1
|
Ahmed A, Fujimura NA, Tahir S, Akram M, Abbas Z, Riaz M, Raza A, Abbas R, Ahmed N. Soluble and insoluble expression of recombinant human interleukin-2 protein using pET expression vector in Escherichia coli. Prep Biochem Biotechnol 2025; 55:45-57. [PMID: 38824503 DOI: 10.1080/10826068.2024.2361146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Interleukin-2 has emerged as a potent protein-based drug to treat various cancers, AIDS, and autoimmune diseases. Despite its immense requirement, the production procedures are inefficient to meet the demand. Therefore, efficient production procedures must be adopted to improve protein yield and decrease procedural loss. This study analyzed cytoplasmic and periplasmic IL-2 expression for increased protein yield and significant biological activity. The study is focused on cloning IL-2 into a pET-SUMO and pET-28a vector that expresses IL-2 in soluble form and inclusion bodies, respectively. Both constructs were expressed into different E. coli expression strains, but the periplasmic and cytoplasmic expression of IL-2 was highest in overnight culture in Rosetta 2 (DE3). Therefore, E. coli Rosetta 2 (DE3) was selected for large-scale production and purification. Purified IL-2 was characterized by SDS-PAGE and western blotting, while its biological activity was determined using MTT bioassay. The results depict that the periplasmic and cytoplasmic IL-2 achieved adequate purification, yielding 0.86 and 0.51 mg/mL, respectively, with significant cytotoxic activity of periplasmic and cytoplasmic IL-2. Periplasmic IL-2 has shown better yield and significant biological activity in vitro which describes its attainment of native protein structure and function.
Collapse
Affiliation(s)
- Atif Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nao Akusa Fujimura
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saad Tahir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Akram
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zaheer Abbas
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maira Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Raza
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rabia Abbas
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Mihaylova NM, Manoylov IK, Nikolova MH, Prechl J, Tchorbanov AI. DNA and protein-generated chimeric molecules for delivery of influenza viral epitopes in mouse and humanized NSG transfer models. Hum Vaccin Immunother 2024; 20:2292381. [PMID: 38193304 PMCID: PMC10793685 DOI: 10.1080/21645515.2023.2292381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Purified subunit viral antigens are weakly immunogenic and stimulate only the antibody but not the T cell-mediated immune response. An alternative approach to inducing protective immunity with small viral peptides may be the targeting of viral epitopes to immunocompetent cells by DNA and protein-engineered vaccines. This review will focus on DNA and protein-generated chimeric molecules carrying engineered fragments specific for activating cell surface co-receptors for inducing protective antiviral immunity. Adjuvanted protein-based vaccine or DNA constructs encoding simultaneously T- and B-cell peptide epitopes from influenza viral hemagglutinin, and scFvs specific for costimulatory immune cell receptors may induce a significant increase of anti-influenza antibody levels and strong CTL activity against virus-infected cells in a manner that mimics the natural infection. Here we summarize the development of several DNA and protein chimeric constructs carrying influenza virus HA317-41 fragment. The generated engineered molecules were used for immunization in intact murine and experimentally humanized NSG mouse models.
Collapse
Affiliation(s)
- Nikolina M. Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliyan K. Manoylov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria H. Nikolova
- National Reference Laboratory of Immunology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Andrey I. Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
3
|
Adame M, Vázquez H, Juárez-López D, Corzo G, Amezcua M, López D, González Z, Schcolnik-Cabrera A, Morales-Martínez A, Villegas E. Expression and characterization of scFv-6009FV in Pichia pastoris with improved ability to neutralize the neurotoxin Cn2 from Centruroides noxius. Int J Biol Macromol 2024; 275:133461. [PMID: 38945343 DOI: 10.1016/j.ijbiomac.2024.133461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Small single-chain variable fragments (scFv) are promising biomolecules to inhibit and neutralize toxins and to act as antivenoms. In this work, we aimed to produce a functional scFv-6009FV in the yeast Pichia pastoris, which inhibits the pure Cn2 neurotoxin and the whole venom of Centruroides noxius. We were able to achieve yields of up to 31.6 ± 2 mg/L in flasks. Furthermore, the protein showed a structure of 6.1 % α-helix, 49.1 % β-sheet, and 44.8 % of random coil by CD. Mass spectrometry confirmed the amino acid sequence and showed no glycosylation profile for this molecule. Purified scFv-6009FV allowed us to develop anti-scFvs in rabbits, which were then used in affinity columns to purify other scFvs. Determination of its half-maximal inhibitory concentration value (IC50) was 40 % better than the scFvs produced by E. coli as a control. Finally, we found that scFv-6009FV was able to inhibit ex vivo the pure Cn2 toxin and the whole venom from C. noxius in murine rescue experiments. These results demonstrated that under the conditions assayed here, P. pastoris is suited to produce scFv-6009FV that, compared to scFvs produced by E. coli, maintains the characteristics of an antibody and neutralizes the Cn2 toxin more effectively.
Collapse
Affiliation(s)
- Mariel Adame
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Hilda Vázquez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Daniel Juárez-López
- Instituto de Investigaciones Biomédicas, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mónica Amezcua
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Daniela López
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Zuriel González
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Adriana Morales-Martínez
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elba Villegas
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.
| |
Collapse
|
4
|
Abdolvahab MH, Karimi P, Mohajeri N, Abedini M, Zare H. Targeted drug delivery using nanobodies to deliver effective molecules to breast cancer cells: the most attractive application of nanobodies. Cancer Cell Int 2024; 24:67. [PMID: 38341580 DOI: 10.1186/s12935-024-03259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Targeted drug delivery is one of the attractive ways in which cancer treatment can significantly reduce side effects. In the last two decades, the use of antibodies as a tool for accurate detection of cancer has been noted. On the other hand, the binding of drugs and carriers containing drugs to the specific antibodies of cancer cells can specifically target only these cells. However, the use of whole antibodies brings challenges, including their large size, the complexity of conjugation, the high cost of production, and the creation of immunogenic reactions in the body. The use of nanobodies, or VHHs, which are a small part of camel heavy chain antibodies, is very popular due to their small size, high craftsmanship, and low production cost. In this article, in addition to a brief overview of the structure and characteristics of nanobodies, the use of this molecule in the targeted drug delivery of breast cancer has been reviewed.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Pegah Karimi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nasrin Mohajeri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Abedini
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Blake-Hedges J, Groff D, Foo W, Hanson J, Castillo E, Wen M, Cheung D, Masikat MR, Lu J, Park Y, Carlos NA, Usman H, Fong K, Yu A, Zhou S, Kwong J, Tran C, Li X, Yuan D, Hallam T, Yin G. Production of antibodies and antibody fragments containing non-natural amino acids in Escherichia coli. MAbs 2024; 16:2316872. [PMID: 38381460 PMCID: PMC10883104 DOI: 10.1080/19420862.2024.2316872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Therapeutic bioconjugates are emerging as an essential tool to combat human disease. Site-specific conjugation technologies are widely recognized as the optimal approach for producing homogeneous drug products. Non-natural amino acid (nnAA) incorporation allows the introduction of bioconjugation handles at genetically defined locations. Escherichia coli (E. coli) is a facile host for therapeutic nnAA protein synthesis because it can stably replicate plasmids encoding genes for product and nnAA incorporation. Here, we demonstrate that by engineering E. coli to incorporate high levels of nnAAs, it is feasible to produce nnAA-containing antibody fragments and full-length immunoglobulin Gs (IgGs) in the cytoplasm of E. coli. Using high-density fermentation, it was possible to produce both of these types of molecules with site-specifically incorporated nnAAs at titers > 1 g/L. We anticipate this strategy will help simplify the production and manufacture of promising antibody therapeutics.
Collapse
Affiliation(s)
| | - Dan Groff
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Wilson Foo
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Jeffrey Hanson
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Elenor Castillo
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Miao Wen
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Diana Cheung
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Mary Rose Masikat
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Jian Lu
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Young Park
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Nina Abi Carlos
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Hans Usman
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Kevin Fong
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Abigail Yu
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Sihong Zhou
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Joyce Kwong
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Cuong Tran
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Xiaofan Li
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Dawei Yuan
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Trevor Hallam
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Gang Yin
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| |
Collapse
|
6
|
Nguyen MQ, Kim DH, Shim HJ, Ta HKK, Vu TL, Nguyen TKO, Lim JC, Choe H. Novel Anti-Mesothelin Nanobodies and Recombinant Immunotoxins with Pseudomonas Exotoxin Catalytic Domain for Cancer Therapeutics. Mol Cells 2023; 46:764-777. [PMID: 38052492 PMCID: PMC10701305 DOI: 10.14348/molcells.2023.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.
Collapse
Affiliation(s)
- Minh Quan Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | | | | | - Huynh Kim Khanh Ta
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Thi Luong Vu
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Thi Kieu Oanh Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | | | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
7
|
Yadav P, Goel M, Gupta RD. Anti-biofilm potential of human senescence marker protein 30 against Mycobacterium smegmatis. World J Microbiol Biotechnol 2023; 40:45. [PMID: 38114754 DOI: 10.1007/s11274-023-03843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Human senescence marker protein 30 (huSMP30) has been characterized as a multifaceted protein consisting of various enzymatic and cellular functions. It catalyzes the interconversion of L-gulonate and L-gulono-γ-lactone in the ascorbate biosynthesis pathway. Therefore, we hypothesized that it could be a potential anti-biofilm agent against pathogenic bacteria due to its lactonase activity. In order to corroborate this, the huSMP30 was recombinantly expressed, purified, and analyzed for its ability to inhibit Mycobacterium smegmatis biofilm formation, which showed a concentration-dependent inhibition as compared to the untreated control group. Further, in silico analysis was performed to redesign the huSMP30 with enhanced lactonase activity. Molecular docking analysis of the huSMP30 and lactone substrates facilitated the selection of three single amino acid substitutions (E18H, N154Q, and D204V), which were created using a PCR-based site-directed mutagenesis reaction. These mutant proteins and the wild-type huSMP30 were purified, and the effects on the enzymatic activity and biofilm formation were studied. The mutants E18H and D204V showed non-significant effects on specific lactonase activity, catalytic efficiency, and anti-biofilm property; however, the mutant N154Q showed significant improvement in the specific lactonase activity, catalytic efficiency, and inhibition in the biofilm formation. The protein stability analysis revealed that the wild-type huSMP30 and its designed mutants were stable at 37 °C for up to 4 days. In conclusion, the anti-biofilm property of the huSMP30 has been established, and an engineered version, N154Q, inhibits biofilm formation with greater efficiency. Human SMP30 is a versatile protein with multiple cellular and enzymatic functions, however, its anti-biofilm potential has not been explored. Our work presents the method to produce soluble and active huSMP30 in the E. coli expression system and establishes its role as an anti-biofilm agent against Mycobacterium smegmatis owing to its lactonase activity. Our results provide support for the future advancement of huSMP30 as a potential anti-biofilm agent targeting pathogenic Mycobacterium species.
Collapse
Affiliation(s)
- Priyamedha Yadav
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Manik Goel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
8
|
Klausser R, Kopp J, Prada Brichtova E, Gisperg F, Elshazly M, Spadiut O. State-of-the-art and novel approaches to mild solubilization of inclusion bodies. Front Bioeng Biotechnol 2023; 11:1249196. [PMID: 37545893 PMCID: PMC10399460 DOI: 10.3389/fbioe.2023.1249196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Throughout the twenty-first century, the view on inclusion bodies (IBs) has shifted from undesired by-products towards a targeted production strategy for recombinant proteins. Inclusion bodies can easily be separated from the crude extract after cell lysis and contain the product in high purity. However, additional solubilization and refolding steps are required in the processing of IBs to recover the native protein. These unit operations remain a highly empirical field of research in which processes are developed on a case-by-case basis using elaborate screening strategies. It has been shown that a reduction in denaturant concentration during protein solubilization can increase the subsequent refolding yield due to the preservation of correctly folded protein structures. Therefore, many novel solubilization techniques have been developed in the pursuit of mild solubilization conditions that avoid total protein denaturation. In this respect, ionic liquids have been investigated as promising agents, being able to solubilize amyloid-like aggregates and stabilize correctly folded protein structures at the same time. This review briefly summarizes the state-of-the-art of mild solubilization of IBs and highlights some challenges that prevent these novel techniques from being yet adopted in industry. We suggest mechanistic models based on the thermodynamics of protein unfolding with the aid of molecular dynamics simulations as a possible approach to solve these challenges in the future.
Collapse
Affiliation(s)
- Robert Klausser
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Julian Kopp
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Eva Prada Brichtova
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Florian Gisperg
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Mohamed Elshazly
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
9
|
Kunamneni A, Montera MA, Durvasula R, Alles SRA, Goyal S, Westlund KN. Rapid Generation and Molecular Docking Analysis of Single-Chain Fragment Variable (scFv) Antibody Selected by Ribosome Display Targeting Cholecystokinin B Receptor (CCK-BR) for Reduction of Chronic Neuropathic Pain. Int J Mol Sci 2023; 24:11035. [PMID: 37446213 DOI: 10.3390/ijms241311035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
A robust cell-free platform technology, ribosome display in combination with cloning, expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective CCK-B peptide-specific scFvs were generated through ribosomal display technology. Soluble expression and ELISA analysis showed that one antibody, scFv77-2 had the highest binding and could be purified from bacterial cells in large quantities. Octet measurements further revealed that the CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10-8 M. Molecular modeling and docking analyses suggested that the scFv77-2 antibody shaped a proper cavity to embed the whole CCK-B peptide molecule and that a steady-state complex was formed relying on intermolecular forces, including hydrogen bonding, electrostatic force, and hydrophobic interactions. Thus, the scFv antibody can be applied for mechanistic intermolecular interactions and functional in vivo studies of CCK-BR. The high affinity scFv77-2 antibody showed good efficacy with binding to CCK-BR tested in a chronic pain model. In vivo studies validated the efficacy of the CCK-B receptor (CCK-BR) scFv77-2 antibody as a potential therapy for chronic trigeminal nerve injury-induced pain. Mice were given a single dose of the CCK-B receptor (CCK-BR) scFv antibody 3 weeks after induction of a chronic trigeminal neuropathic pain model, during the transition from acute to chronic pain. The long-term effectiveness for the reduction of mechanical hypersensitivity was evident, persisting for months. The anxiety- and depression-related behaviors typically accompanying persisting hypersensitivity subsequently never developed in the mice given CCK-BR scFv. The effectiveness of the antibody is the basis for further development of the lead CCK-BR scFv as a promising non-opioid therapeutic for chronic pain and the long-term reduction of chronic pain- and anxiety-related behaviors.
Collapse
Affiliation(s)
- Adinarayana Kunamneni
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL 32224-1865, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153-3328, USA
| | - Marena A Montera
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Ravi Durvasula
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL 32224-1865, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153-3328, USA
| | - Sascha R A Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Sachin Goyal
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Karin N Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA Health Care System, Albuquerque, NM 87108-5153, USA
| |
Collapse
|
10
|
Zena Y, Periyasamy S, Tesfaye M, Tumsa Z, Jayakumar M, Mohamed BA, Asaithambi P, Aminabhavi TM. Essential characteristics improvement of metallic nanoparticles loaded carbohydrate polymeric films - A review. Int J Biol Macromol 2023; 242:124803. [PMID: 37182627 DOI: 10.1016/j.ijbiomac.2023.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Melaku Tesfaye
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Zelalem Tumsa
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box No. 138, Haramaya, Dire Dawa, Ethiopia
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box - 378, Jimma, Ethiopia
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| |
Collapse
|
11
|
Farokhi-Fard A, Bayat E, Beig Parikhani A, Komijani S, Aghamirza Moghim Aliabadi H, Sardari S, Gharib B, Barkhordari F, Azadmanesh K, Karimipoor M, Bakhshandeh H, Davami F. Bacterial production and biophysical characterization of a hard-to-fold scFv against myeloid leukemia cell surface marker, IL-1RAP. Mol Biol Rep 2023; 50:1191-1202. [PMID: 36435922 DOI: 10.1007/s11033-022-07972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Interleukin-1 receptor accessory protein (IL-1RAP) is one of the most promising therapeutic targets proposed for myeloid leukemia. Antibodies (Abs) specific to IL-1RAP could be valuable tools for targeted therapy of this lethal malignancy. This study is about the preparation of a difficult-to-produce single-chain variable fragment (scFv) construct against the membrane-bound isoform of human IL-1RAP using Escherichia coli (E. coli). METHODS Different approaches were examined for refolding and characterization of the scFv. Binding activities of antibody fragments were comparatively evaluated using cell-based enzyme-linked immunosorbent assay (ELISA). Homogeneity and secondary structure of selected scFv preparation were analyzed using analytical size exclusion chromatography (SEC) and circular dichroism (CD) spectroscopy, respectively. The activity of the selected preparation was evaluated after long-term storage, repeated freeze-thaw cycles, or following incubation with normal and leukemic serum. RESULTS Strategies for soluble expression of the scFv failed. Even with the help of Trx, ≥ 98% of proteins were expressed as inclusion bodies (IBs). Among three different refolding methods, the highest recovery rate was obtained from the dilution method (11.2%). Trx-tag substantially enhanced the expression level (18%, considering the molecular weight (MW) differences), recovery rate (˃1.6-fold), and binding activity (˃2.6-fold increase in absorbance450nm). The produced scFv exhibited expected secondary structure as well as acceptable bio-functionality, homogeneity, and stability. CONCLUSION We were able to produce 21 mg/L culture functional and stable anti-IL-1RAP scFv via recovering IBs by pulse dilution procedure. The produced scFv as a useful targeting agent could be used in scheming new therapeutics or diagnostics for myeloid malignancies.
Collapse
Affiliation(s)
- Aref Farokhi-Fard
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran
| | - Arezoo Beig Parikhani
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran
| | - Samira Komijani
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran, Tehran, Iran
- Advance Chemical Studies Laboratory, Faculty of Chemistry, K.N. Toosi University, Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Farzaneh Barkhordari
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran
| | | | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nanobiotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Medical Biotechnology Department, Biotechnology research center, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, Tehran, Iran.
| |
Collapse
|
12
|
Kopp J, Spadiut O. Inclusion Bodies: Status Quo and Perspectives. Methods Mol Biol 2023; 2617:1-13. [PMID: 36656513 DOI: 10.1007/978-1-0716-2930-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Multiple E. coli cultivations, producing recombinant proteins, lead to the formation of inclusion bodies (IBs). IBs historically were considered as nondesired by-products, due to their time- and cost-intensive purification. Nowadays, many obstacles in IB processing can be overcome. As a consequence, several industrial processes with E. coli favor IB formation over soluble production options due to the high space time yields obtained. Within this chapter, we discuss the state-of-the art biopharmaceutical IB process, review its challenges, highlight the recent developments and perspectives, and also propose alternative solutions, compared to the state-of-the art processing.
Collapse
Affiliation(s)
- Julian Kopp
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| |
Collapse
|
13
|
Roufarshbaf M, Akbari V. Development of Solubilization and Refolding Buffers. Methods Mol Biol 2023; 2617:155-164. [PMID: 36656522 DOI: 10.1007/978-1-0716-2930-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Overexpression of heterologous protein in prokaryotic host cells, such as Escherichia coli, usually leads to formation of inactive and insoluble aggregates known as inclusion bodies (IBs). Recovery of refolded and functionally bioactive proteins from IBs is a challenging task, and a unique condition (e.g., solubilizing and refolding buffers) for each individual protein should be experimentally obtained. Here, we present a simple protocol for development of solubilizing and refolding buffers for successful recovery of pure bioactive proteins from IBs.
Collapse
Affiliation(s)
- Mohammad Roufarshbaf
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Zaib S, Rana N, Areeba, Hussain N, Alrbyawi H, Dera AA, Khan I, Khalid M, Khan A, Al-Harrasi A. Designing multi-epitope monkeypox virus-specific vaccine using immunoinformatics approach. J Infect Public Health 2023; 16:107-116. [PMID: 36508944 PMCID: PMC9724569 DOI: 10.1016/j.jiph.2022.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Monkeypox virus is an enveloped DNA virus that belongs to Poxviridae family. The virus is transmitted from rodents to primates via infected body fluids, skin lesions, and respiratory droplets. After being infected with virus, the patients experience fever, myalgia, maculopapular rash, and fluid-filled blisters. It is necessary to differentiate monkeypox virus from other poxviruses during diagnosis which can be appropriately envisioned via DNA analysis from swab samples. During small outbreaks, the virus is treated with therapies administered in other orthopoxviruses infections and does not have its own specific therapy and vaccine. Consequently, in this article, two potential peptides have been designed. METHODS For the purpose of designing a vaccine, protein sequences were retrieved followed by the prediction of B- and T-cell epitopes. Afterward, vaccine structures were predicted which were docked with toll-like receptors. The docked complexes were analyzed with iMODS. Moreover, vaccine constructs nucleotide sequences were optimized and expressed in silico. RESULTS COP-B7R vaccine construct (V1) has antigenicity score of 0.5400, instability index of 29.33, z-score of - 2.11-, and 42.11% GC content whereas COP-A44L vaccine construct (V2) has an antigenicity score of 0.7784, instability index of 23.33, z-score of - 0.61, and 48.63% GC content. It was also observed that COP-A44L can be expressed as a soluble protein in Escherichia coli as compared to COP-B7R which requires a different expression system. CONCLUSION The obtained results revealed that both vaccine constructs show satisfactory outcomes after in silico investigation and have significant potential to prevent the monkeypox virus. However, COP-A44L gave better results.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, UAE; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, UAE
| | - Hamad Alrbyawi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Ayed A Dera
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| |
Collapse
|
15
|
Estabragh AM, Sadeghi HMM, Akbari V. Co-Expression of Chaperones for Improvement of Soluble Expression and Purification of An Anti-HER2 scFv in Escherichia Coli. Adv Biomed Res 2022; 11:117. [PMID: 36798911 PMCID: PMC9926028 DOI: 10.4103/abr.abr_351_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/18/2022] [Accepted: 03/12/2022] [Indexed: 12/28/2022] Open
Abstract
Background Single-chain fragment variable (scFv) is one of the most commonly used antibody fragments. They offer some advantages over full-length antibodies, including better penetration to target tissues. However, their functional production has been a challenge for manufacturers due to the potential misfolding and formation of inclusion bodies. Here we evaluated the soluble expression and purification of molecular chaperone co-expression. Materials and Methods E. coli BL21(DE3) cells were co-transformed with the mixture of plasmids pKJE7 and pET22b-scFv by the electroporation method. First, L-arabinose was added to induce the expression of molecular chaperones, and then IPTG was used as an inducer to start the expression of anti-HER2 scFv. The effect of cultivation temperature and IPTG concentration on soluble expression of the protein with or without chaperones was evaluated. The soluble expressed protein was subjected to native purification using the Ni-NTA affinity column. Results SDS-PAGE analysis confirmed the successful co-expression of anti-HER2-scFv and DnaK/DnaJ/GrpE chaperones. Co-expression with chaperones and low-temperature cultivation synergistically improved the soluble expression of anti-HER2 scFv. Co-expression with chaperone also exhibited an approximately four-fold increase in the final yield of purified soluble protein. Conclusion The combination of co-expression with chaperones and low temperature presented in this work may be useful for the improvement of commercial production of other scFvs in E. coli as functionally bioactive and soluble form.
Collapse
Affiliation(s)
- Amir Mirzapour Estabragh
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mir Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Vajihe Akbari, Department of Pharmaceutical Biotechnology, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
16
|
López-Cano A, Sicilia P, Gaja C, Arís A, Garcia-Fruitós E. Quality comparison of recombinant soluble proteins and proteins solubilized from bacterial inclusion bodies. N Biotechnol 2022; 72:58-63. [PMID: 36150649 DOI: 10.1016/j.nbt.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Recombinant protein production in bacteria is often accompanied by the formation of aggregates, known as inclusion bodies (IBs). Although several strategies have been developed to minimize protein aggregation, many heterologous proteins are produced in aggregated form. For these proteins, purification necessarily requires processes of solubilization and refolding, often involving denaturing agents. However, the presence of biologically active recombinant proteins forming IBs has driven a redefinition of the protocols used to obtain soluble protein avoiding the protein denaturation step. Among the different strategies described, the detergent n-lauroylsarcosine (NLS) has proved to be effective. However, the impact of the NLS on final protein quality has not been evaluated so far. Here, the activity of three antimicrobial proteins (all as GFP fusions) obtained from the soluble fraction was compared with those solubilized from IBs. Results showed that NLS solubilized proteins from IBs efficiently, but that protein activity was impaired. Thus, a solubilization protocol without detergents was evaluated, demonstrating that this strategy efficiently solubilized proteins embedded in IBs while retaining their biological activity. These results showed that the protocol used for IB solubilization has an impact on final protein quality and that IBs can be solubilized through a very simple step, obtaining fully active proteins.
Collapse
Affiliation(s)
- Adrià López-Cano
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - Paula Sicilia
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - Clara Gaja
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain.
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain.
| |
Collapse
|
17
|
Kachhawaha K, Singh S, Joshi K, Nain P, Singh SK. Bioprocessing of recombinant proteins from Escherichia coli inclusion bodies: insights from structure-function relationship for novel applications. Prep Biochem Biotechnol 2022; 53:728-752. [PMID: 36534636 DOI: 10.1080/10826068.2022.2155835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of inclusion bodies (IBs) during expression of recombinant therapeutic proteins using E. coli is a significant hurdle in producing high-quality, safe, and efficacious medicines. The improved understanding of the structure-function relationship of the IBs has resulted in the development of novel biotechnologies that have streamlined the isolation, solubilization, refolding, and purification of the active functional proteins from the bacterial IBs. Together, this overall effort promises to radically improve the scope of experimental biology of therapeutic protein production and expand new prospects in IBs usage. Notably, the IBs are increasingly used for applications in more pristine areas such as drug delivery and material sciences. In this review, we intend to provide a comprehensive picture of the bio-processing of bacterial IBs, including assessing critical gaps that still need to be addressed and potential solutions to overcome them. We expect this review to be a useful resource for those working in the area of protein refolding and therapeutic protein production.
Collapse
Affiliation(s)
- Kajal Kachhawaha
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Santanu Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Khyati Joshi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Priyanka Nain
- Department of Chemical and Bimolecular Engineering, University of Delaware, Newark, DE, USA
| | - Sumit K Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
18
|
He S, Xu R, Yi H, Chen Z, Chen C, Li Q, Han Q, Xia X, Song Y, Xu J, Zhang J. Development of alkaline phosphatase-scFv and its use for one-step enzyme-linked immunosorbent assay for His-tagged protein detection. Open Life Sci 2022; 17:1505-1514. [DOI: 10.1515/biol-2022-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
A histidine (His)-tag is composed of six His residues and typically exerts little influence on the structure and solubility of expressed recombinant fusion proteins. Purification methods for recombinant proteins containing His-tags are relatively well-established, thus His-tags are widely used in protein recombination technology. We established a one-step enzyme-linked immunosorbent assay (ELISA) for His-tagged recombinant proteins. We analyzed variable heavy and light chains of the anti-His-tag monoclonal antibody 4C9 and used BLAST analyses to determine variable zones in light (VL) and heavy chains (VH). VH, VL, and alkaline phosphatase (ALP) regions were connected via a linker sequence and ligated into the pGEX-4T-1 expression vector. Different recombinant proteins with His tags were used to evaluate and detect ALP-scFv activity. Antigen and anti-His-scFv-ALP concentrations for direct ELISA were optimized using the checkerboard method. ZIKV-NS1, CHIKV-E2, SCRV-N, and other His-tag fusion proteins demonstrated specific reactions with anti-His-scFv-ALP, which were accurate and reproducible when the antigen concentration was 50 µg mL−1 and the antibody concentration was 6.25 µg mL−1. For competitive ELISA, we observed a good linear relationship when coating concentrations of recombinant human anti-Müllerian hormone (hAMH) were between 0.78 and 12.5 µg mL−1. Our direct ELISA method is simple, rapid, and accurate. The scFv antibody can be purified using a prokaryotic expression system, which provides uniform product quality and reduces variations between batches.
Collapse
Affiliation(s)
- Shuzhen He
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Ruixian Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Huashan Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang , Chongqing 402460 , China
| | - Zhixin Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Congjie Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Qiang Li
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Xueshan Xia
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Junwei Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| |
Collapse
|
19
|
Di Mambro T, Vanzolini T, Bianchi M, Crinelli R, Canonico B, Tasini F, Menotta M, Magnani M. Development and in vitro characterization of a humanized scFv against fungal infections. PLoS One 2022; 17:e0276786. [PMID: 36315567 PMCID: PMC9621433 DOI: 10.1371/journal.pone.0276786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
The resistance and the birth of new intrinsic and multidrug-resistant pathogenic species like C. auris is creating great concern in the antifungal world. Given the limited drug arsenal and the lack of effectiveness of the available compounds, there is an urgent need for innovative approaches. The murine mAb 2G8 was humanized and engineered in silico to develop a single-chain fragment variable (hscFv) antibody against β-1,3-glucans which was then expressed in E. coli. Among the recombinant proteins developed, a soluble candidate with high stability and affinity was obtained. This selected protein is VL-linker-VH oriented, and it is characterized by the presence of two ubiquitin monomers at the N-terminus and a His tag at the C-terminus. This construct, Ub2-hscFv-His, guaranteed stability, solubility, efficient purification and satisfactory recovery of the recombinant product. HscFv can bind β-1,3-glucans both as coated antigens and on C. auris and C. albicans cells similarly to its murine parental and showed long stability and retention of binding ability when stored at 4°, -20° and -80° C. Furthermore, it was efficient in enhancing the antifungal activity of drugs caspofungin and amphotericin B against C. auris. The use of biological drugs as antifungals is limited; here we present a promising hscFv which has the potential to be useful in combination with currently available antifungal drugs.
Collapse
Affiliation(s)
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- * E-mail:
| | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Filippo Tasini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro Magnani
- Diatheva s.r.l., Cartoceto, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
20
|
Marín Viegas VS, Ocampo CG, Restucci FE, Vignolles F, Mazzini FN, Candreva ÁM, Petruccelli S. Synthesis of single-chain antibody fragment fused to the elastin-like polypeptide in Nicotiana benthamiana and its application in affinity precipitation of difficult to produce proteins. Biotechnol Bioeng 2022; 119:2505-2517. [PMID: 35689353 DOI: 10.1002/bit.28158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/06/2022]
Abstract
Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this study, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)-elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in Nicotiana benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by coaggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this study showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low-yield proteins.
Collapse
Affiliation(s)
- Vanesa S Marín Viegas
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Carolina G Ocampo
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Fernando E Restucci
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Florencia Vignolles
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Flavia N Mazzini
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ángela M Candreva
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Silvana Petruccelli
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
21
|
Wang Y, Yuan W, Guo S, Li Q, Chen X, Li C, Liu Q, Sun L, Chen Z, Yuan Z, Luo C, Chen S, Tong S, Nassal M, Wen YM, Wang YX. A 33-residue peptide tag increases solubility and stability of Escherichia coli produced single-chain antibody fragments. Nat Commun 2022; 13:4614. [PMID: 35941164 PMCID: PMC9359998 DOI: 10.1038/s41467-022-32423-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Single-chain variable fragments (scFvs), composed of variable domains of heavy and light chains of an antibody joined by a linker, share antigen binding capacity with their parental antibody. Due to intrinsically low solubility and stability, only two Escherichia coli-produced scFvs have been approved for therapy. Here we report that a 33-residue peptide, termed P17 tag, increases the solubility of multiple scFvs produced in Escherichia coli SHuffle strain by up to 11.6 fold. Hydrophilic sequence, especially charged residues, but not the predicted α-helical secondary structure of P17 tag, contribute to the solubility enhancement. Notably, the P17 tag elevates the thermostability of scFv as efficiently as intra-domain disulfide bonds. Moreover, a P17-tagged scFv targeting hepatitis B virus surface proteins shows over two-fold higher antigen-binding affinity and virus-neutralizing activity than the untagged version. These data strongly suggest a type I intramolecular chaperone-like activity of the P17 tag. Hence, the P17 tag could benefit the research, production, and application of scFv. Low solubility and stability of Escherichia coli produced single chain variable fragments (scFvs) restrict their applications. Here the authors report a 33-residue peptide tag which simultaneously increases the solubility and thermostability of multiple scFvs produced in Escherichia coli SHuffle strain.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjie Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siqi Guo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, Nanchang University, Nanchang, China
| | - Qiqi Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomei Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianying Liu
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Lei Sun
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Zhenguo Chen
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Shijie Chen
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Shuping Tong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Yu-Mei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong-Xiang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Parween F, Yadav P, Singh K, Gupta RD. Production of highly soluble native human paraoxonase 2 with potential anti-biofilm property. Prep Biochem Biotechnol 2022; 53:465-474. [PMID: 35856452 DOI: 10.1080/10826068.2022.2101000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Paraoxonase 2 (PON2) is considered as a potential anti-biofilm agent due to the highest lactonase activity among the PON family members implicating quorum quenching in gram-negative bacteria. However, PON2 is expressed mostly in insoluble fractions in the bacterial expression host which limits its application as an anti-biofilm agent. Therefore, obtaining the native human PON2 (HuPON2) protein in soluble form, better protein yield, stability, and enzymatic activities is essential. In this study, procedures for obtaining a high yield of the native form of HuPON2 in soluble and active forms were optimized. Guanidinium hydrochloride solubilized the HuPON2 protein, however, it is lethal for several bacteria, and thus a major problem for studying the various downstream application of the protein. Therefore, another refolding process for native HuPON2 was optimized. Owing to the promiscuous nature of HuPON2, we hypothesized that it could inhibit the biofilm formation in Mycobacterium smegmatis also. Interestingly, we observed a significant inhibition of the biofilm formation by HuPON2_Rf. However, the primary target of HuPON2 and the probable mechanism behind the quorum quenching in M. smegmatis need to be further explored, which would help widen the scope of HuPON2 as a potential anti-biofilm agent beyond the gram-negative bacteria.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Priyamedha Yadav
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Kalyani Singh
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
23
|
Kowalik A, Majerek M, Mrowiec K, Solich J, Faron-Górecka A, Woźnicka O, Dziedzicka-Wasylewska M, Łukasiewicz S. Dopamine D 2 and Serotonin 5-HT 1A Dimeric Receptor-Binding Monomeric Antibody scFv as a Potential Ligand for Carrying Drugs Targeting Selected Areas of the Brain. Biomolecules 2022; 12:749. [PMID: 35740874 PMCID: PMC9221303 DOI: 10.3390/biom12060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted therapy uses multiple ways of ensuring that the drug will be delivered to the desired site. One of these ways is an encapsulation of the drug and functionalization of the surface. Among the many molecules that can perform such a task, the present work focused on the antibodies of single-chain variable fragments (scFvs format). We studied scFv, which specifically recognizes the dopamine D2 and serotonin 5-HT1A receptor heteromers. The scFvD2-5-HT1A protein was analyzed biochemically and biologically, and the obtained results indicated that the antibody is properly folded and non-toxic and can be described as low-immunogenic. It is not only able to bind to the D2-5-HT1A receptor heteromer, but it also influences the cAMP signaling pathway and-when surfaced on nanogold particles-it can cross the blood-brain barrier in in vitro models. When administered to mice, it decreased locomotor activity, matching the effect induced by clozapine. Thus, we are strongly convinced that scFvD2-5-HT1A, which was a subject of the present investigation, is a promising targeting ligand with the potential for the functionalization of nanocarriers targeting selected areas of the brain.
Collapse
Affiliation(s)
- Agata Kowalik
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Mateusz Majerek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Krzysztof Mrowiec
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland;
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Sylwia Łukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| |
Collapse
|
24
|
Mirzaeinia S, Zeinali S, Budisa N, Karbalaei-Heidari HR. Targeted Codelivery of Prodigiosin and Simvastatin Using Smart BioMOF: Functionalization by Recombinant Anti-VEGFR1 scFv. Front Bioeng Biotechnol 2022; 10:866275. [PMID: 35402395 PMCID: PMC8987009 DOI: 10.3389/fbioe.2022.866275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Biological metal-organic frameworks (BioMOFs) are hybrid compounds in which metal nodes are linked to biocompatible organic ligands and have potential for medical application. Herein, we developed a novel BioMOF modified with an anti-VEGFR1 scFv antibody (D16F7 scFv). Our BioMOF is co-loaded with a combination of an anticancer compound and a lipid-lowering drug to simultaneously suppress the proliferation, growth rate and metastases of cancer cells in cell culture model system. In particular, Prodigiosin (PG) and Simvastatin (SIM) were co-loaded into the newly synthesized Ca-Gly BioMOF nanoparticles coated with maltose and functionalized with a recombinant maltose binding protein-scFv fragment of anti-VEGFR1 (Ca-Gly-Maltose-D16F7). The nanoformulation, termed PG + SIM-NP-D16F7, has been shown to have strong active targeting behavior towards VEGFR1-overexpresing cancer cells. Moreover, the co-delivery of PG and SIM not only effectively inhibits the proliferation of cancer cells, but also prevents their invasion and metastasis. The PG + SIM-NP-D16F7 nanocarrier exhibited stronger cytotoxic and anti-metastatic effects compared to mono-treatment of free drugs and drug-loaded nanoparticles. Smart co-delivery of PG and SIM on BioMOF nanoparticles had synergistic effects on growth inhibition and prevented cancer cell metastasis. The present nanoplatform can be introduced as a promising tool for chemotherapy compared with mono-treatment and/or non-targeted formulations.
Collapse
Affiliation(s)
- Somayyeh Mirzaeinia
- Molecular Biotechnology Lab, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
| | - Sedighe Zeinali
- Department of Nanochemical Engineering, School of Advanced Technologies, Nanotechnology Research Institute, Shiraz University, Shiraz, Iran
| | - Nediljko Budisa
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Hamid Reza Karbalaei-Heidari
- Molecular Biotechnology Lab, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Sarker A, Rathore AS, Khalid MF, Gupta RD. Structure-guided affinity maturation of a single-chain variable fragment antibody against the Fu-bc epitope of the dengue virus envelope protein. J Biol Chem 2022; 298:101772. [PMID: 35218775 PMCID: PMC8956951 DOI: 10.1016/j.jbc.2022.101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/05/2022] Open
Abstract
Dengue is one of the most dominant arthropod-borne viral diseases, infecting at least 390 million people every year throughout the world. Despite this, there is no effective treatment against dengue, and the only available vaccine has already been withdrawn owing to the significant adverse effects. Therefore, passive immunotherapy using monoclonal antibodies is now being sought as a therapeutic option. To date, many dengue monoclonal antibodies have been identified, most of which are serotype-specific, and only a few of which are cross-reactive. Furthermore, antibodies that cross-react within serotypes are weakly neutralizing and frequently induce antibody-dependent enhancement, which promotes viral entry and replication. Therefore, broadly neutralizing antibodies with no risk of antibody-dependent enhancement are required for the treatment of dengue. Here, we developed a single-chain variable fragment (scFv) antibody from an anti-fusion loop E53 antibody (PDB: 2IGF). We introduced previously predicted favorable complementarity-determining region (CDR) mutations into the gene encoding the scFv antibody for affinity maturation, and the resultant variants were tested in vitro against the highly conserved fusion and bc epitope of the dengue virus envelope protein. We show some of these scFv variants with two to three substitution mutations in three different CDRs possess affinity constants (KD) ranging from 20 to 200 nM. The scFv-mutant15, containing D31L, Y105W, and S227W substitutions, showed the lowest affinity constant, (KD = 24 ± 7 nM), approximately 100-fold lower than its parental construct. We propose that the scFv-derivative antibody may be a good candidate for the development of an effective and safe immunotherapy.
Collapse
Affiliation(s)
- Animesh Sarker
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Abhishek Singh Rathore
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Md Fahim Khalid
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India.
| |
Collapse
|
26
|
Gamain B, Brousse C, Rainey NE, Diallo BK, Paquereau CE, Desrames A, Ceputyte J, Semblat JP, Bertrand O, Gangnard S, Teillaud JL, Chêne A. BMFPs, a versatile therapeutic tool for redirecting a preexisting Epstein-Barr virus antibody response toward defined target cells. SCIENCE ADVANCES 2022; 8:eabl4363. [PMID: 35148183 PMCID: PMC8836820 DOI: 10.1126/sciadv.abl4363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Industrial production of therapeutic monoclonal antibodies is mostly performed in eukaryotic-based systems, allowing posttranslational modifications mandatory for their functional activity. The resulting elevated product cost limits therapy access to some patients. To address this limitation, we conceptualized a novel immunotherapeutic approach to redirect a preexisting polyclonal antibody response against Epstein-Barr virus (EBV) toward defined target cells. We engineered and expressed in bacteria bimodular fusion proteins (BMFPs) comprising an Fc-deficient binding moiety targeting an antigen expressed at the surface of a target cell, fused to the EBV-P18 antigen, which recruits circulating endogenous anti-P18 IgG in EBV+ individuals. Opsonization of BMFP-coated targets efficiently triggered antibody-mediated clearing effector mechanisms. When assessed in a P18-primed mouse tumor model, therapy performed with an anti-huCD20 BMFP significantly led to increased survival and total cancer remission in some animals. These results indicate that BMFPs could represent potent and useful therapeutic molecules to treat a number of diseases.
Collapse
Affiliation(s)
- Benoît Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, F-75015 Paris, France
| | - Carine Brousse
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, F-75015 Paris, France
| | - Nathan E. Rainey
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, F-75015 Paris, France
| | - Béré K. Diallo
- Laboratory “Immune Microenvironment and Immunotherapy”, INSERM U.1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Faculté de Médecine, Sorbonne Université, 91 boulevard de l’Hôpital, 75013 Paris, France
| | - Clara-Eva Paquereau
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, F-75015 Paris, France
| | - Alexandra Desrames
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, F-75015 Paris, France
| | - Jolita Ceputyte
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, F-75015 Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, F-75015 Paris, France
| | - Olivier Bertrand
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, F-75015 Paris, France
| | - Stéphane Gangnard
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, F-75015 Paris, France
| | - Jean-Luc Teillaud
- Laboratory “Immune Microenvironment and Immunotherapy”, INSERM U.1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Faculté de Médecine, Sorbonne Université, 91 boulevard de l’Hôpital, 75013 Paris, France
| | - Arnaud Chêne
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, INSERM, F-75015 Paris, France
| |
Collapse
|
27
|
Ebihara T, Masuda A, Takahashi D, Hino M, Mon H, Kakino K, Fujii T, Fujita R, Ueda T, Lee JM, Kusakabe T. Production of scFv, Fab, and IgG of CR3022 Antibodies Against SARS-CoV-2 Using Silkworm-Baculovirus Expression System. Mol Biotechnol 2021; 63:1223-1234. [PMID: 34304364 PMCID: PMC8310559 DOI: 10.1007/s12033-021-00373-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/16/2021] [Indexed: 01/15/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is currently spreading around the world and causing many casualties. Antibodies against such emerging infectious diseases are one of the important tools for basic viral research and the development of diagnostic and therapeutic agents. CR3022 is a monoclonal antibody against the receptor binding domain (RBD) of the spike protein (S protein) of SARS-CoV found in SARS patients, but it was also shown to have strong affinity for that of SARS-CoV-2. In this study, we produced large amounts of three formats of CR3022 antibodies (scFv, Fab and IgG) with high purity using a silkworm-baculovirus expression vector system. Furthermore, SPR measurements showed that the affinity of those silkworm-produced IgG antibodies to S protein was almost the same as that produced in mammalian expression system. These results indicate that the silkworm-baculovirus expression system is an excellent expression system for emerging infectious diseases that require urgent demand for diagnostic agents and therapeutic agents.
Collapse
Affiliation(s)
- Takeru Ebihara
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akitsu Masuda
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Daisuke Takahashi
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masato Hino
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tadashi Ueda
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
28
|
Parween F, Hossain MS, Singh KP, Gupta RD. Association between human paraoxonase 2 protein and efficacy of acetylcholinesterase inhibiting drugs used against Alzheimer's disease. PLoS One 2021; 16:e0258879. [PMID: 34714861 PMCID: PMC8555796 DOI: 10.1371/journal.pone.0258879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
Serum Paraoxonase 2 (PON2) level is a potential biomarker owing to its association with a number of pathophysiological conditions such as atherosclerosis and cardiovascular disease. Since cholinergic deficiency is closely linked with Alzheimer's disease (AD) progression, acetylcholinesterase inhibitors (AChEIs) are the treatment of choice for patients with AD. However, there is a heterogenous response to these drugs and mostly the subjects do not respond to the treatment. Gene polymorphism, the simultaneous occurrence of two or more discontinuous alleles in a population, could be one of the important factors for this. Hence, we hypothesized that PON2 and its polymorphic forms may be hydrolyzing the AChEIs differently, and thus, different patients respond differently. To investigate this, two AChEIs, donepezil hydrochloride (DHC) and pyridostigmine bromide (PB), were selected. Human PON2 wildtype gene and four mutants, two catalytic sites, and two polymorphic sites were cloned, recombinantly expressed, and purified for in vitro analysis. Enzyme activity and AChE activity were measured to quantitate the amount of DHC and PB hydrolyzed by the wildtype and the mutant proteins. Herein, PON2 esterase activity and AChE inhibitor efficiency were found to be inversely related. A significant difference in enzyme activity of the catalytic site mutants was observed as compared to the wildtype, and subsequent AChE activity showed that esterase activity of PON2 is responsible for the hydrolysis of DHC and PB. Interestingly, PON2 polymorphic site mutants showed increased esterase activity; therefore, this could be the reason for the ineffectiveness of the drugs. Thus, our data suggested that the esterase activity of PON2 was mainly responsible for the hydrolysis of AChEI, DHC, and PB, and that might be responsible for the variation in individual response to AChEI therapy.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Md. Summon Hossain
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Kshetra Pal Singh
- Defence Research and Development Establishment (DRDO), Gwalior, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
- * E-mail:
| |
Collapse
|
29
|
Sain A, Sen P, Venkataraman K, Vijayalakshmi MA. Expression of a Tagless Single-Chain Variable Fragment (scFv) of Anti-TNF-α by a Salt Inducible System and its Purification and Characterization. Protein Pept Lett 2021; 28:1272-1280. [PMID: 34551688 DOI: 10.2174/0929866528666210922141402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anti-TNF-α scFv is gaining acceptance as an effective drug for various diseases, such as rheumatoid arthritis and Crohn's disease that involve elevated levels of TNF-α. The single-chain variable fragment (scFv) consists of variable regions of heavy and light chains of monoclonal antibodies (mAb). Due to its smaller size, it curbs the mAb's auto-antibody effects and their limitation of penetration into the tissues during the neutralization of TNF-α. OBJECTIVE In this work, a cDNA coding for anti-TNF-α scFv was successfully cloned into a pRSET-B vector and efficiently expressed in an E. coli strain GJ1158, a salt inducible system that uses sodium chloride instead of IPTG as an inducer. METHODS The protein was expressed in the form of inclusion bodies (IB), solubilized using urea, and refolded by pulse dilution. Further, the amino acid sequence coverage of scFv was confirmed by ESI-Q-TOF MS/MS and MALDI-TOF. Further studies on scaling up the production of scFv and its application of scFv are being carried out. RESULTS The soluble fraction of anti-TNF-α scFv was then purified in a single chromatographic step using CM-Sephadex chromatography, a weak cation exchanger with a yield of 10.3 mg/L. The molecular weight of the scFv was found to be ~ 28 kDa by SDS PAGE, and its presence was confirmed by western blot analysis and mass spectrometry. CONCLUSION Anti-TNF-α scFv has been successfully purified in a salt inducible system GJ1158. As per the best of our knowledge, this is the first report of purification of Anti-TNF-α scFv in a salt inducible system from soluble fractions as well as inclusion bodies.
Collapse
Affiliation(s)
- Avtar Sain
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu,India
| | - Priyankar Sen
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu,India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu,India
| | | |
Collapse
|
30
|
Nguyen TT, Vo-Nguyen HV, Tran-Van H. Prokaryotic expression of chimeric GFP-hFc protein as a potential immune-based tool. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:105-108. [PMID: 34476263 PMCID: PMC8340316 DOI: 10.22099/mbrc.2021.39728.1588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
GFP is an old-yet-powerful protein marker, which has been widely used in molecular biotechnology due to its capacity of exhibiting bright green fluorescence when exposed to ultraviolet light. The hFc region of IgG antibodies is a specific binding ligand of expressed receptors on immune cells with well-known cellular-associated functions like opsonization and phagocytosis. In this present study, we proceeded to fuse gfp-hfc gene into pET-28a to create a recombinant pET-28a-gfp-hfc vector. The expression of GPF-hFc was induced by IPTG and confirmed using SDS-PAGE and followed by Western blot probed with 6xHis antibodies. This chimeric protein was utilized in specific binding experiments with protein A/G-coated magnetic beads using a fluorescence microscope. Due to its fluorescence and binding ability, GFP-hFc could be used as a model molecule for monitoring molecule detection studies, tracking nanoparticle migration and distribution, or stimulating immune responses.
Collapse
Affiliation(s)
- Thanh-Tan Nguyen
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hai-Vy Vo-Nguyen
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hieu Tran-Van
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
31
|
Kang W, Ding C, Zheng D, Ma X, Yi L, Tong X, Wu C, Xue C, Yu Y, Zhou Q. Nanobody Conjugates for Targeted Cancer Therapy and Imaging. Technol Cancer Res Treat 2021; 20:15330338211010117. [PMID: 33929911 PMCID: PMC8111546 DOI: 10.1177/15330338211010117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their in vivo pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging.
Collapse
Affiliation(s)
- Wei Kang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Chuanfeng Ding
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Zheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiao Ma
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lun Yi
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinyi Tong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chuang Wu
- Xiamen Medical College, Xiamen, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Farahavar G, Abolmaali SS, Nejatollahi F, Safaie A, Javanmardi S, Khajeh Zadeh H, Yousefi R, Nadgaran H, Mohammadi-Samani S, Tamaddon AM, Ahadian S. Single-chain antibody-decorated Au nanocages@liposomal layer nanoprobes for targeted SERS imaging and remote-controlled photothermal therapy of melanoma cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112086. [PMID: 33947576 DOI: 10.1016/j.msec.2021.112086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022]
Abstract
The development of theranostic platforms combining surface-enhanced Raman spectroscopy (SERS) imaging with NIR-stimulated photothermal therapy (PTT) is of utmost importance for the precise diagnosis and selective treatment of cancers, especially in superficial solid tumors. For this purpose, a versatile theranostic nanoprobe of liposomal layer-coated Au nanocages (AuNCs) was decorated with an anti-MUC18 single-chain antibody (scFv). 4-mercapto benzoic acid (p-MBA)-labeled AuNCs (p-AuNCs) were coated by a liposomal layer (p-AuNCs@lip), followed by conjugating anti-MUC18 scFv via post-insertion method to form immuno-liposomal layer-coated AuNCs (p-AuNCs@scFv-lip). Physicochemical characterizations of the p-AuNCs@scFv-lip were investigated by transmission electron microscopy (TEM) and UV-vis and Raman spectroscopy. Furthermore, the targeting ability and theranostic efficiency of the nanoprobe were evaluated for specific diagnosis and treatment of cancerous melanoma cells by flow cytometry, SERS mapping, and live/dead assay. The formation of lipid layer on p-AuNCs surface was confirmed by TEM imaging. After decorating the liposomal layer with scFv, a relevant red shift was observed in the UV-vis spectrum. Moreover, p-AuNCs@lip presented characteristic peaks in the Raman spectrum, which exhibited only a minor change after scFv conjugation (p-AuNCs@scFv-lip). Interestingly, the cellular uptake of AuNCs@scFv-lip by A375 cell line (MUC18+) showed a 24-fold enhancement compared with SKBR3 cells (MUC18-). AuNCs@scFv-lip specifically identified A375 cells from SKBR cells via SERS mapping and effectively killed A375 cells through the PTT mechanism. Taken together, this theranostic platform can provide a promising tool for both in situ diagnosis and remote-controlled thermal ablation of cancer cells.
Collapse
Affiliation(s)
- Ghazal Farahavar
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Foroogh Nejatollahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Safaie
- Faculty of Science, Department of Physics, Shiraz University, Shiraz 71454, Iran.
| | - Sanaz Javanmardi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Hamid Nadgaran
- Faculty of Science, Department of Physics, Shiraz University, Shiraz 71454, Iran.
| | - Soliman Mohammadi-Samani
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran; Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
33
|
Reche-Perez FJ, Plesselova S, De Los Reyes-Berbel E, Ortega-Muñoz M, Lopez-Jaramillo FJ, Hernandez-Mateo F, Santoyo-Gonzalez F, Salto-Gonzalez R, Giron-Gonzalez MD. Single chain variable fragment fused to maltose binding protein: a modular nanocarrier platform for the targeted delivery of antitumorals. Biomater Sci 2021; 9:1728-1738. [PMID: 33432316 DOI: 10.1039/d0bm01903h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of the specific binding properties of monoclonal antibody fragments such as single-chain variable fragments (ScFv) for the selective delivery of antitumor therapeutics for cancer cells is attractive due to their smaller size, low immunogenicity, and low-cost production. Although covalent strategies for the preparation of such ScFv-based therapeutic conjugates are prevalent, this approach is not straightforward, as it requires prior chemical activation and/or modification of both the ScFv and the therapeutics for the application of robust chemistries. A non-covalent alternative based on ScFv fused to maltose-binding protein (MBP) acting as a binding adapter is proposed for active targeted delivery. MBP-ScFv proves to be a valuable modular platform to synergistically bind maltose-derivatized therapeutic cargos through the MBP, while preserving the targeting competences provided by the ScFv. The methodology has been tested by using a mutated maltose-binding protein (MBP I334W) with an enhanced affinity toward maltose and an ScFv coding sequence toward the human epidermal growth factor receptor 2 (HER2). Non-covalent binding complexes of the resulting MBP-ScFv fusion protein with diverse maltosylated therapeutic cargos (a near-infrared dye, a maltosylated supramolecular β-cyclodextrin container for doxorubicin, and non-viral polyplex gene vector) were easily prepared and characterized. In vitro and in vivo assays using cell lines that express or not the HER2 epitope, and mice xenografts of HER2 expressing cells demonstrated the capability and versatility of MBP-ScFv for diagnosis, imaging, and drug and plasmid active targeted tumor delivery. Remarkably, the modularity of the MBP-ScFv platform allows the flexible interchange of both the cargos and the coding sequence for the ScFv, allowing ad hoc solutions in targeting delivery without any further optimization since the MBP acts as a pivotal element.
Collapse
Affiliation(s)
- Francisco J Reche-Perez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain. and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Simona Plesselova
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain. and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Eduardo De Los Reyes-Berbel
- Department of Organic Chemistry, School of Sciences, Biotechnology Institute, University of Granada, E-18071 Granada, Spain and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Mariano Ortega-Muñoz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain. and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Francisco J Lopez-Jaramillo
- Department of Organic Chemistry, School of Sciences, Biotechnology Institute, University of Granada, E-18071 Granada, Spain and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Fernando Hernandez-Mateo
- Department of Organic Chemistry, School of Sciences, Biotechnology Institute, University of Granada, E-18071 Granada, Spain and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Francisco Santoyo-Gonzalez
- Department of Organic Chemistry, School of Sciences, Biotechnology Institute, University of Granada, E-18071 Granada, Spain and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Rafael Salto-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain. and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Maria D Giron-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain. and Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Spain
| |
Collapse
|
34
|
de Aguiar RB, da Silva TDA, Costa BA, Machado MFM, Yamada RY, Braggion C, Perez KR, Mori MAS, Oliveira V, de Moraes JZ. Generation and functional characterization of a single-chain variable fragment (scFv) of the anti-FGF2 3F12E7 monoclonal antibody. Sci Rep 2021; 11:1432. [PMID: 33446839 PMCID: PMC7809466 DOI: 10.1038/s41598-020-80746-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/23/2020] [Indexed: 01/22/2023] Open
Abstract
Single-chain variable fragments (scFvs) are small-sized artificial constructs composed of the immunoglobulin heavy and light chain variable regions connected by a peptide linker. We have previously described an anti-fibroblast growth factor 2 (FGF2) immunoglobulin G (IgG) monoclonal antibody (mAb), named 3F12E7, with notable antitumor potential revealed by preclinical assays. FGF2 is a known angiogenesis-associated molecule implicated in tumor progression. In this report, we describe a recombinant scFv format for the 3F12E7 mAb. The results demonstrate that the generated 3F12E7 scFv, although prone to aggregation, comprises an active anti-FGF2 product that contains monomers and small oligomers. Functionally, the 3F12E7 scFv preparations specifically recognize FGF2 and inhibit tumor growth similar to the corresponding full-length IgG counterpart in an experimental model. In silico molecular analysis provided insights into the aggregation propensity and the antigen-recognition by scFv units. Antigen-binding determinants were predicted outside the most aggregation-prone hotspots. Overall, our experimental and prediction dataset describes an scFv scaffold for the 3F12E7 mAb and also provides insights to further engineer non-aggregated anti-FGF2 scFv-based tools for therapeutic and research purposes.
Collapse
Affiliation(s)
- Rodrigo Barbosa de Aguiar
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil.
| | - Tábata de Almeida da Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Bruno Andrade Costa
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Marcelo Ferreira Marcondes Machado
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Renata Yoshiko Yamada
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Camila Braggion
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Kátia Regina Perez
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | | | - Vitor Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil
| | - Jane Zveiter de Moraes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 - Vila Clementino, São Paulo, SP, CEP 04044-020, Brazil.
| |
Collapse
|
35
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Oyeleye AO, Mohd Yusoff SF, Abd Rahim IN, Leow ATC, Saidi NB, Normi YM. Effective refolding of a cysteine rich glycoside hydrolase family 19 recombinant chitinase from Streptomyces griseus by reverse dilution and affinity chromatography. PLoS One 2020; 15:e0241074. [PMID: 33091044 PMCID: PMC7580917 DOI: 10.1371/journal.pone.0241074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Conventional refolding methods are associated with low yields due to misfolding and high aggregation rates or very dilute proteins. In this study, we describe the optimization of the conventional methods of reverse dilution and affinity chromatography for obtaining high yields of a cysteine rich recombinant glycoside hydrolase family 19 chitinase from Streptomyces griseus HUT6037 (SgChiC). SgChiC is a potential biocontrol agent and a reference enzyme in the study and development of chitinases for various applications. The overexpression of SgChiC was previously achieved by periplasmic localization from where it was extracted by osmotic shock and then purified by hydroxyapatite column chromatography. In the present study, the successful refolding and recovery of recombinant SgChiC (r-SgChiC) from inclusion bodies (IB) by reverse dilution and column chromatography methods is respectively described. Approximately 8 mg of r-SgChiC was obtained from each method with specific activities of 28 and 52 U/mg respectively. These yields are comparable to that obtained from a 1 L culture volume of the same protein isolated from the periplasmic space of E. coli BL21 (DE3) as described in previous studies. The higher yields obtained are attributed to the successful suppression of aggregation by a stepwise reduction of denaturant from high, to intermediate, and finally to low concentrations. These methods are straight forward, requiring the use of fewer refolding agents compared with previously described refolding methods. They can be applied to the refolding of other cysteine rich proteins expressed as inclusion bodies to obtain high yields of actively folded proteins. This is the first report on the recovery of actively folded SgChiC from inclusion bodies.
Collapse
Affiliation(s)
- Ayokunmi Omolola Oyeleye
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Siti Faridah Mohd Yusoff
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Izzah Nadiah Abd Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M. Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
37
|
Ma H, Ó'Fágáin C, O'Kennedy R. Antibody stability: A key to performance - Analysis, influences and improvement. Biochimie 2020; 177:213-225. [PMID: 32891698 DOI: 10.1016/j.biochi.2020.08.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/01/2023]
Abstract
An antibody's stability greatly influences its performance (i.e. its specificity and affinity). Thus, stability is a major issue for researchers and manufacturers, especially with the increasing use of antibodies in therapeutics, diagnostics and rapid analytical platforms. Here we review antibody stability under five headings: (i) measurement techniques; (ii) stability issues in expression and production (expression, proteolysis, aggregation); (iii) effects of antibody format and engineering on stability and (iv) formulation, drying and storage conditions. We consider more than 100 sources, including patents, and conclude with (v) recommendations to promote antibody stability.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland
| | - Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland; Qatar Foundation, Research Complex, And Hamad Bin Khalifa University, Education City, Doha, Qatar
| |
Collapse
|
38
|
Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int J Mol Sci 2020; 21:ijms21176324. [PMID: 32878291 PMCID: PMC7504322 DOI: 10.3390/ijms21176324] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.
Collapse
|
39
|
Heidari-Japelaghi R, Valizadeh M, Haddad R, Dorani-Uliaie E, Jalali-Javaran M. Fusion to elastin-like polypeptide increases production of bioactive human IFN-γ in tobacco. Transgenic Res 2020; 29:381-394. [PMID: 32686067 DOI: 10.1007/s11248-020-00205-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/18/2020] [Indexed: 12/29/2022]
Abstract
The plant-based expression systems are now accredited as bioreactors for the high production of various biopharmaceuticals. However, low levels of agglomeration and the absence of effective procedures for purification of recombinant proteins have remained two essential obstacles in molecular farming. In this research, we have studied the production of human interferon gamma (hIFN-γ) in tobacco and analyzed the effects of elastin-like polypeptide (ELP) tag and subcellular localization on its accumulation. We report a remarkable enhancement of accumulation of the fusion proteins versus the corresponding unfused hIFN-γ proteins. Furthermore, the hIFN-γ (with and without ELP) accumulated to higher levels in the endoplasmic reticulum. The ELP fusion proteins were successfully recovered from total soluble protein with adding 2.75 M NaCl and three rounds of inverse transition cycling (ITC). The hIFN-γ was also separated from ELP with Enterokinase cleavage of the fusion protein and recovered by ITC. Inverse transition analysis indicated that the hIFN-γ-ELP variants aggregate above their inverse transition temperature and at high ionic strength. Investigation of glycosylation revealed that fused or unfused hIFN-γ proteins are N-glycosylated in different cellular locations. Moreover, N-glycosylation analysis and bioassay showed that fusion to ELP does not disturb glycosylation process and antiviral activity of hIFN-γ.
Collapse
Affiliation(s)
- Reza Heidari-Japelaghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mostafa Valizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Ebrahim Dorani-Uliaie
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Iran
| |
Collapse
|
40
|
Bacterial Inclusion Bodies: A Treasure Trove of Bioactive Proteins. Trends Biotechnol 2020; 38:474-486. [DOI: 10.1016/j.tibtech.2019.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
|
41
|
Production and immunogenicity of Fubc subunit protein redesigned from DENV envelope protein. Appl Microbiol Biotechnol 2020; 104:4333-4344. [PMID: 32232529 PMCID: PMC7223326 DOI: 10.1007/s00253-020-10541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Dengue virus (DENV) is a vector-borne human pathogen that usually causes dengue fever; however, sometime it leads to deadly complications such as dengue with warning signs (DWS+) and severe dengue (SD). Several studies have shown that fusion (Fu) and bc loop of DENV envelope domain II are highly conserved and consist some of the most dominant antigenic epitopes. Therefore, in this study, Fu and bc loops were joined together to develop a short recombinant protein as an alternative of whole DENV envelope protein, and its immunogenic potential as fusion peptide was estimated. For de novo designing of the antigen, Fu and bc peptides were linked with an optimised linker so that the three dimensional conformation was maintained as it is in DENV envelope protein. The redesigned Fubc protein was expressed in E. coli and purified. Subsequently, structural integrity of the purified protein was verified by CD spectroscopy. To characterise immune responses against recombinant Fubc protein, BALB/c mice were subcutaneously injected with emulsified antigen preparation. It was observed by ELISA that Fubc fusion protein elicited higher serum IgG antibody response either in the presence or in absence of Freund’s adjuvant in comparison to the immune response of Fu and bc peptides separately. Furthermore, the binding of Fubc protein with mice antisera was validated by SPR analysis. These results suggest that Fu and bc epitope-based recombinant fusion protein could be a potential candidate towards the development of the effective subunit vaccine against DENV.
Collapse
|
42
|
Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019; 7:420. [PMID: 31921823 PMCID: PMC6932962 DOI: 10.3389/fbioe.2019.00420] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases, along with cancers, are among the main causes of death among humans worldwide. The production of therapeutic proteins for treating diseases at large scale for millions of individuals is one of the essential needs of mankind. Recent progress in the area of recombinant DNA technologies has paved the way to producing recombinant proteins that can be used as therapeutics, vaccines, and diagnostic reagents. Recombinant proteins for these applications are mainly produced using prokaryotic and eukaryotic expression host systems such as mammalian cells, bacteria, yeast, insect cells, and transgenic plants at laboratory scale as well as in large-scale settings. The development of efficient bioprocessing strategies is crucial for industrial production of recombinant proteins of therapeutic and prophylactic importance. Recently, advances have been made in the various areas of bioprocessing and are being utilized to develop effective processes for producing recombinant proteins. These include the use of high-throughput devices for effective bioprocess optimization and of disposable systems, continuous upstream processing, continuous chromatography, integrated continuous bioprocessing, Quality by Design, and process analytical technologies to achieve quality product with higher yield. This review summarizes recent developments in the bioprocessing of recombinant proteins, including in various expression systems, bioprocess development, and the upstream and downstream processing of recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
43
|
Pekarsky A, Konopek V, Spadiut O. The impact of technical failures during cultivation of an inclusion body process. Bioprocess Biosyst Eng 2019; 42:1611-1624. [PMID: 31267174 PMCID: PMC6751153 DOI: 10.1007/s00449-019-02158-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022]
Abstract
In biotechnological processes, technical failures in the upstream process often lead to batch loss. It is of great interest to investigate the empirical impact of technical failures to understand and mitigate their impact accurately and reduce economic damage. We investigated the impact in the upstream and downstream of a recombinant antibody fragment inclusion body production process chain to provide integrated empirical data and knowledge. First, we provided a reproducible process chain that yielded high inclusion body content, high specific product titer, and a refolding yield of 30%. The inclusion body downstream proved to be of high reproducibility. Through the intended introduction of technical failures, we were not only able to shed more light on the empirical responses in the upstream and downstream, but also on process-boosting parameters that would have been neglected. Herein, a short increase in temperature during the cultivation clearly increased the refolding yield.
Collapse
Affiliation(s)
- Alexander Pekarsky
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Vanessa Konopek
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| |
Collapse
|