1
|
Sedky NK, Mahdy NK, Abdel-Kader NM, Abdelhady MMM, Maged M, Allam AL, Alfaifi MY, Shamma SN, Hassan HAFM, Fahmy SA. Facile sonochemically-assisted bioengineering of titanium dioxide nanoparticles and deciphering their potential in treating breast and lung cancers: biological, molecular, and computational-based investigations. RSC Adv 2024; 14:8583-8601. [PMID: 38487521 PMCID: PMC10938292 DOI: 10.1039/d3ra08908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Combining sonochemistry with phytochemistry is a modern trend in the biosynthesis of metallic nanoparticles (NPs), which contributes to the sustainability of chemical processes and minimizes hazardous effects. Herein, titanium dioxide (TiO2) NPs were bioengineered using a novel and facile ultrasound-assisted approach utilizing the greenly extracted essential oil of Ocimum basilicum. FTIR and UV-Vis spectrophotometry were used to confirm the formation of TiO2 NPs. The X-ray diffraction (XRD) analysis showed the crystalline nature of TiO2 NPs. TEM analysis revealed the spherical morphology of the NPs with sizes ranging from 5.55 to 13.89 nm. Energy-dispersive X-ray (EDX) confirmed the purity of the greenly synthesized NPs. TiO2 NPs demonstrated outstanding antitumor activity against breast (MCF-7) and lung (A-549) cancer cells with estimated IC50 values of 1.73 and 4.79 μg mL-1. The TiO2 NPs were cytocompatible to normal cells (MCF-10A) with a selectivity index (SI) of 8.77 for breast and 3.17 for lung cancer. Biological assays revealed a promising potential for TiO2 NPs to induce apoptosis and arrest cells at the sub-G1 phase of the cell cycle phase in both cancer cell lines. Molecular investigations showed the ability of TiO2 NPs to increase apoptotic genes' expression (Bak and Bax) and their profound ability to elevate the expression of apoptotic proteins (caspases 3 and 7). Molecular docking demonstrated strong binding interactions for TiO2 NPs with caspase 3 and EGFR-TK targets. In conclusion, the greenly synthesized TiO2 NPs exhibited potent antitumor activity and mitochondrion-based cell death against breast and lung cancer cell lines while maintaining cytocompatibility against normal cells.
Collapse
Affiliation(s)
- Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Nour M Abdel-Kader
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Manal M M Abdelhady
- Clinical Pharmacy Department, Faculty of Pharmacy, Badr University Cairo 11829 Egypt
| | - Mohamad Maged
- Faculty of Biotechnology, Nile University Giza Egypt
| | - Aya L Allam
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Egypt
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Samir N Shamma
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Hatem A F M Hassan
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20-1222613344
| |
Collapse
|
2
|
Al-Hakkani MF, Ahmed N, Abbas AA, Hassan MHA, Aziz HA, Elshamsy AM, Khalifa HO, Abdelshakour MA, Saddik MS, Elsayed MMA, Sabet MA, El-Mokhtar MA, Alsehli M, Amin MS, Abu-Dief AM, Mohammed HHH. Synthesis, Physicochemical Characterization using a Facile Validated HPLC Quantitation Analysis Method of 4-Chloro-phenylcarbamoyl-methyl Ciprofloxacin and Its Biological Investigations. Int J Mol Sci 2023; 24:14818. [PMID: 37834266 PMCID: PMC10573198 DOI: 10.3390/ijms241914818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
A novel derivative of ciprofloxacin (Cpx) was synthesized and characterized using various analytical techniques, including FT-IR spectroscopy, UV-Vis spectroscopy, TEM and SEM analysis, 1H NMR, 13C NMR, and HPLC analysis. The newly prepared Cpx derivative (Cpx-Drv) exhibited significantly enhanced antibacterial properties compared to Cpx itself. In particular, Cpx-Drv demonstrated a 51% increase in antibacterial activity against S. aureus and a 30% improvement against B. subtilis. It displayed potent inhibitory effects on topoisomerases II (DNA gyrase and topoisomerase IV) as potential molecular targets, with IC50 values of 6.754 and 1.913 µg/mL, respectively, in contrast to Cpx, which had IC50 values of 2.125 and 0.821 µg/mL, respectively. Docking studies further supported these findings, showing that Cpx-Drv exhibited stronger binding interactions with the gyrase enzyme (PDB ID: 2XCT) compared to the parent Cpx, with binding affinities of -10.3349 and -7.7506 kcal/mole, respectively.
Collapse
Affiliation(s)
- Mostafa F. Al-Hakkani
- Department of Research, Development, and Stability, UP Pharma, Industrial Zone, Arab El Awamer, Abnoub 76, Assiut 71745, Egypt; (N.A.); (A.A.A.)
| | - Nourhan Ahmed
- Department of Research, Development, and Stability, UP Pharma, Industrial Zone, Arab El Awamer, Abnoub 76, Assiut 71745, Egypt; (N.A.); (A.A.A.)
| | - Alaa A. Abbas
- Department of Research, Development, and Stability, UP Pharma, Industrial Zone, Arab El Awamer, Abnoub 76, Assiut 71745, Egypt; (N.A.); (A.A.A.)
| | - Mohammad H. A. Hassan
- Department of Medical Laboratory Technology, Higher Technological Institute for Applied Health Sciences in Minya, Minya 71511, Egypt;
| | - Hossameldin A. Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt;
| | - Ali M. Elshamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Mina, New Minia 61768, Egypt;
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El Sheikh 33516, Egypt
| | - Mohamed A. Abdelshakour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.S.S.); (M.M.A.E.)
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.S.S.); (M.M.A.E.)
| | - Marwa A. Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt;
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Mosa Alsehli
- Department of Chemistry, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia; (M.A.); (M.S.A.)
| | - M. S. Amin
- Department of Chemistry, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia; (M.A.); (M.S.A.)
- Chemistry Department, Faculty of science, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed M. Abu-Dief
- Department of Chemistry, College of Science, Taibah University, Madinah P.O. Box 344, Saudi Arabia; (M.A.); (M.S.A.)
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Hamada H. H. Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| |
Collapse
|
3
|
Abdou YT, Saleeb SM, Abdel-Raouf KMA, Allam M, Adel M, Amleh A. Characterization of a novel peptide mined from the Red Sea brine pools and modified to enhance its anticancer activity. BMC Cancer 2023; 23:699. [PMID: 37495988 PMCID: PMC10369728 DOI: 10.1186/s12885-023-11045-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023] Open
Abstract
Drug resistance is a major cause of the inefficacy of conventional cancer therapies, and often accompanied by severe side effects. Thus, there is an urgent need to develop novel drugs with low cytotoxicity, high selectivity and minimal acquired chemical resistance. Peptide-based drugs (less than 0.5 kDa) have emerged as a potential approach to address these issues due to their high specificity and potent anticancer activity. In this study, we developed a support vector machine model (SVM) to detect the potential anticancer properties of novel peptides by scanning the American University in Cairo (AUC) Red Sea metagenomics library. We identified a novel 37-mer antimicrobial peptide through SVM pipeline analysis and characterized its anticancer potential through in silico cross-examination. The peptide sequence was further modified to enhance its anticancer activity, analyzed for gene ontology, and subsequently synthesized. To evaluate the anticancer properties of the modified 37-mer peptide, we assessed its effect on the viability and morphology of SNU449, HepG2, SKOV3, and HeLa cells, using an MTT assay. Additionally, we evaluated the migration capabilities of SNU449 and SKOV3 cells using a scratch-wound healing assay. The targeted selectivity of the modified peptide was examined by evaluating its hemolytic activity on human erythrocytes. Treatment with the peptide significantly reduced cell viability and had a critical impact on the morphology of hepatocellular carcinoma (SNU449 and HepG2), and ovarian cancer (SKOV3) cells, with a marginal effect on cervical cancer cell lines (HeLa). The viability of a human fibroblast cell line (1Br-hTERT) was also significantly reduced by peptide treatment, as were the proliferation and migration abilities of SNU449 and SKOV3 cells. The annexin V assay revealed programmed cell death (apoptosis) as one of the potential cellular death pathways in SNU449 cells upon peptide treatment. Finally, the peptide exhibited antimicrobial effects on both gram-positive and gram-negative bacterial strains. The findings presented here suggest the potential of our novel peptide as a potent anticancer and antimicrobial agent.
Collapse
Affiliation(s)
- Youssef T Abdou
- Biotechnology Program, American University in Cairo, New Cairo, Egypt
| | - Sheri M Saleeb
- Biotechnology Program, American University in Cairo, New Cairo, Egypt
| | | | - Mohamed Allam
- Biology Department, American University in Cairo, New Cairo, Egypt
| | - Mustafa Adel
- Biotechnology Program, American University in Cairo, New Cairo, Egypt
| | - Asma Amleh
- Biotechnology Program, American University in Cairo, New Cairo, Egypt.
- Biology Department, American University in Cairo, New Cairo, Egypt.
| |
Collapse
|
4
|
Fakhar AZ, Liu J, Pajerowska-Mukhtar KM, Mukhtar MS. The Lost and Found: Unraveling the Functions of Orphan Genes. J Dev Biol 2023; 11:27. [PMID: 37367481 PMCID: PMC10299390 DOI: 10.3390/jdb11020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes.
Collapse
Affiliation(s)
| | | | | | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Elbehery AHA, Beason E, Siam R. Metagenomic profiling of antibiotic resistance genes in Red Sea brine pools. Arch Microbiol 2023; 205:195. [PMID: 37061654 DOI: 10.1007/s00203-023-03531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
Antibiotic resistance (AR) is an alarming global health concern, causing an annual death rate of more than 35,000 deaths in the US. AR is a natural phenomenon, reported in several pristine environments. In this study, we report AR in pristine Red Sea deep brine pools. Antimicrobial resistance genes (ARGs) were detected for several drug classes with tetracycline and macrolide resistance being the most abundant. As expected, ARGs abundance increased in accordance with the level of human impact with pristine Red Sea samples having the lowest mean ARG level followed by estuary samples, while activated sludge samples showed a significantly higher ARG level. ARG hierarchical clustering grouped drug classes for which resistance was detected in Atlantis II Deep brine pool independent of the rest of the samples. ARG abundance was significantly lower in the Discovery Deep brine pool. A correlation between integrons and ARGs abundance in brine pristine samples could be detected, while insertion sequences and plasmids showed a correlation with ARGs abundance in human-impacted samples not seen in brine pristine samples. This suggests different roles of distinct mobile genetic elements (MGEs) in ARG distribution in pristine versus human-impacted sites. Additionally, we showed the presence of mobile antibiotic resistance genes in the Atlantis II brine pool as evidenced by the co-existence of integrases and plasmid replication proteins on the same contigs harboring predicted multidrug-resistant efflux pumps. This study addresses the role of non-pathogenic environmental bacteria as a silent reservoir for ARGs, and the possible horizontal gene transfer mechanism mediating ARG acquisition.
Collapse
Affiliation(s)
- Ali H A Elbehery
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.
| | - Elisabeth Beason
- University of Medicine and Health Sciences, Basseterre, West Indies, Saint Kitts and Nevis
| | - Rania Siam
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt.
| |
Collapse
|
6
|
Singh G, Dal Grande F, Schmitt I. Genome mining as a biotechnological tool for the discovery of novel biosynthetic genes in lichens. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:993171. [PMID: 37746187 PMCID: PMC10512267 DOI: 10.3389/ffunb.2022.993171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 09/26/2023]
Abstract
Natural products (NPs) and their derivatives are a major contributor to modern medicine. Historically, microorganisms such as bacteria and fungi have been instrumental in generating drugs and lead compounds because of the ease of culturing and genetically manipulating them. However, the ever-increasing demand for novel drugs highlights the need to bioprospect previously unexplored taxa for their biosynthetic potential. Next-generation sequencing technologies have expanded the range of organisms that can be explored for their biosynthetic content, as these technologies can provide a glimpse of an organism's entire biosynthetic landscape, without the need for cultivation. The entirety of biosynthetic genes can be compared to the genes of known function to identify the gene clusters potentially coding for novel products. In this study, we mine the genomes of nine lichen-forming fungal species of the genus Umbilicaria for biosynthetic genes, and categorize the biosynthetic gene clusters (BGCs) as "associated product structurally known" or "associated product putatively novel". Although lichen-forming fungi have been suggested to be a rich source of NPs, it is not known how their biosynthetic diversity compares to that of bacteria and non-lichenized fungi. We found that 25%-30% of biosynthetic genes are divergent as compared to the global database of BGCs, which comprises 1,200,000 characterized biosynthetic genes from plants, bacteria, and fungi. Out of 217 BGCs, 43 were highly divergant suggesting that they potentially encode structurally and functionally novel NPs. Clusters encoding the putatively novel metabolic diversity comprise polyketide synthases (30), non-ribosomal peptide synthetases (12), and terpenes (1). Our study emphasizes the utility of genomic data in bioprospecting microorganisms for their biosynthetic potential and in advancing the industrial application of unexplored taxa. We highlight the untapped structural metabolic diversity encoded in the lichenized fungal genomes. To the best of our knowledge, this is the first investigation identifying genes coding for NPs with potentially novel properties in lichenized fungi.
Collapse
Affiliation(s)
- Garima Singh
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padova, Italy
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padova, Italy
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- Institute of Ecology, Diversity and Evolution, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Al-Hakkani MF, Gouda GA, Hassan SHA, Mohamed MMA, Nagiub AM. Environmentally azithromycin pharmaceutical wastewater management and synergetic biocompatible approaches of loaded azithromycin@hematite nanoparticles. Sci Rep 2022; 12:10970. [PMID: 35768496 PMCID: PMC9242993 DOI: 10.1038/s41598-022-14997-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 12/23/2022] Open
Abstract
Pharmaceutical wastewater contamination via azithromycin antibiotic and the continuous emergence of some strains of bacteria, cancer, and the Covid-19 virus. Azithromycin wastewater treatment using the biosynthesized Hematite nanoparticles (α-HNPs) and the biocompatible activities of the resulted nanosystem were reported. Biofabrication of α-HNPs using Echinacea purpurea liquid extract as a previously reported approach was implemented. An evaluation of the adsorption technique via the biofabricated α-HNPs for the removal of the Azr drug contaminant from the pharmaceutical wastewater was conducted. Adsorption isotherm, kinetics, and thermodynamic parameters of the Azr on the α-HNPs surface have been investigated as a batch mode of equilibrium experiments. Antibacterial, anticancer, and antiviral activities were conducted as Azr@α-HNPs. The optimum conditions for the adsorption study were conducted as solution pH = 10, 150 mg dose of α-HNPs, and Azr concentration 400 mg/L at 293 K. The most fitted isothermal model was described according to the Langmuir model at adsorption capacity 114.05 mg/g in a pseudo-second-order kinetic mechanistic at R2 0.9999. Thermodynamic study manifested that the adsorption behavior is a spontaneous endothermic chemisorption process. Subsequently, studying the biocompatible applications of the Azr@α-HNPs. Azr@α-HNPs antibacterial activity revealed a synergistic effect in the case of Gram-positive more than Gram-negative bacteria. IC50 of Azr@α-HNPs cytotoxicity against MCF7, HepG2, and HCT116 cell lines was investigated and it was found to be 78.1, 81.7, and 93.4 µg/mL respectively. As the first investigation of the antiviral use of Azr@α-HNPs against SARS-CoV-2, it was achieved a safety therapeutic index equal to 25.4 revealing a promising antiviral activity. An admirable impact of the use of the biosynthesized α-HNPs and its removal nanosystem product Azr@α-HNPs was manifested and it may be used soon as a platform of the drug delivery nanosystem for the biomedical applications.
Collapse
Affiliation(s)
- Mostafa F Al-Hakkani
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt.
| | - Gamal A Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sedky H A Hassan
- Department of Botany and Microbiology, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman
| | - Mahmoud M A Mohamed
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Adham M Nagiub
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
8
|
Ziko L, AbdelRaheem O, Nabil M, Aziz RK, Siam R. Bioprospecting the microbiome of Red Sea Atlantis II brine pool for peptidases and biosynthetic genes with promising antibacterial activity. Microb Cell Fact 2022; 21:109. [PMID: 35655185 PMCID: PMC9161539 DOI: 10.1186/s12934-022-01835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background The search for novel antimicrobial agents is crucial as antibiotic-resistant pathogens continue to emerge, rendering the available antibiotics no longer effective. Likewise, new anti-cancer drugs are needed to combat the emergence of multi-drug resistant tumors. Marine environments are wealthy sources for natural products. Additionally, extreme marine environments are interesting niches to search for bioactive natural compounds. In the current study, a fosmid library of metagenomic DNA isolated from Atlantis II Deep Lower Convective Layer (ATII LCL), was functionally screened for antibacterial activity as well as anticancer effects. Results Two clones exhibited antibacterial effects against the marine Bacillus Cc6 strain, namely clones 102-5A and 88-1G and they were further tested against eleven other challenging strains, including six safe relatives of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), a safe relative to Mycobacterium tuberculosis and four resistant clinical isolates. Clone 88-1G resulted in clear zones of inhibition against eight bacterial strains, while clone 102-5A resulted in zones of inhibition against five bacterial strains. The whole cell lysates of clone 88-1G showed 15% inhibition of Mtb ClpP protease -Mycobacterium tuberculosis drug target-, while whole cell lysates of clone 102-5A showed 19% inhibition of Mtb ClpP protease. Whole cell lysates from the selected clones exhibited anticancer effects against MCF-7 breast cancer cells (cell viability at 50% v/v was 46.2% ± 9.9 for 88-1G clone and 38% ± 7 for 102-5A clone), U2OS osteosarcoma cells (cell viability at 50% v/v was 64.6% ± 12.3 for 88-1G clone and 28.3% ± 1.7 for 102-5A clone) and 1BR hTERT human fibroblast cells (cell viability at 50% v/v was 74.4% ± 5.6 for 88-1G clone and 57.6% ± 8.9 for 102-5A clone). Sequencing of 102-5A and 88-1G clones, and further annotation detected putative proteases and putative biosynthetic genes in clones 102-5A and 88-1G, respectively. Conclusions The ATII LCL metagenome hosts putative peptidases and biosynthetic genes that confer antibiotic and anti-cancer effects. The tested clones exhibited promising antibacterial activities against safe relative strains to ESKAPE pathogens and Mycobacterium tuberculosis. Thus, searching the microbial dark matter of extreme environments is a promising approach to identify new molecules with pharmaceutical potential use. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01835-z.
Collapse
Affiliation(s)
- Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, 11865, New Administrative Capital, Egypt.,Department of Biology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt
| | - Omnia AbdelRaheem
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt
| | - Marina Nabil
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.,Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, 11617, Cairo, Egypt
| | - Rania Siam
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt. .,University of Medicine and Health Sciences, Basseterre, West Indies, Saint Kitts and Nevis.
| |
Collapse
|
9
|
Shakouri A, Kahroba H, Hamishekar H, Abdolalizadeh J. Nanoencapsulation of Hirudo medicinalis proteins in liposomes as a nanocarrier for inhibiting angiogenesis through targeting VEGFA in the Breast cancer cell line (MCF-7). BIOIMPACTS 2021; 12:115-126. [PMID: 35411300 PMCID: PMC8905592 DOI: 10.34172/bi.2021.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 11/09/2022]
Abstract
Introduction: Breast cancer is the most serious cause of women’s death throughout the world. Using nanocarrier vehicles to the exact site of cancer upgrades the therapeutic efficiency of the drugs. Capsulation of active proteins in the vesicular liposomes’ hydrophilic core is essential to develop a therapeutic protein carrier system. We aimed to encapsulate the medicinal leech saliva extract (LSE) and assess the inhibition of angiogenesis of breast cancer cells by targeting vascular endothelial growth factor A (VEGFA). Methods: In this research, enhanced formulation of liposomal protein was determined by zeta potential analysis, droplet size, drug release assay, and transmission electron microscopy (TEM). Furthermore, a cytotoxicity assay of liposomal LSE was performed to determine the cytotoxic activity of components. For assessing the expression of VEGFA, P53, and hypoxia-inducible factor subunit alpha (HIF1a) genes, Real-Time PCR was applied. Results: Nano liposome was chosen as an enhanced formulation due to its much smaller size (46.23 nm). Liposomal LSE had more practical actions on the MCF-7 cells. As noticed by DAPI staining, apoptosis was extensively greater in treated MCF-7 cells. Wound healing assay demonstrated that MCF-7 cells could not sustain growth at the presence of liposomal LSE and expression of the VEGFA gene was declined in treated cells. Downregulation of VEGFA was evaluated with western blotting technique. Conclusion: It can be concluded that our investigation of the tests confirmed the fact that nano liposomal LSE is a novel promising formulation for anticancer drugs and can significantly improve the penetration of protein drugs to cancer cells.
Collapse
Affiliation(s)
- Amir Shakouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishekar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Wang W, Zheng G, Lu Y. Recent Advances in Strategies for the Cloning of Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2021; 9:692797. [PMID: 34327194 PMCID: PMC8314000 DOI: 10.3389/fbioe.2021.692797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial natural products (NPs) are a major source of pharmacological agents. Most NPs are synthesized from specific biosynthetic gene clusters (BGCs). With the rapid increase of sequenced microbial genomes, large numbers of NP BGCs have been discovered, regarded as a treasure trove of novel bioactive compounds. However, many NP BGCs are silent in native hosts under laboratory conditions. In order to explore their therapeutic potential, a main route is to activate these silent NP BGCs in heterologous hosts. To this end, the first step is to accurately and efficiently capture these BGCs. In the past decades, a large number of effective technologies for cloning NP BGCs have been established, which has greatly promoted drug discovery research. Herein, we describe recent advances in strategies for BGC cloning, with a focus on the preparation of high-molecular-weight DNA fragment, selection and optimization of vectors used for carrying large-size DNA, and methods for assembling targeted DNA fragment and appropriate vector. The future direction into novel, universal, and high-efficiency methods for cloning NP BGCs is also prospected.
Collapse
Affiliation(s)
- Wenfang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guosong Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, China.,Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
11
|
El-Hossary EM, Abdel-Halim M, Ibrahim ES, Pimentel-Elardo SM, Nodwell JR, Handoussa H, Abdelwahab MF, Holzgrabe U, Abdelmohsen UR. Natural Products Repertoire of the Red Sea. Mar Drugs 2020; 18:md18090457. [PMID: 32899763 PMCID: PMC7551641 DOI: 10.3390/md18090457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Marine natural products have achieved great success as an important source of new lead compounds for drug discovery. The Red Sea provides enormous diversity on the biological scale in all domains of life including micro- and macro-organisms. In this review, which covers the literature to the end of 2019, we summarize the diversity of bioactive secondary metabolites derived from Red Sea micro- and macro-organisms, and discuss their biological potential whenever applicable. Moreover, the diversity of the Red Sea organisms is highlighted as well as their genomic potential. This review is a comprehensive study that compares the natural products recovered from the Red Sea in terms of ecological role and pharmacological activities.
Collapse
Affiliation(s)
- Ebaa M. El-Hossary
- National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, Cairo 11765, Egypt;
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Eslam S. Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/Bau D15, 97080 Würzburg, Germany
| | - Sheila Marie Pimentel-Elardo
- Department of Biochemistry, University of Toronto, MaRS Centre West, 661 University Avenue, Toronto, ON M5G 1M1, Canada; (S.M.P.-E.); (J.R.N.)
| | - Justin R. Nodwell
- Department of Biochemistry, University of Toronto, MaRS Centre West, 661 University Avenue, Toronto, ON M5G 1M1, Canada; (S.M.P.-E.); (J.R.N.)
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Miada F. Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Correspondence: (U.H.); (U.R.A.)
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111 New Minia City, Minia 61519, Egypt
- Correspondence: (U.H.); (U.R.A.)
| |
Collapse
|
12
|
Abdelsalam NA, Ramadan AT, ElRakaiby MT, Aziz RK. Toxicomicrobiomics: The Human Microbiome vs. Pharmaceutical, Dietary, and Environmental Xenobiotics. Front Pharmacol 2020; 11:390. [PMID: 32372951 PMCID: PMC7179069 DOI: 10.3389/fphar.2020.00390] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
The harmful impact of xenobiotics on the environment and human health is being more widely recognized; yet, inter- and intraindividual genetic variations among humans modulate the extent of harm, mostly through modulating the outcome of xenobiotic metabolism and detoxification. As the Human Genome Project revealed that host genetic, epigenetic, and regulatory variations could not sufficiently explain the complexity of interindividual variability in xenobiotics metabolism, its sequel, the Human Microbiome Project, is investigating how this variability may be influenced by human-associated microbial communities. Xenobiotic-microbiome relationships are mutual and dynamic. Not only does the human microbiome have a direct metabolizing potential on xenobiotics, but it can also influence the expression of the host metabolizing genes and the activity of host enzymes. On the other hand, xenobiotics may alter the microbiome composition, leading to a state of dysbiosis, which is linked to multiple diseases and adverse health outcomes, including increased toxicity of some xenobiotics. Toxicomicrobiomics studies these mutual influences between the ever-changing microbiome cloud and xenobiotics of various origins, with emphasis on their fate and toxicity, as well the various classes of microbial xenobiotic-modifying enzymes. This review article discusses classic and recent findings in toxicomicrobiomics, with examples of interactions between gut, skin, urogenital, and oral microbiomes with pharmaceutical, food-derived, and environmental xenobiotics. The current state and future prospects of toxicomicrobiomic research are discussed, and the tools and strategies for performing such studies are thoroughly and critically compared.
Collapse
Affiliation(s)
| | - Ahmed Tarek Ramadan
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Marwa Tarek ElRakaiby
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ramy Karam Aziz
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Varrella S, Tangherlini M, Corinaldesi C. Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest. Mar Drugs 2020; 18:md18020091. [PMID: 32019162 PMCID: PMC7074082 DOI: 10.3390/md18020091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are considered to be among the most extreme ecosystems on our planet, allowing only the life of polyextremophilic organisms. DHABs’ prokaryotes exhibit extraordinary metabolic capabilities, representing a hot topic for microbiologists and biotechnologists. These are a source of enzymes and new secondary metabolites with valuable applications in different biotechnological fields. Here, we review the current knowledge on prokaryotic diversity in DHABs, highlighting the biotechnological applications of identified taxa and isolated species. The discovery of new species and molecules from these ecosystems is expanding our understanding of life limits and is expected to have a strong impact on biotechnological applications.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
| | | | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
- Correspondence:
| |
Collapse
|
14
|
Ziko L, Adel M, Malash MN, Siam R. Insights into Red Sea Brine Pool Specialized Metabolism Gene Clusters Encoding Potential Metabolites for Biotechnological Applications and Extremophile Survival. Mar Drugs 2019; 17:md17050273. [PMID: 31071993 PMCID: PMC6562949 DOI: 10.3390/md17050273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
The recent rise in antibiotic and chemotherapeutic resistance necessitates the search for novel drugs. Potential therapeutics can be produced by specialized metabolism gene clusters (SMGCs). We mined for SMGCs in metagenomic samples from Atlantis II Deep, Discovery Deep and Kebrit Deep Red Sea brine pools. Shotgun sequence assembly and secondary metabolite analysis shell (antiSMASH) screening unraveled 2751 Red Sea brine SMGCs, pertaining to 28 classes. Predicted categorization of the SMGC products included those (1) commonly abundant in microbes (saccharides, fatty acids, aryl polyenes, acyl-homoserine lactones), (2) with antibacterial and/or anticancer effects (terpenes, ribosomal peptides, non-ribosomal peptides, polyketides, phosphonates) and (3) with miscellaneous roles conferring adaptation to the environment/special structure/unknown function (polyunsaturated fatty acids, ectoine, ladderane, others). Saccharide (80.49%) and putative (7.46%) SMGCs were the most abundant. Selected Red Sea brine pool sites had distinct SMGC profiles, e.g., for bacteriocins and ectoine. Top promising candidates, SMs with pharmaceutical applications, were addressed. Prolific SM-producing phyla (Proteobacteria, Actinobacteria, Cyanobacteria), were ubiquitously detected. Sites harboring the largest numbers of bacterial and archaeal phyla, had the most SMGCs. Our results suggest that the Red Sea brine niche constitutes a rich biological mine, with the predicted SMs aiding extremophile survival and adaptation.
Collapse
Affiliation(s)
- Laila Ziko
- Graduate Program of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| | - Mustafa Adel
- Graduate Program of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| | - Mohamed N Malash
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt.
| | - Rania Siam
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| |
Collapse
|