1
|
Guo Q, Xu J, Li J, Tang S, Cheng Y, Gao B, Xiong LB, Xiong J, Wang FQ, Wei DZ. Synergistic increase in coproporphyrin III biosynthesis by mitochondrial compartmentalization in engineered Saccharomyces cerevisiae. Synth Syst Biotechnol 2024; 9:834-841. [PMID: 39113689 PMCID: PMC11305229 DOI: 10.1016/j.synbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Coproporphyrin III (CP III), a natural porphyrin derivative, has extensive applications in the biomedical and material industries. S. cerevisiae has previously been engineered to highly accumulate the CP III precursor 5-aminolevulinic acid (ALA) through the C4 pathway. In this study, a combination of cytoplasmic metabolic engineering and mitochondrial compartmentalization was used to enhance CP III production in S. cerevisiae. By integrating pathway genes into the chromosome, the CP III titer gradually increased to 32.5 ± 0.5 mg/L in shake flask cultivation. Nevertheless, increasing the copy number of pathway genes did not consistently enhance CP III synthesis. Hence, the partial synthesis pathway was compartmentalized in mitochondria to evaluate its effectiveness in increasing CP III production. Subsequently, by superimposing the mitochondrial compartmentalization strategy on cytoplasmic metabolic engineered strains, the CP III titer was increased to 64.3 ± 1.9 mg/L. Furthermore, augmenting antioxidant pathway genes to reduce reactive oxygen species (ROS) levels effectively improved the growth of engineered strains, resulting in a further increase in the CP III titer to 82.9 ± 1.4 mg/L. Fed-batch fermentations in a 5 L bioreactor achieved a titer of 402.8 ± 9.3 mg/L for CP III. This study provides a new perspective on engineered yeast for the microbial production of porphyrins.
Collapse
Affiliation(s)
- Qidi Guo
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaqi Xu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jiacun Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuyan Tang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhui Cheng
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Gao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang-Bin Xiong
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jie Xiong
- Department of Gastroenterology, Tongji Institute of Digestive Disease, Tongji Hospital, School of Medicine, TongJi University, Shanghai, 200065, China
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Kim DH, Cha J, Woo Park G, Soo Kang I, Lee E, Hoon Jung Y, Min K. Biotechnological valorization of levulinic acid as a non-sugar feedstock: New paradigm in biorefineries. BIORESOURCE TECHNOLOGY 2024; 408:131178. [PMID: 39084536 DOI: 10.1016/j.biortech.2024.131178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Due to the severe climate crisis, biorefineries have been highlighted as replacements for fossil fuel-derived refineries. In traditional sugar-based biorefineries, levulinic acid (LA) is a byproduct. Nonetheless, in 2002, the US Department of Energy noted that LA is a significant building block obtained from biomass, and the biorefinery paradigm has shifted from being sugar-based to non-sugar-based. Accordingly, LA is of interest in this review since it can be converted into useful precursors and ultimately can broaden the product spectrum toward more valuable products (e.g., fuels, plastics, and pharmaceuticals), thereby enabling the construction of economically viable biorefineries. This study comprehensively reviews LA production techniques utilizing various bioresources. Recent progress in enzymatic and microbial routes for LA valorization and the LA-derived product spectrum and its versatility are discussed. Finally, challenges and future outlooks for LA-based non-sugar biorefineries are suggested.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Integrative Biology, Kyuongpook National University, Daegu 41556, Republic of Korea; School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jaehyun Cha
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Im Soo Kang
- Department of Integrative Biology, Kyuongpook National University, Daegu 41556, Republic of Korea
| | - Eunjin Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungseon Min
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
3
|
Guo Q, Li J, Wang MR, Zhao M, Zhang G, Tang S, Xiong LB, Gao B, Wang FQ, Wei DZ. Multidimensional engineering of Saccharomyces cerevisiae for the efficient production of heme by exploring the cytotoxicity and tolerance of heme. Metab Eng 2024; 85:46-60. [PMID: 39019249 DOI: 10.1016/j.ymben.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Heme has attracted considerable attention due to its indispensable biological roles and applications in healthcare and artificial foods. The development and utilization of edible microorganisms instead of animals to produce heme is the most promising method to promote the large-scale industrial production and safe application of heme. However, the cytotoxicity of heme severely restricts its efficient synthesis by microorganisms, and the cytotoxic mechanism is not fully understood. In this study, the effect of heme toxicity on Saccharomyces cerevisiae was evaluated by enhancing its synthesis using metabolic engineering. The results showed that the accumulation of heme after the disruption of heme homeostasis caused serious impairments in cell growth and metabolism, as demonstrated by significantly poor growth, mitochondrial damage, cell deformations, and chapped cell surfaces, and these features which were further associated with substantially elevated reactive oxygen species (ROS) levels within the cell (mainly H2O2 and superoxide anion radicals). To improve cellular tolerance to heme, 5 rounds of laboratory evolution were performed, increasing heme production by 7.3-fold and 4.2-fold in terms of the titer (38.9 mg/L) and specific production capacity (1.4 mg/L/OD600), respectively. Based on comparative transcriptomic analyses, 32 genes were identified as candidates that can be modified to enhance heme production by more than 20% in S. cerevisiae. The combined overexpression of 5 genes (SPS22, REE1, PHO84, HEM4 and CLB2) was shown to be an optimal method to enhance heme production. Therefore, a strain with enhanced heme tolerance and ROS quenching ability (R5-M) was developed that could generate 380.5 mg/L heme with a productivity of 4.2 mg/L/h in fed-batch fermentation, with S. cerevisiae strains being the highest producers reported to date. These findings highlight the importance of improving heme tolerance for the microbial production of heme and provide a solution for efficient heme production by engineered yeasts.
Collapse
Affiliation(s)
- Qidi Guo
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiacun Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming-Rui Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Gege Zhang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuyan Tang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang-Bin Xiong
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Gao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
4
|
Guo Y, Zhang R, Wang J, Qin R, Feng J, Chen K, Wang X. Engineering yeasts to Co-utilize methanol or formate coupled with CO 2 fixation. Metab Eng 2024; 84:1-12. [PMID: 38759777 DOI: 10.1016/j.ymben.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/02/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The development of synthetic microorganisms that could use one-carbon compounds, such as carbon dioxide, methanol, or formate, has received considerable interest. In this study, we engineered Pichia pastoris and Saccharomyces cerevisiae to both synthetic methylotrophy and formatotrophy, enabling them to co-utilize methanol or formate with CO2 fixation through a synthetic C1-compound assimilation pathway (MFORG pathway). This pathway consisted of a methanol-formate oxidation module and the reductive glycine pathway. We first assembled the MFORG pathway in P. pastoris using endogenous enzymes, followed by blocking the native methanol assimilation pathway, modularly engineering genes of MFORG pathway, and compartmentalizing the methanol oxidation module. These modifications successfully enabled the methylotrophic yeast P. pastoris to utilize both methanol and formate. We then introduced the MFORG pathway from P. pastoris into the model yeast S. cerevisiae, establishing the synthetic methylotrophy and formatotrophy in this organism. The resulting strain could also successfully utilize both methanol and formate with consumption rates of 20 mg/L/h and 36.5 mg/L/h, respectively. The ability of the engineered P. pastoris and S. cerevisiae to co-assimilate CO2 with methanol or formate through the MFORG pathway was also confirmed by 13C-tracer analysis. Finally, production of 5-aminolevulinic acid and lactic acid by co-assimilating methanol and CO2 was demonstrated in the engineered P. pastoris and S. cerevisiae. This work indicates the potential of the MFORG pathway in developing different hosts to use various one-carbon compounds for chemical production.
Collapse
Affiliation(s)
- Yuanke Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Rui Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Ruirui Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jiao Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| |
Collapse
|
5
|
Tang J, Chen Y, Li Q, Xin W, Xiao X, Chen X, Yang L, Mou B, Li J, Lu F, Fu C, Long W, Liao H, Han X, Feng P, Li W, Zhou K, Yang L, Yang Y, Ma M, Wang H. The response mechanism analysis of HMX1 knockout strain to levulinic acid in Saccharomyces cerevisiae. Front Microbiol 2024; 15:1416903. [PMID: 38989024 PMCID: PMC11233763 DOI: 10.3389/fmicb.2024.1416903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Levulinic acid, a hydrolysis product of lignocellulose, can be metabolized into important compounds in the field of medicine and pesticides by engineered strains of Saccharomyces cerevisiae. Levulinic acid, as an intermediate product widely found in the conversion process of lignocellulosic biomass, has multiple applications. However, its toxicity to Saccharomyces cerevisiae reduces its conversion efficiency, so screening Saccharomyces cerevisiae genes that can tolerate levulinic acid becomes the key. By creating a whole-genome knockout library and bioinformatics analysis, this study used the phenotypic characteristics of cells as the basis for screening and found the HMX1 gene that is highly sensitive to levulinic acid in the oxidative stress pathway. After knocking out HMX1 and treating with levulinic acid, the omics data of the strain revealed that multiple affected pathways, especially the expression of 14 genes related to the cell wall and membrane system, were significantly downregulated. The levels of acetyl-CoA and riboflavin decreased by 1.02-fold and 1.44-fold, respectively, while the content of pantothenic acid increased. These findings indicate that the cell wall-membrane system, as well as the metabolism of acetyl-CoA and riboflavin, are important in improving the resistance of Saccharomyces cerevisiae to levulinic acid. They provide theoretical support for enhancing the tolerance of microorganisms to levulinic acid, which is significant for optimizing the conversion process of lignocellulosic biomass to levulinic acid.
Collapse
Affiliation(s)
- Jiaye Tang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yulei Chen
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenli Xin
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Ximeng Xiao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Xuemei Chen
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Lixi Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Borui Mou
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Jialian Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Fujia Lu
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Chun Fu
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Wencong Long
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Hong Liao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Feng
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Wei Li
- Aba Prefecture Ecological Protection and Development Research Institute, Wenchuan, Sichuan, China
| | - Kedi Zhou
- Institute of Nature Conservation Area Planning, Sichuan Forestry and Grassland Survey and Planning Institute, Chengdu, Sichuan, China
| | - Liuyun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hanyu Wang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan, China
| |
Collapse
|
6
|
Wang W, Xiang Y, Yin G, Hu S, Cheng J, Chen J, Du G, Kang Z, Wang Y. Construction of 5-Aminolevulinic Acid Microbial Cell Factories through Identification of Novel Synthases and Metabolic Pathway Screens and Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8006-8017. [PMID: 38554273 DOI: 10.1021/acs.jafc.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
5-Aminolevulinic acid (5-ALA) plays a pivotal role in the biosynthesis of heme and chlorophyll and has garnered great attention for its agricultural applications. This study explores the multifaceted construction of 5-ALA microbial cell factories. Evolutionary analysis-guided screening identified a novel 5-ALA synthase from Sphingobium amiense as the best synthase. An sRNA library facilitated global gene screening that demonstrated that trpC and ilvA repression enhanced 5-ALA production by 74.3% and 102%, respectively. Subsequently, efflux of 5-ALA by the transporter Gdx increased 5-ALA biosynthesis by 25.7%. To mitigate oxidative toxicity, DNA-binding proteins from starved cells were employed, enhancing cell density and 5-ALA titer by 21.1 and 4.1%, respectively. Combining these strategies resulted in an Escherichia coli strain that produced 5-ALA to 1.51 g·L-1 in shake flask experiments and 6.19 g·L-1 through fed-batch fermentation. This study broadens the repertoire of available 5-ALA synthases and transporters and provides a new platform for optimizing 5-ALA bioproduction.
Collapse
Affiliation(s)
- Wenqiu Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Yulong Xiang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shan Hu
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Jian Cheng
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Wang Y, Li N, Shan X, Zhao X, Sun Y, Zhou J. Enhancement of phycocyanobilin biosynthesis in Escherichia coli by strengthening the supply of precursor and artificially self-assembly complex. Synth Syst Biotechnol 2023; 8:227-234. [PMID: 36936388 PMCID: PMC10020671 DOI: 10.1016/j.synbio.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Phycocyanobilin (PCB) is widely used in healthcare, food processing, and cosmetics. Escherichia coli is the common engineered bacterium used to produce PCB. However, it still suffers from low production level, precursor deficiency, and low catalytic efficiency. In this study, a highly efficient PCB-producing strain was created. First, chassis strains and enzyme sources were screened, and copy numbers were optimized, affording a PCB titer of 9.1 mg/L. Most importantly, the rate-limiting steps of the PCB biosynthetic pathway were determined, and the supply of precursors necessary for PCB synthesis was increased from endogenous sources, affording a titer of 21.4 mg/L. Then, the key enzymes for PCB synthesis, HO1 and PcyA, were assembled into a multi-enzyme complex using the short peptide tag RIAD-RIDD, and 23.5 mg/L of PCB was obtained. Finally, the basic conditions for PCB fermentation were initially determined in 250 mL shake flasks and a 5-L bioreactor to obtain higher titers of PCB. The final titer of PCB reached 147.0 mg/L, which is the highest reported titer of PCB so far. This research provided the foundation for the industrial production of PCB and its derivatives.
Collapse
Affiliation(s)
- Yuqi Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ning Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xiaoyu Shan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yang Sun
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
- Corresponding author. College of Life Science, Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Jingwen Zhou
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Corresponding author. School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
8
|
Xue J, Zhou J, Li J, Du G, Chen J, Wang M, Zhao X. Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins. BIORESOURCE TECHNOLOGY 2023; 370:128556. [PMID: 36586429 DOI: 10.1016/j.biortech.2022.128556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/26/2023]
Abstract
Hemoglobin (Hb) and myoglobin (Mb) are kinds of heme-binding proteins that play crucial physiological roles in different organisms. With rapid application development in food processing and biocatalysis, the requirement of biosynthetic Hb and Mb is increasing. However, the production of Hb and Mb is limited by the lower expressional level of globins and insufficient or improper heme supply. After selecting an inducible strategy for the expression of globins, removing the spatial barrier during heme synthesis, increasing the synthesis of 5-aminolevulinate and moderately enhancing heme synthetic rate-limiting steps, the microbial synthesis of bovine and porcine Hb was firstly achieved. Furthermore, an engineered Saccharomyces cerevisiae obtained a higher titer of soybean (108.2 ± 3.5 mg/L) and clover (13.7 ± 0.5 mg/L) Hb and bovine (68.9 ± 1.6 mg/L) and porcine (85.9 ± 5.0 mg/L) Mb. Therefore, this systematic engineering strategy will be useful to produce other hemoproteins or hemoenzymes with high activities.
Collapse
Affiliation(s)
- Jike Xue
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2022; 119:e2108245119. [PMID: 35858410 PMCID: PMC9335255 DOI: 10.1073/pnas.2108245119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme availability in the cell enables the proper folding and function of enzymes, which carry heme as a cofactor. Using genome-scale modeling, we identified metabolic fluxes and genes that limit heme production. Our study experimentally validates ecYeast8 model predictions. Moreover, we developed an approach to predict gene combinations, which provides an in silico design of a viable strain able to overproduce the metabolite of interest. Using our approach, we constructed a yeast strain that produces 70-fold-higher levels of intracellular heme. With its high-capacity metabolic subnetwork, our engineered strain is a suitable platform for the production of additional heme enzymes. The heme ligand-binding biosensor (Heme-LBB) detects the cotranslational incorporation of heme into the heme-protein hemoglobin. Heme is an oxygen carrier and a cofactor of both industrial enzymes and food additives. The intracellular level of free heme is low, which limits the synthesis of heme proteins. Therefore, increasing heme synthesis allows an increased production of heme proteins. Using the genome-scale metabolic model (GEM) Yeast8 for the yeast Saccharomyces cerevisiae, we identified fluxes potentially important to heme synthesis. With this model, in silico simulations highlighted 84 gene targets for balancing biomass and increasing heme production. Of those identified, 76 genes were individually deleted or overexpressed in experiments. Empirically, 40 genes individually increased heme production (up to threefold). Heme was increased by modifying target genes, which not only included the genes involved in heme biosynthesis, but also those involved in glycolysis, pyruvate, Fe-S clusters, glycine, and succinyl-coenzyme A (CoA) metabolism. Next, we developed an algorithmic method for predicting an optimal combination of these genes by using the enzyme-constrained extension of the Yeast8 model, ecYeast8. The computationally identified combination for enhanced heme production was evaluated using the heme ligand-binding biosensor (Heme-LBB). The positive targets were combined using CRISPR-Cas9 in the yeast strain (IMX581-HEM15-HEM14-HEM3-Δshm1-HEM2-Δhmx1-FET4-Δgcv2-HEM1-Δgcv1-HEM13), which produces 70-fold-higher levels of intracellular heme.
Collapse
|
10
|
Effects of electrolysed water and levulinic acid combination on microbial safety and polysaccharide nanostructure of organic strawberry. Food Chem 2022; 394:133533. [PMID: 35752125 DOI: 10.1016/j.foodchem.2022.133533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to better understand the effects of acidic electrolysed water (AEW, 4 mg/L) and levulinic acid (LA, food grade, 2%) combination on organic strawberry over 7 days. This combined method reduced the population of strawberry's natural microbiota by 1-2 log CFU/g and kept the level of inoculated Escherichia coli O157:H7 and Salmonella below the detection limit (2 log CFU/g) during the whole storage period. Meanwhile, AEW + LA did not affect the physicochemical qualities of strawberries significantly, maintaining most texture and biochemical attributes at an acceptable level (e.g., firmness, colour, soluble solids content and organic acid content). Atomic force microscopy further revealed that the treatment containing LA preserved the sodium carbonate soluble pectin (SSP) nanostructure best by maintaining their length and height, and slowed the breakdown of SSP chains by promoting acid-induced bonding and soluble pectin precipitation. These results demonstrated that low concentration AEW and LA combination is a promising sanitising approach for organic strawberry preservation.
Collapse
|
11
|
Jiang M, Hong K, Mao Y, Ma H, Chen T, Wang Z. Natural 5-Aminolevulinic Acid: Sources, Biosynthesis, Detection and Applications. Front Bioeng Biotechnol 2022; 10:841443. [PMID: 35284403 PMCID: PMC8913508 DOI: 10.3389/fbioe.2022.841443] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is the key precursor for the biosynthesis of tetrapyrrole compounds, with wide applications in medicine, agriculture and other burgeoning fields. Because of its potential applications and disadvantages of chemical synthesis, alternative biotechnological methods have drawn increasing attention. In this review, the recent progress in biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts are summarized. The research progress on 5-ALA biosynthesis via the C4/C5 pathway in microbial cells is emphasized, and the corresponding biotechnological design strategies are highlighted and discussed in detail. In addition, the detection methods and applications of 5-ALA are also reviewed. Finally, perspectives on potential strategies for improving the biosynthesis of 5-ALA and understanding the related mechanisms to further promote its industrial application are conceived and proposed.
Collapse
Affiliation(s)
- Meiru Jiang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Kunqiang Hong
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yufeng Mao
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Transcriptomic Analysis Reveals that Changes in Gene Expression Contribute to Microbacterium sediminis YLB-01 Adaptation at Low Temperature Under High Hydrostatic Pressure. Curr Microbiol 2022; 79:95. [PMID: 35150317 DOI: 10.1007/s00284-022-02786-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
Abstract
Microbes living in extreme environments often adopt strategies for survival, however, only a few studies have examined the adaptive mechanism of deep-sea bacteria in in-situ environments. In this study, transcriptomic data of the deep-sea piezotolerant and psychrotolerant actinomycete Microbacterium sediminis YLB-01 under the conditions of NPNT (normal temperature and pressure: 28 °C, 0.1 MPa), HPNT (normal temperature and high pressure: 28 °C, 30 MPa), NPLT (low temperature and atmospheric pressure: 4 °C, 0.1 MPa) and HPLT (low temperature and high pressure: 4 °C, 30 MPa) were examined and compared. Transcriptome results showed that M. sediminis YLB-01 responds to deep-sea low temperature under high-pressure environments by upregulating the ABC transport system, DNA damage repair response, pentose phosphate pathway, amino acid metabolism and fatty acid metabolism, while down-regulating division, oxidative phosphorylation, the TCA cycle, pyruvate metabolism, ion transport and peptidoglycan biosynthesis. Seven key genes specifically expressed under HPLT conditions were screened, and these genes are present in many strains that are tolerant to low temperatures and high pressures. This study provides transcription level insights into the tolerance mechanisms of M. sediminis YLB-01 in a simulated deep-sea in situ environment.
Collapse
|
13
|
Zhang J, Cui Z, Zhu Y, Zhu Z, Qi Q, Wang Q. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol Adv 2022; 55:107904. [PMID: 34999139 DOI: 10.1016/j.biotechadv.2021.107904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/25/2021] [Accepted: 12/31/2021] [Indexed: 01/23/2023]
Abstract
Tetrapyrroles are essential metabolic components produced by almost all organisms, and they participate in various fundamental biological processes. Tetrapyrroles are used as pharmaceuticals, food additives, and nutraceuticals, as well as in agricultural applications. However, their production is limited by their low extraction yields from natural resources and by the complex reaction steps involved in their chemical synthesis. Through advances in metabolic engineering and synthetic biology strategies, microbial cell factories were developed as an alternative method for tetrapyrrole production. Herein, we review recent developments in metabolic engineering and synthetic biology strategies that promote the microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway (e.g., 5-aminolevulinic acid, heme, bilins, chlorophyll, and vitamin B12). Furthermore, outstanding challenges to the microbial production of tetrapyrrole compounds, as well as their possible solutions, are discussed.
Collapse
Affiliation(s)
- Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yuan Zhu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Ziwei Zhu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China; CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China; CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
14
|
Su A, Yu Q, Luo Y, Yang J, Wang E, Yuan H. Metabolic engineering of microorganisms for the production of multifunctional non-protein amino acids: γ-aminobutyric acid and δ-aminolevulinic acid. Microb Biotechnol 2021; 14:2279-2290. [PMID: 33675575 PMCID: PMC8601173 DOI: 10.1111/1751-7915.13783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and delta-aminolevulinic acid (ALA), playing important roles in agriculture, medicine and other fields, are multifunctional non-protein amino acids with similar and comparable properties and biosynthesis pathways. Recently, microbial synthesis has become an inevitable trend to produce GABA and ALA due to its green and sustainable characteristics. In addition, the development of metabolic engineering and synthetic biology has continuously accelerated and increased the GABA and ALA yield in microorganisms. Here, focusing on the current trends in metabolic engineering strategies for microbial synthesis of GABA and ALA, we analysed and compared the efficiency of various metabolic strategies in detail. Moreover, we provide the insights to meet challenges of realizing industrially competitive strains and highlight the future perspectives of GABA and ALA production.
Collapse
Affiliation(s)
- Anping Su
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Qijun Yu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Ying Luo
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Entao Wang
- Departamento de MicrobiologíaEscuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico City11340Mexico
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| |
Collapse
|
15
|
Yi YC, Shih IT, Yu TH, Lee YJ, Ng IS. Challenges and opportunities of bioprocessing 5-aminolevulinic acid using genetic and metabolic engineering: a critical review. BIORESOUR BIOPROCESS 2021; 8:100. [PMID: 38650260 PMCID: PMC10991938 DOI: 10.1186/s40643-021-00455-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA), a non-proteinogenic five-carbon amino acid, has received intensive attentions in medicine due to its approval by the US Food and Drug Administration (FDA) for cancer diagnosis and treatment as photodynamic therapy. As chemical synthesis of 5-ALA performed low yield, complicated processes, and high cost, biosynthesis of 5-ALA via C4 (also called Shemin pathway) and C5 pathway related to heme biosynthesis in microorganism equipped more advantages. In C4 pathway, 5-ALA is derived from condensation of succinyl-CoA and glycine by 5-aminolevulic acid synthase (ALAS) with pyridoxal phosphate (PLP) as co-factor in one-step biotransformation. The C5 pathway involves three enzymes comprising glutamyl-tRNA synthetase (GltX), glutamyl-tRNA reductase (HemA), and glutamate-1-semialdehyde aminotransferase (HemL) from α-ketoglutarate in TCA cycle to 5-ALA and heme. In this review, we describe the recent results of 5-ALA production from different genes and microorganisms via genetic and metabolic engineering approaches. The regulation of different chassis is fine-tuned by applying synthetic biology and boosts 5-ALA production eventually. The purification process, challenges, and opportunities of 5-ALA for industrial applications are also summarized.
Collapse
Affiliation(s)
- Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Tai Shih
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzu-Hsuan Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yen-Ju Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
16
|
Cui Z, Zhu Z, Zhang J, Jiang Z, Liu Y, Wang Q, Hou J, Qi Q. Efficient 5-aminolevulinic acid production through reconstructing the metabolic pathway in SDH-deficient Yarrowia lipolytica. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Pham DN, Kim CJ. A Novel Two-stage pH Control Strategy for the Production of 5-Aminolevulinic Acid Using Recombinant Streptomyces coelicolor. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Eom SJ, Lim TG, Jhun H, Lee NH, Kang MC, Song KM. Inhibitory effect of Saccharomyces cerevisiae extract obtained through ultrasound-assisted extraction on melanoma cells. ULTRASONICS SONOCHEMISTRY 2021; 76:105620. [PMID: 34119906 PMCID: PMC8207304 DOI: 10.1016/j.ultsonch.2021.105620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Although the immune enhancing effect of yeast has been widely reported, studies specifically investigating its effects on skin cancer are lacking. Therefore, this study aimed to develop a yeast extract capable of inhibiting melanoma cells using ultrasound technology, which can lyse the cell walls allowing subsequent rapid yeast extraction. To compare the extraction efficiency across different extraction methods, the total yield, as well as total glucan, α-glucan, and β-glucan yields were measured. Ultrasound-assisted extract of yeast (UAEY) was found to effectively inhibit melanoma cell growth and proliferation as well as the expression of cyclin D1 and c-myc, in vitro. Additionally, the extract reduced melanoma tumor volume and cyclin D1 levels in BALB/c nu/nu mice. The optimal extraction conditions were 0.2 M NaOH, 3 h, 70 °C, 20 kHz, and 800 W, resulting in an increased total extraction and β-glucan yields of 73.6% and 7.1%, respectively, compared with that achieved using a conventional chemical (0.5 M NaOH) extraction method. Taken together, the results of this study suggest that UAEY may represent an effective anti-skin cancer agent.
Collapse
Affiliation(s)
- Su Jin Eom
- Research Group of Food Processing, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Tae-Gyu Lim
- Food Science and Technology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Nam Hyouck Lee
- Research Group of Food Processing, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Kyung-Mo Song
- Research Group of Food Processing, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
19
|
Dutta S, Bhat NS. Recent Advances in the Value Addition of Biomass‐Derived Levulinic Acid: A Review Focusing on its Chemical Reactivity Patterns. ChemCatChem 2021. [DOI: 10.1002/cctc.202100032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| | - Navya Subray Bhat
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| |
Collapse
|
20
|
Ko YJ, Kim M, You SK, Shin SK, Chang J, Choi HJ, Jeong WY, Lee ME, Hwang DH, Han SO. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metab Eng 2021; 66:217-228. [PMID: 33945844 DOI: 10.1016/j.ymben.2021.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
Recently, heme has attracted much attention as a main ingredient that mimics meat flavor in artificial meat in the food industry. Here, we developed Corynebacterium glutamicum capable of high-yield production of heme with systems metabolic engineering and modification of membrane surface. The combination of two precursor pathways based on thermodynamic information increased carbon flux toward heme and porphyrin intermediate biosynthesis. The co-overexpression of genes involved in a noncanonical downstream pathway and the gene encoding the transcriptional regulator DtxR significantly enhanced heme production. The overexpression of the putative heme exporters, knockout of heme-binding proteins, modification of the cell wall by chemical treatment, and reduction of intermediate UP III substantially improved heme secretion. The fed-batch fermentation showed a maximum heme titer of 309.18 ± 16.43 mg l-1, including secreted heme of 242.95 ± 11.45 mg l-1, a yield on glucose of 0.61 mmol mol-1, and productivity of 6.44 mg l-1h-1, which are the highest values reported to date. These results demonstrate that engineered C. glutamicum can be an attractive cell factory for animal-free heme production.
Collapse
Affiliation(s)
- Young Jin Ko
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Minhye Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Kyou You
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Kyu Shin
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Joonhee Chang
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hae Jin Choi
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Wu-Young Jeong
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Myeong-Eun Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hyeok Hwang
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
21
|
Vila-Santa A, Islam MA, Ferreira FC, Prather KLJ, Mira NP. Prospecting Biochemical Pathways to Implement Microbe-Based Production of the New-to-Nature Platform Chemical Levulinic Acid. ACS Synth Biol 2021; 10:724-736. [PMID: 33764057 DOI: 10.1021/acssynbio.0c00518] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Levulinic acid is a versatile platform molecule with potential to be used as an intermediate in the synthesis of many value-added products used across different industries, from cosmetics to fuels. Thus far, microbial biosynthetic pathways having levulinic acid as a product or an intermediate are not known, which restrains the development and optimization of a microbe-based process envisaging the sustainable bioproduction of this chemical. One of the doors opened by synthetic biology in the design of microbial systems is the implementation of new-to-nature pathways, that is, the assembly of combinations of enzymes not observed in vivo, where the enzymes can use not only their native substrates but also non-native ones, creating synthetic steps that enable the production of novel compounds. Resorting to a combined approach involving complementary computational tools and extensive manual curation, in this work, we provide a thorough prospect of candidate biosynthetic pathways that can be assembled for the production of levulinic acid in Escherichia coli or Saccharomyces cerevisiae. Out of the hundreds of combinations screened, five pathways were selected as best candidates on the basis of the availability of substrates and of candidate enzymes to catalyze the synthetic steps (that is, those steps that involve conversions not previously described). Genome-scale metabolic modeling was used to assess the performance of these pathways in the two selected hosts and to anticipate possible bottlenecks. Not only does the herein described approach offer a platform for the future implementation of the microbial production of levulinic acid but also it provides an organized research strategy that can be used as a framework for the implementation of other new-to-nature biosynthetic pathways for the production of value-added chemicals, thus fostering the emerging field of synthetic industrial microbiotechnology.
Collapse
Affiliation(s)
- Ana Vila-Santa
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - M. Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Leicestershire, LE11 3TU Loughborough, United Kingdom
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Kristala L. J. Prather
- Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nuno P. Mira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
22
|
Xue C, Yu TH, Ng IS. Engineering pyridoxal kinase PdxY-integrated Escherichia coli strain and optimization for high-level 5-aminolevulinic acid production. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 2021; 47:107697. [PMID: 33508428 DOI: 10.1016/j.biotechadv.2021.107697] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genome-editing tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal.
| |
Collapse
|
24
|
Kitamura S, Shimizu H, Toya Y. Identification of a rate-limiting step in a metabolic pathway using the kinetic model and in vitro experiment. J Biosci Bioeng 2020; 131:271-276. [PMID: 33168471 DOI: 10.1016/j.jbiosc.2020.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
Identification of the rate-limiting step in a metabolic pathway is an important challenge in metabolic engineering for enhancing pathway flow. Although specific enzyme activities (Vmax) provide valuable clues for the identification, it is time-consuming and difficult to measure multiple enzymes in the pathway because different assay protocols are required for each enzyme. In the present study, we propose a method to simultaneously determine the Vmax values of multiple enzymes using a kinetic model with a time course of the intermediate concentrations through an in vitro experiment. To demonstrate this method, nine glycolysis reactions for converting glucose-6-phosphate (G6P) to pyruvate in Escherichia coli were considered. In a reaction mixture containing G6P and cofactors, glycolysis was initiated by adding a crude cell extract obtained from stationary phase cells. The Vmax values were optimized to minimize the difference between the measured and simulated time-courses using a kinetic model. Metabolic control analysis using the kinetic model with the estimated Vmax values revealed that fructose bisphosphate aldolase (FBA) was the rate-limiting step in the upper part of glycolysis. The addition of FBA in the reaction mixture successfully increased the glycolytic flux in vitro. Furthermore, in vivo, the specific glucose consumption rate of an FBA overexpression strain was 1.4 times higher than that of the control strain during the stationary phase. These results confirmed that FBA was the rate-limiting step in glycolysis under the stationary phase. This approach provides Vmax values of multiple enzymes in a pathway for metabolic control analysis with a kinetic model.
Collapse
Affiliation(s)
- Sayaka Kitamura
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
25
|
Mao Y, Chen Z, Lu L, Jin B, Ma H, Pan Y, Chen T. Efficient solid-state fermentation for the production of 5-aminolevulinic acid enriched feed using recombinant Saccharomyces cerevisiae. J Biotechnol 2020; 322:29-32. [PMID: 32653638 DOI: 10.1016/j.jbiotec.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Over the past decade, 5-aminolevulinic acid (5-ALA) has been highlighted as a promising functional feed additive and immunomodulator for improving the general health, immune response, and resistance to disease of livestock and poultry. However, it is very costly to produce 5-ALA using conventional chemical synthesis methods. Classical microbial fermentation fulfills the criteria of environmental friendliness, but the unsatisfactory titers still hinder actual industrial production. This study aimed to develop a solid-state fermentation (SSF) process that can be used to efficiently enrich feed with 5-ALA at a low cost. First, the endogenous 5-ALA synthase was overexpressed in Saccharomyces cerevisiae via integrating a copy of HEM1 gene into the chromosome and introducing a multi-copy plasmid pRS416-HEM1 which constitutively overexpresses HEM1 gene. The resulting strain ScA3 was able to produce 63.82 mg/L 5-ALA in shake-flask fermentation. After process optimization, a titer of 225.63 mg/kg dry materials, exceeding the usual effective dosage reported in animal trials, was achieved within 48 h through SSF of 20 kg feed in a 90-L steel drum. To our knowledge, this is the first report on combining microbial 5-ALA production with SSF in feed processing, which will hopefully promote the application and popularization of 5-ALA in the feed industry.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zetian Chen
- Henan Yihongshancheng Bio-Tech Co. Ltd., Yihongshancheng Park, South Gongye Road, Wuzhi, Henan 454950, China
| | - Lingxue Lu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Biao Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yun Pan
- Henan Yihongshancheng Bio-Tech Co. Ltd., Yihongshancheng Park, South Gongye Road, Wuzhi, Henan 454950, China.
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
26
|
Ma Y, Qu S, Xu L, Lu H, Li B. An in vitro study of the effect of 5-ALA-mediated photodynamic therapy on oral squamous cell carcinoma. BMC Oral Health 2020; 20:258. [PMID: 32938451 PMCID: PMC7493380 DOI: 10.1186/s12903-020-01239-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/30/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The primary aim of this study was to observe the effect of 5-ALA-mediated photodynamic therapy on oral squamous cell carcinoma in vitro. METHODS SCC25 cells were divided into the observation group and the blank control group. Different concentrations of 5-ALA and SCC25 cells were co-incubated for different times, and the concentration of protoporphyrin IX was detected by flow cytometry. SCC25 cells were divided into the 5-ALA group (100 mg/L), the laser irradiation group alone, the 5-ALA plus laser irradiation group, and the blank control group (0 mg/L 5-ALA), and the methyl thiazolyl tetrazolium (MTT) solution method was used (each group was incubated for 4, 8 and 12 h in turn). The cell survival rate was calculated. Using annexin V-fluorescein isothiocyanate/propidium iodide method, the apoptosis of SCC25 cells was detected by flow cytometry. RESULTS The level of protoporphyrin IX in SCC25 cells increased with increased concentrations of 5-ALA and length of incubation. However, after 12 h, protoporphyrin IX level in SCC25 cells was gradually stabilized, and similar effect was obtained with 100 mg/L or more 5-ALA, indicating that the level of protoporphyrin IX in SCC25 cells was determined by 5-ALA concentration and incubation time. 5-ALA plus laser irradiation exerted an inhibitory effect on the growth of SCC25 cells, which was highly associated with drug dose and incubation time. Compared with the control group, laser irradiation alone or 5-ALA alone had no effect on the apoptosis of SCC25 cells. Different concentrations of 5-ALA combined with laser irradiation showed a remarkable effect of apoptosis, and a higher apoptosis rate was seen with higher drug concentrations. CONCLUSION 5-ALA-mediated photodynamic therapy affects the growth of SCC25 cells in vitro, which may provide a new idea for the clinical treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Ying Ma
- Department of Stomatology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi, 276400, Shandong, China
| | - Shujuan Qu
- Department of Stomatology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi, 276400, Shandong, China
| | - Liangpeng Xu
- Department of Stomatology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi, 276400, Shandong, China.
| | - Hongbo Lu
- Department of Stomatology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi, 276400, Shandong, China
| | - Baoguo Li
- Department of Stomatology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi, 276400, Shandong, China
| |
Collapse
|