followed by rare actinomycetia genera such as Nocardia, Actinomadura, and Nonomuraea. Furthermore, seventeen of the isolates tested positive for at least one antibiotic biosynthetic gene, specifically type II polyketide synthase (PKS-II) and nonribosomal peptide synthetases (NRPSs). These genes are associated with the production of bioactive compounds with antimicrobial properties. Among the isolated strains, three actinomycetia strains, namely Streptomyces sp. PBR1, Streptomyces sp. PBR36, and Streptomyces sp. DBR11, demonstrated the most potent antimicrobial activity against seven test pathogens. This was determined through in vitro antimicrobial bioassays and the minimum inhibitory concentration (MIC) values of ethyl acetate extracts. Gas chromatography-mass spectrometry (GS-MS) and whole-genome sequencing (WGS) of the three strains revealed a diverse group of bioactive compounds and secondary metabolite biosynthetic gene clusters (smBGCs), respectively, indicating their high therapeutic potential. These findings highlight the potential of these microorganisms to serve as a valuable resource for the discovery and development of novel antibiotics and other therapeutics with high therapeutic potential.
Collapse
Affiliation(s)
- Rajkumari Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India;
- Department of Molecular Biology & Biotechnology, Cotton University, Guwahati 781001, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Institute of Advanced Study in Science and Technology, Guwahati 781035, India;
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India;
| |
Collapse
|
4
|
Wen Y, Zhang G, Bahadur A, Xu Y, Liu Y, Tian M, Ding W, Chen T, Zhang W, Liu G. Genomic Investigation of Desert Streptomyces huasconensis D23 Reveals Its Environmental Adaptability and Antimicrobial Activity. Microorganisms 2022; 10:2408. [PMID: 36557661 PMCID: PMC9784485 DOI: 10.3390/microorganisms10122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The harsh climatic conditions of deserts may lead to unique adaptations of microbes, which could serve as potential sources of new metabolites to cope with environmental stresses. However, the mechanisms governing the environmental adaptability and antimicrobial activity of desert Streptomyces remain inadequate, especially in extreme temperature differences, drought conditions, and strong radiation. Here, we isolated a Streptomyces strain from rocks in the Kumtagh Desert in Northwest China and tested its antibacterial activity, resistance to UV-C irradiation, and tolerance to hydrogen peroxide (H2O2). The whole-genome sequencing was carried out to study the mechanisms underlying physiological characteristics and ecological adaptation from a genomic perspective. This strain has a growth inhibitory effect against a variety of indicator bacteria, and the highest antibacterial activity recorded was against Bacillus cereus. Moreover, strain D23 can withstand UV-C irradiation up to 100 J/m2 (D10 = 80 J/m2) and tolerate stress up to 70 mM H2O2. The genome prediction of strain D23 revealed the mechanisms associated with its adaptation to extreme environmental and stressful conditions. In total, 33 biosynthetic gene clusters (BGCs) were predicted based on anti-SMASH. Gene annotation found that S. huasconensis D23 contains several genes and proteins associated with the biosynthesis of factors required to cope with environmental stress of temperature, UV radiation, and osmotic pressure. The results of this study provide information about the genome and BGCs of the strain S. huasconensis D23. The experimental results combined with the genome sequencing data show that antimicrobial activity and stress resistance of S. huasconensis D23 was due to the rich and diverse secondary metabolite production capacity and the induction of stress-responsive genes. The environmental adaptability and antimicrobial activity information presented here will be valuable for subsequent work regarding the isolation of bioactive compounds and provide insight into the ecological adaptation mechanism of microbes to extreme desert environments.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 100864, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 100864, Gansu, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 100864, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 100864, Gansu, China
| | - Ali Bahadur
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 100864, Gansu, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 100864, Gansu, China
| | - Yeteng Xu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 100864, Gansu, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 100864, Gansu, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 100864, Gansu, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 100864, Gansu, China
| | - Mao Tian
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 100864, Gansu, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 100864, Gansu, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 100864, Gansu, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 100864, Gansu, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 100864, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 100864, Gansu, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 100864, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 100864, Gansu, China
| |
Collapse
|
5
|
Georgousaki K, González-Menéndez V, Tormo JR, Tsafantakis N, Mackenzie TA, Martín J, Gumeni S, Trougakos IP, Reyes F, Fokialakis N, Genilloud O. Comoclathrin, a novel potent skin-whitening agent produced by endophytic Comoclathris strains associated with Andalusia desert plants. Sci Rep 2022; 12:1649. [PMID: 35102193 PMCID: PMC8803924 DOI: 10.1038/s41598-022-05448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/07/2022] [Indexed: 11/10/2022] Open
Abstract
As part of our screening program for the discovery of molecules of microbial origin with skin-whitening activity, 142 diverse fungal endophytes from a wide variety of Andalusia arid plants were screened, applying the OSMAC approach. The fungal strains CF-090361 and CF-090766, isolated from xerophytic plants, were selected as the most promising, while phylogenetic analysis revealed that both strains could represent a new species within the genus Comoclathris. The effect of different fermentation conditions on the production of tyrosinase inhibitory activity was examined, in order to identify the optimum cultivation conditions. LCMS based metabolomics was applied to determine significant differences between the strains and fermentation conditions, and to identify potential bioactive secondary metabolites. Bioassay-guided purification of the main active components led to the isolation of three new compounds (1-3), along with the known compounds graphostrin B (4) and brevianamide M (5). Compound 1 (Comoclathrin) demonstrated the strongest anti-tyrosinase activity (IC50 0.16 μΜ), which was 90-times higher than kojic acid (IC50 14.07 μΜ) used as positive control. Additionally, comoclathrin showed no significant cytotoxicity against a panel of cancer cell lines (HepG2, A2058, A549, MCF-7 and MIA PaCa-2) and normal BJ fibroblasts. These properties render comoclathrin an excellent development candidate as whitening agent.
Collapse
Affiliation(s)
- Katerina Georgousaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Fundación MEDINA, Health Sciences Technology Park, Granada, Spain
| | | | - José R Tormo
- Fundación MEDINA, Health Sciences Technology Park, Granada, Spain
| | - Nikolaos Tsafantakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Jesús Martín
- Fundación MEDINA, Health Sciences Technology Park, Granada, Spain
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Fernando Reyes
- Fundación MEDINA, Health Sciences Technology Park, Granada, Spain
| | - Nikolas Fokialakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Olga Genilloud
- Fundación MEDINA, Health Sciences Technology Park, Granada, Spain.
| |
Collapse
|
6
|
Zhao DS, Hu ZW, Dong LL, Wan XJ, Wang S, Li N, Wang Y, Li SM, Zou HX, Yan X. A Type III Polyketide Synthase (SfuPKS1) Isolated from the Edible Seaweed Sargassum fusiforme Exhibits Broad Substrate and Catalysis Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14643-14649. [PMID: 34812623 DOI: 10.1021/acs.jafc.1c05868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A type III polyketide synthase (SfuPKS1) from the edible seaweed Sargassum fusiforme was molecularly cloned and biochemically characterized. The recombinant SfuPKS1 catalyzed the condensation of fatty acyl-CoA with two or three malonyl-CoA using lactone-type intramolecular cyclization to produce tri- and/or tetraketides. Moreover, it can also utilize phenylpropanoyl-CoA to synthesize phloroglucinol derivatives through Claisen-type cyclization, exhibiting broad substrate and catalysis specificity. Furthermore, the catalytic efficiency (kcat/KM) for acetyl-CoA was 11.8-fold higher than that for 4-coumaroyl-CoA. A pathway for the synthesis of naringenin involving SfuPKS1 was also constructed in Escherichia coli by recombinant means, resulting in 4.9 mg of naringenin per liter.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Zhi-Wei Hu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Ling-Li Dong
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Xiao-Jie Wan
- Women's Hospital, School of Medicine, Zhejiang University, Xue-Shi Street 1, 310006 Hangzhou, China
| | - Shengqin Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Yao Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| |
Collapse
|
7
|
Sánchez-Suárez J, Villamil L, Coy-Barrera E, Díaz L. Cliona varians-Derived Actinomycetes as Bioresources of Photoprotection-Related Bioactive End-Products. Mar Drugs 2021; 19:674. [PMID: 34940673 PMCID: PMC8707384 DOI: 10.3390/md19120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Sunscreen and sunblock are crucial skincare products to prevent photoaging and photocarcinogenesis through the addition of chemical filters to absorb or block ultraviolet (UV) radiation. However, several sunscreen and sunblock ingredients, mostly UV filters, have been associated with human and environmental safety concerns. Therefore, the exploration and discovery of promising novel sources of efficient and safer compounds with photoprotection-related activities are currently required. Marine invertebrates, particularly their associated microbiota, are promising providers of specialized metabolites with valuable biotechnological applications. Nevertheless, despite Actinobacteria members being a well-known source of bioactive metabolites, their photoprotective potential has been poorly explored so far. Hence, a set of methanolic extracts obtained from Cliona varians-derived actinomycetes was screened regarding their antioxidant and UV-absorbing capacities (i.e., photoprotection-related activities). The active extract-producing strains were identified and classified within genera Streptomyces, Micrococcus, Gordonia, and Promicromonospora. This is the first report of the isolation of these microorganisms from C. varians (an ecologically important Caribbean coral reef-boring sponge). The in vitro cytotoxicity on dermal fibroblasts of oxybenzone and the selected active extracts revealed that oxybenzone exerted a cytotoxic effect, whereas no cytotoxic effect of test extracts was observed. Accordingly, the most active (SPFi > 5, radical scavenging > 50%) and nontoxic (cell viability > 75%) extracts were obtained from Streptomyces strains. Finally, LC-MS-based characterization suggested a broad chemical space within the test strains and agreed with the reported streptomycetes' chemodiversity. The respective metabolite profiling exposed a strain-specific metabolite occurrence, leading to the recognition of potential hits. These findings suggest that marine Streptomyces produce photoprotectants ought to be further explored in skincare applications.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctorate in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Luisa Villamil
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Luis Díaz
- Doctorate in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| |
Collapse
|
8
|
The important role of P450 monooxygenase for the biosynthesis of new benzophenones from Cytospora rhizophorae. Appl Microbiol Biotechnol 2021; 105:9219-9230. [PMID: 34807300 DOI: 10.1007/s00253-021-11648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
Benzophenones are polyketides with diverse biological activities. Novel cytotoxic benzophenones cytosporaphenones A-C and cytorhizins A-D, which contain a new skeleton, were previously extracted from endophytic fungus Cytospora rhizophorae A761. However, the mechanism for the biosynthesis of these compounds remains unknown. Cytosporaphenone A was assumed to be the precursor for the biosynthesis of cytorhizins A-D. In this study, we sequenced the genome of C. rhizophorae A761 and characterized a benzoate 4-monooxygenase cytochrome P450(BAM). CRISPR/Cas9-mediated gene knockout and overexpression studies in C. rhizophorae confirmed the vital function of BAM in the biosynthesis of cytosporaphenones and cytorhizins. Overexpression of BAM also enhanced the yield of cytosporaphenone A by 1.868 folds. The in vitro function and enzymatic properties of BAM were also described. This study demonstrates the important role of BAM for the biosynthesis of cytosporaphenone A and cytorhizins and is also the first to provide approaches for the CRISPR-Cas9-mediated gene deletion and gene overexpression studies in C. rhizophoarae, thus laying a foundation for the elucidation of the biosynthetic mechanism of cytorhizins and the discovery of new benzophenones mediated by BAM.Key points• The novel bam gene encoding BAM protein in C. rhizophorae was firstly deleted using CRIPSR/Cas9 system.• The in vitro oxidation function of novel BAM protein and enzymatic properties was characterized.• The over expression of bam gene enhanced the yield of cytosporaphone A in C. rhizophorae significantly.
Collapse
|
9
|
Pu H, Liu J, Wang Y, Peng Y, Zheng W, Tang Y, Hui B, Nie C, Huang X, Duan Y, Huang Y. Bioactive α-Pyrone Derivatives from the Endophytic Fungus Diaporthe sp. CB10100 as Inducible Nitric Oxide Synthase Inhibitors. Front Chem 2021; 9:679592. [PMID: 34084766 PMCID: PMC8167431 DOI: 10.3389/fchem.2021.679592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) produces NO from l-arginine and plays critical roles in inflammation and immune activation. Selective and potent iNOS inhibitors may be potentially used in many indications, such as rheumatoid arthritis, pain, and neurodegeration. In the current study, five new compounds, including a dibenzo-α- pyrone derivative ellagic acid B (5) and four α-pyrones diaporpyrone A-D (9-12), together with three known compounds (6-8), were isolated from the endophytic fungus Diaporthe sp. CB10100. The structures of these new natural products were unambiguously elucidated using NMR, HRESIMS or electronic circular dichroism calculations. Ellagic acid B (5) features a tetracyclic 6/6/6/6 ring system with a fused 2H-chromene, which is different from ellagic acid (4) with a fused 2H-chromen-2-one. Both 2-hydroxy-alternariol (6) and alternariol (7) reduced the expression of iNOS at protein levels in a dose-dependent manner, using a lipopolysaccharide (LPS)-induced RAW264.7 cell models. Also, they decreased the protein expression levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein 1. Importantly, 6 and 7 significantly reduced the production of NO as low as 10 μM in LPS-induced RAW264.7 cells. Molecular docking of 6 and 7 to iNOS further suggests that both of them may interact with iNOS. Our study suggests that 6 and 7, as well as the alternariol scaffold may be further developed as potential iNOS inhibitors.
Collapse
Affiliation(s)
- Hong Pu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Jianxin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Yeji Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China
| | - Yuhui Peng
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Wanying Zheng
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Yang Tang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Boping Hui
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Chunmei Nie
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, China
| |
Collapse
|
10
|
Hou L, Liu Z, Yu D, Li H, Ju J, Li W. Targeted isolation of new polycyclic tetramate macrolactams from the deepsea-derived Streptomyces somaliensis SCSIO ZH66. Bioorg Chem 2020; 101:103954. [PMID: 32506015 DOI: 10.1016/j.bioorg.2020.103954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/31/2022]
Abstract
With a combined strategy of bioinformatics analysis, gene manipulation coupled with variation of growth conditions, the targeted activation of polycyclic tetramate macrolactams (PTMs) in the deepsea-derived Streptomyces somaliensis SCSIO ZH66 was conducted, which afforded a new (1) PTM, named somamycin A, along with three enol-type tetramic acid tautomers (2-4, somamycins B-D) of 10-epi-hydroxymaltophilin, 10-epi-maltophilin and 10-epi-HSAF, respectively. The structures of compounds 1-4 were elucidated by extensive spectroscopic analyses together with ECD calculations. Compound 1 exhibited notable growth inhibition against plant pathogenic fungi Fusariumoxysporum MHKW and Alternariabrassicae BCHB with the MIC values of 1.6 and 3.1 μg/mL, respectively, which were more potent than those of the positive control nystatin; and compounds 3 and 4 displayed moderate antifungal activities. Moreover, compounds 1-4 exhibited moderate cytotoxicity against the human cancer cell lines of HCT116 and K562.
Collapse
Affiliation(s)
- Lukuan Hou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dongqi Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jianhua Ju
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
11
|
Tan B, Chen S, Zhang Q, Chen Y, Zhu Y, Khan I, Zhang W, Zhang C. Heterologous Expression Leads to Discovery of Diversified Lobophorin Analogues and a Flexible Glycosyltransferase. Org Lett 2020; 22:1062-1066. [PMID: 31971807 DOI: 10.1021/acs.orglett.9b04597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqiang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Imran Khan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
12
|
Chen L, Du S, Qu W, Guo F, Wang G. Biosynthetic potential of culturable bacteria associated with
Apostichopus japonicus. J Appl Microbiol 2019; 127:1686-1697. [DOI: 10.1111/jam.14453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 11/28/2022]
Affiliation(s)
- L. Chen
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - S. Du
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - W.‐Y. Qu
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - F.‐R. Guo
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - G.‐Y. Wang
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| |
Collapse
|
13
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
14
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
15
|
Parvez A, Giri S, Bisht R, Saxena P. New Insights on Cyclization Specificity of Fungal Type III Polyketide Synthase, PKSIII Nc in Neurospora crassa. Indian J Microbiol 2018; 58:268-277. [PMID: 30013270 PMCID: PMC6023819 DOI: 10.1007/s12088-018-0738-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Type III polyketide synthases (PKSs) biosynthesize varied classes of metabolites with diverse bio-functionalities. Inherent promiscuous substrate specificity, multiple elongations of reaction intermediates and several modes of ring-closure, confer the proteins with the ability to generate unique scaffolds from limited substrate pools. Structural studies have identified crucial amino acid residues that dictate type III PKS functioning, though cyclization specific residues need further investigation. PKSIIINc, a functionally and structurally characterized type III PKS from the fungus, Neurospora crassa, is known to biosynthesize alkyl-resorcinol, alkyl-triketide- and alkyl-tetraketide-α-pyrone products. In this study, we attempted to identify residue positions governing cyclization specificity in PKSIIINc through comparative structural analysis. Structural comparisons with other type III PKSs revealed a motif with conserved hydroxyl/thiol groups that could dictate PKSIIINc catalysis. Site-directed mutagenesis of Cys120 and Ser186 to Ser and Cys, respectively, altered product profiles of mutant proteins. While both C120S and S186C proteins retained wild-type PKSIIINc product activity, S186C favoured lactonization and yielded higher amounts of the α-pyrone products. Notably, C120S gained new cyclization capability and biosynthesized acyl-phloroglucinol in addition to wild-type PKSIIINc products. Generation of alkyl-resorcinol and acyl-phloroglucinol by a single protein is a unique observation in fungal type III PKS family. Mutation of Cys120 to bulky Phe side-chain abrogated formation of tetraketide products and adversely affected overall protein stability as revealed by molecular dynamics simulation studies. Our investigations identify residue positions governing cyclization programming in PKSIIINc protein and provide insights on how subtle variations in protein cores dictate product profiles in type III PKS family.
Collapse
Affiliation(s)
- Amreesh Parvez
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Samir Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
- Present Address: Department of Ecology, School of Biology, University of Osnabrück, Osnabrück, 49076 Germany
| | - Renu Bisht
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Priti Saxena
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| |
Collapse
|
16
|
Generation of methylated violapyrones with improved anti-influenza A virus activity by heterologous expression of a type III PKS gene in a marine Streptomyces strain. Bioorg Med Chem Lett 2018; 28:2865-2868. [PMID: 30033162 DOI: 10.1016/j.bmcl.2018.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
Heterologous expression of the type III polyketide synthase (PKS) gene vioA in marine-derived Streptomyces youssoufiensis OUC6819 led to production of six violapyrones (VLPs), including four novel compounds VLPs Q-T (1-4) and two known compounds VLPs B and I (5 and 6). The structures of 1-4 were elucidated by a combination of spectroscopic analyses, including HR-ESIMS and 1D and 2D NMR data, demonstrating that 1-4 are novel VLPs which are methylated at 4-OH with their corresponding non-methylated counterparts to be VLP A, 5 and 6 and VLP C, respectively. Anti-influenza A [H1N1 (A/Virginia/ATCC1/2009) and H3N2 (A/Aichi/2/1968)] virus activity of compounds 1-6 as well as VLPs A and C were then evaluated using ribavirin as a positive control (IC50 = 66.7 and 99.6 μM). The results revealed that these VLPs showed considerable anti-H1N1 and anti-H3N2 activities with IC50 values of 30.6-132.4 μM and 45.3-150.0 μM, respectively. Notably, all the methylated VLPs displayed better anti-virus activity than their non-methylated counterparts, among which compound 3 (VLP S) exhibited the best activities. Interestingly, methylation at 4-OH has negative effect on the anti-MRSA (methicillin-resistant Staphylococcus aureus) activity instead, with methylated VLPs displaying decreased (2) or abolished (3 and 4) activities in comparison with each of their non-methylated counterparts.
Collapse
|
17
|
Heterologous Expression of a VioA Variant Activates Cryptic Compounds in a Marine-Derived Brevibacterium Strain. Mar Drugs 2018; 16:md16060191. [PMID: 29865236 PMCID: PMC6024985 DOI: 10.3390/md16060191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/27/2022] Open
Abstract
A new 14-membered homodimeric macrodiolide, brevidiolide (3), along with four known aromatic compounds (1, 2, 4 and 5) were obtained by heterologous expression of the recombinant plasmid pWLI823 expressing the G231L variant of VioA in the marine-derived Brevibacterium sp. 7002-073. The structures of 1–5 were elucidated on the basis of LC-MS and 2D NMR spectroscopic analyses. In the evaluation for the antibacterial activities of the compounds against multi-drug resistant (MDR) strains, 5 showed notable growth inhibition against Staphylococcus aureus CCARM 3090 and Klebsiella pneumoniae ATCC 13883, with a minimum inhibitory concentration (MIC) value of 3.12 µg/mL.
Collapse
|