1
|
Li Y, Wang X, Zhou NY, Ding J. Yeast surface display technology: Mechanisms, applications, and perspectives. Biotechnol Adv 2024; 76:108422. [PMID: 39117125 DOI: 10.1016/j.biotechadv.2024.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Microbial cell surface display technology, which relies on genetically fusing heterologous target proteins to the cell wall through fusion with cell wall anchor proteins, has emerged as a promising and powerful method with diverse applications in biotechnology and biomedicine. Compared to classical intracellular or extracellular expression (secretion) systems, the cell surface display strategy stands out by eliminating the necessity for enzyme purification, overcoming substrate transport limitations, and demonstrating enhanced activity, stability, and selectivity. Unlike phage or bacterial surface display, the yeast surface display (YSD) system offers distinct advantages, including its large cell size, ease of culture and genetic manipulation, the use of generally regarded as safe (GRAS) host cell, the ability to ensure correct folding of complex eukaryotic proteins, and the potential for post-translational modifications. To date, YSD systems have found widespread applications in protein engineering, waste biorefineries, bioremediation, and the production of biocatalysts and biosensors. This review focuses on detailing various strategies and mechanisms for constructing YSD systems, providing a comprehensive overview of both fundamental principles and practical applications. Finally, the review outlines future perspectives for developing novel forms of YSD systems and explores potential applications in diverse fields.
Collapse
Affiliation(s)
- Yibo Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China; Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
| | - Xu Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China; Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China; Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
2
|
Han W, Zhao Y, Chen Q, Xie Y, Zhang M, Yao H, Wang L, Zhang Y. Laccase surface-display for environmental tetracycline removal: From structure to function. CHEMOSPHERE 2024; 365:143286. [PMID: 39265738 DOI: 10.1016/j.chemosphere.2024.143286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Facing the increasingly prominent tetracycline pollution and the resulting environmental problems, how to find environmental and efficient treatment means is one of the current research hotspots. In this study, the laccase surface-display technology for tetracycline treatment was investigated. Via study, the type of anchoring protein had a minor influence on the laccase ability, while the type of laccase showed a major impact. Bacillus subtilis spore coat protein (CotA) exhibited higher laccase activity, stability, and efficiency in degrading tetracycline than Pleurotus ostreatus laccase 6 (Lacc6). The superiority of bacterial laccase over fungal laccase was elucidated from the perspective of crystal structure. Besides, a variety of technical means were used to verify the success of surface-display. pGSA-CotA surface-displayed bacteria exhibited good tolerance to high temperature, pH, and various heavy metals. Importantly, surface-displayed bacteria showed faster degradation efficiency and better treatment effects than the intracellular expression bacteria in tetracycline degradation. This implies that surface display technology has greater potential for laccase-mediated environmental remediation. Due to the adverse impacts of tetracycline on soil enzyme activity and microorganisms, our study found that pGSA-CotA surface-displayed bacteria can alleviate tetracycline stress in soil and partially activate the soil, thereby increasing soil enzyme activity and certain nitrogen cycling genes.
Collapse
Affiliation(s)
- Wei Han
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Ying Zhao
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Qi Chen
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Yuzhu Xie
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Meng Zhang
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Hongkai Yao
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, HarBin, Heilongjiang Province, 150030, PR China.
| |
Collapse
|
3
|
Durante‐Rodríguez G, de Francisco‐Polanco S, Fernández‐Arévalo U, Díaz E. Engineering bacterial biocatalysts for the degradation of phthalic acid esters. Microb Biotechnol 2024; 17:e70024. [PMID: 39365609 PMCID: PMC11451385 DOI: 10.1111/1751-7915.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Phthalic acid esters (PAEs) are synthetic diesters derived from o-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants. Microbial degradation, primarily by bacteria and fungi, offers a promising method for PAEs bioremediation. This article highlights the current state of microbial PAEs degradation, focusing on the major bottlenecks and associated challenges. These include the identification of novel and more efficient PAE hydrolases to address the complexity of PAE mixtures in the environment, understanding PAEs uptake mechanisms, characterizing novel o-phthalate degradation pathways, and studying the regulatory network that controls the expression of PAE degradation genes. Future research directions include mitigating the impact of PAEs on health and ecosystems, developing biosensors for monitoring and measuring bioavailable PAEs concentrations, and valorizing these residues into other products of industrial interest, among others.
Collapse
Affiliation(s)
| | | | - Unai Fernández‐Arévalo
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Eduardo Díaz
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| |
Collapse
|
4
|
Mu B, Sadowski P, Te'o J, Patel B, Pathiraja N, Dudley K. Identification and characterisation of moderately thermostable diisobutyl phthalate degrading esterase from a Great Artesian Basin Bacillus velezensis NP05. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00840. [PMID: 38645886 PMCID: PMC11033087 DOI: 10.1016/j.btre.2024.e00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Phthalate esters are known to be endocrine disrupting chemicals and are documented to pollute environments. Enzymatic degradation of PAEs is a potential bioremedial strategy to manage contamination. Thermostable bioremedial enzymes have advantages in enzyme manufacturing and storage. In this study, we identified, overexpressed, and characterised a moderately thermostable para-nitrobenzyl esterase from whole genome sequencing of a Bacillus velezensis NP05 from the Great Artesian Basin, capable of sequential 2-step hydrolysis of diisobutyl phthalate. The pnbA enzyme has a molecular weight of 55.14 kDa and pI of 5.31. It preferentially degrades para-nitrophenyl butanoate and has an optimal pH of 7-8. The pnbA esterase has an optimal temperature of 55 °C with a half-life of 4 h. Using HPLC we found that pnbA (0.122 U) can hydrolyse 0.83 mM of DIBP within 25 min. Lastly, pnbA is potentially a more economically viable candidate for enzymatic bioremediation of diisobutyl phthalate as a free enzyme.
Collapse
Affiliation(s)
- Brandon Mu
- Queensland University of Technology (QUT), The School of Biology and Environmental Science (BES), 2 George St Brisbane, QLD 4001, Australia
- Queensland University of Technology (QUT), Central Analytical Research Facility (CARF), 2 George St Brisbane, QLD 4001, Australia
| | - Pawel Sadowski
- Queensland University of Technology (QUT), Central Analytical Research Facility (CARF), 2 George St Brisbane, QLD 4001, Australia
| | - Junior Te'o
- Queensland University of Technology (QUT), The School of Biology and Environmental Science (BES), 2 George St Brisbane, QLD 4001, Australia
| | - Bharat Patel
- Queensland University of Technology (QUT), The School of Biology and Environmental Science (BES), 2 George St Brisbane, QLD 4001, Australia
| | - Nayana Pathiraja
- Queensland University of Technology (QUT), The School of Biology and Environmental Science (BES), 2 George St Brisbane, QLD 4001, Australia
| | - Kevin Dudley
- Queensland University of Technology (QUT), The School of Biology and Environmental Science (BES), 2 George St Brisbane, QLD 4001, Australia
- Queensland University of Technology (QUT), Central Analytical Research Facility (CARF), 2 George St Brisbane, QLD 4001, Australia
| |
Collapse
|
5
|
Zhang L, Tan L, Liu M, Chen Y, Yang Y, Zhang Y, Zhao G. Quantitative measurement of cell-surface displayed proteins based on split-GFP assembly. Microb Cell Fact 2024; 23:108. [PMID: 38609965 PMCID: PMC11015686 DOI: 10.1186/s12934-024-02386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Microbial cell surface display technology allows immobilizing proteins on the cell surface by fusing them to anchoring motifs, thereby endowing the cells with diverse functionalities. However, the assessment of successful protein display and the quantification of displayed proteins remain challenging. The green fluorescent protein (GFP) can be split into two non-fluorescent fragments, while they spontaneously assemble and emit fluorescence when brought together through complementation. Based on split-GFP assembly, we aim to: (1) confirm the success display of passenger proteins, (2) quantify the number of passenger proteins displayed on individual cells. RESULTS In this study, we propose two innovative methods based on split-green fluorescent protein (split-GFP), named GFP1-10/GFP11 and GFP1-9/GFP10-11 assembly, for the purpose of confirming successful display and quantifying the number of proteins displayed on individual cells. We evaluated the display efficiency of SUMO and ubiquitin using different anchor proteins to demonstrate the feasibility of the two split-GFP assembly systems. To measure the display efficiency of functional proteins, laccase expression was measured using the split-GFP assembly system by co-displaying GFP11 or GFP10-11 tags, respectively. CONCLUSIONS Our study provides two split-GFP based methods that enable qualitative and quantitative analyses of individual cell display efficiency with a simple workflow, thus facilitating further comprehensive investigations into microbial cell surface display technology. Both split-GFP assembly systems offer a one-step procedure with minimal cost, simplifying the fluorescence analysis of surface-displaying cells.
Collapse
Affiliation(s)
- Li Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Ling Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Meizi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Yunhong Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yu Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, PR China.
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Zhang A, Hou Y, Wang Y, Wang Q, Shan X, Liu J. Highly efficient low-temperature biodegradation of polyethylene microplastics by using cold-active laccase cell-surface display system. BIORESOURCE TECHNOLOGY 2023; 382:129164. [PMID: 37207695 DOI: 10.1016/j.biortech.2023.129164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
To eliminate efficiency restriction of polyethylene microplastics low-temperature biodegradation, a novel InaKN-mediated Escherichia coli surface display platform for cold-active degrading laccase PsLAC production was developed. Display efficiency of 88.0% for engineering bacteria BL21/pET-InaKN-PsLAC was verified via subcellular extraction and protease accessibility, exhibiting an activity load of 29.6 U/mg. Cell growth and membrane integrity revealed BL21/pET-InaKN-PsLAC maintained stable growth and intact membrane structure during the display process. The favorable applicability was confirmed, with 50.0% activity remaining in 4 days at 15 °C, and 39.0% activity recovery retention after 15 batches of activity substrate oxidation reactions. Moreover, BL21/pET-InaKN-PsLAC possessed high polyethylene low-temperature depolymerizing capacity. Bioremediation experiments proved that the degradation rate was 48.0% within 48 h at 15 °C, and reached 66.0% after 144 h. Collectively, cold-active PsLAC functional surface display technology and its significant contributions to polyethylene microplastics low-temperature degradation constitute an effective improvement strategy for biomanufacturing and microplastics cold remediation.
Collapse
Affiliation(s)
- Ailin Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yatong Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Xuejing Shan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jianan Liu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
7
|
Chen Y, Wang Y, Xu Y, Sun J, Yang L, Feng C, Wang J, Zhou Y, Zhang ZM, Wang Y. Molecular insights into the catalytic mechanism of plasticizer degradation by a monoalkyl phthalate hydrolase. Commun Chem 2023; 6:45. [PMID: 36859434 PMCID: PMC9977937 DOI: 10.1038/s42004-023-00846-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Phthalate acid esters (PAEs), a group of xenobiotic compounds used extensively as plasticizers, have attracted increasing concern for adverse effects to human health and the environment. Microbial degradation relying on PAE hydrolases is a promising treatment. However, only a limited number of PAE hydrolases were characterized to date. Here we report the structures of MehpH, a monoalkyl phthalate (MBP) hydrolase that catalyzes the reaction of MBP to phthalic acid and the corresponding alcohol, in apo and ligand-bound form. The structures reveal a positively-charged catalytic center, complementary to the negatively-charged carboxyl group on MBP, and a penetrating tunnel that serves as exit of alcohol. The study provides a first glimpse into the enzyme-substrate binding model for PAE hydrolases, leading strong support to the development of better enzymes in the future.
Collapse
Affiliation(s)
- Yebao Chen
- grid.79703.3a0000 0004 1764 3838School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Yongjin Wang
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Yang Xu
- grid.79703.3a0000 0004 1764 3838School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Jiaojiao Sun
- grid.79703.3a0000 0004 1764 3838School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Liu Yang
- grid.79703.3a0000 0004 1764 3838School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Chenhao Feng
- grid.79703.3a0000 0004 1764 3838School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Jia Wang
- grid.79703.3a0000 0004 1764 3838School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China. .,Guangdong Youmei Institute of Inteligent Bio-manufacturing, Foshan, Guangdong, 528200, China.
| |
Collapse
|
8
|
Sun S, Tan Y, Wang L, Wu Z, Zhou J, Wu G, Shao Y, Wang M, Song Z, Xin Z. Improving the activity and expression level of a phthalate-degrading enzyme by a combination of mutagenesis strategies and strong promoter replacement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41107-41119. [PMID: 36630040 DOI: 10.1007/s11356-023-25263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Phthalic acid esters (PAEs) are widely used plasticizers found in consumer products, which enter the environment and pose severe threats to human health. Here, a new PAE-degrading enzyme EstJ6 was modified by combining mutagenesis strategies and a strong promoter replacement to improve its catalytic activity and expression level. Four mutants with enhanced activity were obtained by random mutation, among which EstJ6M1.1 exhibited the highest catalytic activity with an increase in catalytic activity by 2.9-fold toward dibutyl phthalate (DBP) than that of the wild-type (WT) enzyme. With these mutants as a template, a variant EstJ6M2 with 3.1-fold higher catalytic activity and 4.61 times higher catalytic efficiency (Kcat/Km) was identified by staggered extension PCR. Targeting four mutation sites of EstJ6M2, a variant EstJ6M3.1 was gained by site-directed saturation mutagenesis and displayed 4.3-fold higher activity and 5.97 times higher Kcat/Km than WT. The expression level of three mutants EstJ6M1.1, EstJ6M2, and EstJ6M3.1, as well as the WT, increased nearly threefold after a strong promoter replacement. These results provide a proof-theoretical basis and practicable pipeline for applying PAE-degrading enzymes.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuzhi Tan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Luyao Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zichao Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jingjie Zhou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guojun Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mengxi Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhe Song
- Instrumental Analysis Center of CPU, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, People's Republic of China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
9
|
Yuan F, Sun Y, Jiang X, Liu T, Kang B, Freguia S, Feng L, Chen Y. Dioctyl phthalate enhances volatile fatty acids production from sludge anaerobic fermentation: Insights of electron transport and metabolic functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160102. [PMID: 36370796 DOI: 10.1016/j.scitotenv.2022.160102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As one of the most widely used phthalate plasticizers, dioctyl phthalate (DOP) has been detected in wastewater and accumulates in sludge through wastewater treatment, which may adversely affect further sludge treatment. However, the role of DOP on sludge anaerobic fermentation and its mechanism are not yet clear. Therefore, this study focused on the effect of DOP on the volatile fatty acids (VFAs) generation via the anaerobic fermentation of sludge. The results demonstrated that the presence of DOP had a considerable contribution to the generation of VFAs, and the maximum production of VFAs reached 4769 mg COD/L at 500 mg/kg DOP, which was 1.57 folds that of the control. Mechanistic investigation showed that DOP mainly enhanced the hydrolysis, acidification and related enzymes activities of sludge. VFAs-producing microorganisms (e.g., Clostridium and Conexibacter) were also enriched under DOP exposure. Importantly, the presence of DOP increased the electron transfer activity by 26 %, consequently facilitating the organics conversion and fermentation process. Notably, the functional gene expressions involved in substrate metabolism and VFAs biosynthesis were enhanced with DOP, resulting in increased VFAs production from sludge. The results obtained in this study offered a new strategy for the control of pollutants and the recycling of valuable products from sludge.
Collapse
Affiliation(s)
- Feiyi Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yi Sun
- Downhole Technical Service Branch, Bohai Drilling Engineering Co., Ltd, National Petroleum Corporation, 8, Second Street, Economic and Technological Development Zone, Tianjin 300450, PR China
| | - Xiupeng Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Tao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bo Kang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
10
|
Surface display of (R)-carbonyl reductase on Escherichia coli as biocatalyst for recycling biotransformation of 2-hydroxyacetophenone. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Rajendran K, Dey R, Ghosh A, Das D. In search of biocatalytic remedy for organotin compounds- the recalcitrant eco-toxicants. Biophys Chem 2022; 290:106888. [DOI: 10.1016/j.bpc.2022.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
|
12
|
Zhou R, Dong S, Feng Y, Cui Q, Xuan J. Development of highly efficient whole-cell catalysts of cis-epoxysuccinic acid hydrolase by surface display. BIORESOUR BIOPROCESS 2022; 9:92. [PMID: 38647583 PMCID: PMC10991663 DOI: 10.1186/s40643-022-00584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Bacterial cis-epoxysuccinic acid hydrolases (CESHs) are intracellular enzymes used in the industrial production of enantiomeric tartaric acids. The enzymes are mainly used as whole-cell catalysts because of the low stability of purified CESHs. However, the low cell permeability is the major drawback of the whole-cell catalyst. To overcome this problem, we developed whole-cell catalysts using various surface display systems for CESH[L] which produces L(+)-tartaric acid. Considering that the display efficiency depends on both the carrier and the passenger, we screened five different anchoring motifs in Escherichia coli. Display efficiencies are significantly different among these five systems and the InaPbN-CESH[L] system has the highest whole-cell enzymatic activity. Conditions for InaPbN-CESH[L] production were optimized and a maturation step was discovered which can increase the whole-cell activity several times. After optimization, the total activity of the InaPbN-CESH[L] surface display system is higher than the total lysate activity of an intracellular CESH[L] overexpression system, indicating a very high CESH[L] display level. Furthermore, the whole-cell InaPbN-CESH[L] biocatalyst exhibited good storage stability at 4 °C and considerable reusability. Thereby, an efficient whole-cell CESH[L] biocatalyst was developed in this study, which solves the cell permeability problem and provides a valuable system for industrial L(+)-tartaric acid production.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao, 266101, Shandong, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao, 266101, Shandong, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao, 266101, Shandong, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
13
|
Bhattacharyya M, Basu S, Dhar R, Dutta TK. Phthalate hydrolase: distribution, diversity and molecular evolution. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:333-346. [PMID: 34816599 DOI: 10.1111/1758-2229.13028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/12/2023]
Abstract
The alpha/beta-fold superfamily of hydrolases is rapidly becoming one of the largest groups of structurally related enzymes with diverse catalytic functions. In this superfamily of enzymes, esterase deserves special attention because of their wide distribution in biological systems and importance towards environmental and industrial applications. Among various esterases, phthalate hydrolases are the key alpha/beta enzymes involved in the metabolism of structurally diverse estrogenic phthalic acid esters, ubiquitously distributed synthetic chemicals, used as plasticizer in plastic manufacturing processes. Although they vary both at the sequence and functional levels, these hydrolases use a similar acid-base-nucleophile catalytic mechanism to catalyse reactions on structurally different substrates. The current review attempts to present insights on phthalate hydrolases, describing their sources, structural diversities, phylogenetic affiliations and catalytically different types or classes of enzymes, categorized as diesterase, monoesterase and diesterase-monoesterase, capable of hydrolysing phthalate diester, phthalate monoester and both respectively. Furthermore, available information on in silico analyses and site-directed mutagenesis studies revealing structure-function integrity and altered enzyme kinetics have been highlighted along with the possible scenario of their evolution at the molecular level.
Collapse
Affiliation(s)
| | - Suman Basu
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | - Rinita Dhar
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Phthalate Esters Metabolic Strain Gordonia sp. GZ-YC7, a Potential Soil Degrader for High Concentration Di-(2-ethylhexyl) Phthalate. Microorganisms 2022; 10:microorganisms10030641. [PMID: 35336217 PMCID: PMC8955600 DOI: 10.3390/microorganisms10030641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
As commonly used chemical plasticizers in plastic products, phthalate esters have become a serious ubiquitous environmental pollutant, such as in soil of plastic film mulch culture. Microbial degradation or transformation was regarded as a suitable strategy to solve the phthalate esters pollution. Thus, a new phthalate esters degrading strain Gordonia sp. GZ-YC7 was isolated in this study, which exhibited the highest di-(2-ethylhexyl) phthalate degradation efficiency under 1000 mg/L and the strongest tolerance to 4000 mg/L. The comparative genomic analysis results showed that there exist diverse esterases for various phthalate esters such as di-(2-ethylhexyl) phthalate and dibutyl phthalate in Gordonia sp. GZ-YC7. This genome characteristic possibly contributes to its broad substrate spectrum, high degrading efficiency, and high tolerance to phthalate esters. Gordonia sp. GZ-YC7 has potential for the bioremediation of phthalate esters in polluted soil environments.
Collapse
|
15
|
Ding J, Liu Y, Gao Y, Zhang C, Wang Y, Xu B, Yang Y, Wu Q, Huang Z. Biodegradation of λ-cyhalothrin through cell surface display of bacterial carboxylesterase. CHEMOSPHERE 2022; 289:133130. [PMID: 34863720 DOI: 10.1016/j.chemosphere.2021.133130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/27/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Pyrethroids are the third widespread used insecticides globally which have been extensively applied in agricultural or household environments. Due to continuous applications, pyrethroids have been detected both in living cells and environments. The permanent exposure to pyrethroids have caused substantial health risks and ecosystem concerns. In this work, a λ-cyhalothrin (one kind of pyrethroid insecticides) degrading bacterium Bacillus velezensis sd was isolated and a carboxylesterase gene, CarCB2 was characterized. A whole cell biocatalyst was developed for λ-cyhalothrin biodegradation by displaying CarCB2 on the surface of Escherichia coli cells. CarCB2 was successfully displayed and functionally expressed on E. coli cells with optimal pH and temperature of 7.5 and 30 °C, using p-NPC4 as substrate, respectively. The whole cell biocatalyst exhibited better stability than the purified CarCB2, and approximately 120%, 60% or 50% of its original activity at 4 °C, 30 °C or 37 °C over a period of 35 d was retained, respectively. No enzymatic activity was detected when incubated the purified CarCB2 at 30 °C for 120 h, or 37 °C for 72 h, respectively. Additionally, 30 mg/L of λ-cyhalothrin was degraded in citrate-phosphate buffer by 10 U of the whole cell biocatalyst in 150 min. This work reveals that the whole cell biocatalyst affords a promising approach for efficient biodegradation of λ-cyhalothrin, and might have the potential to be applied in further environmental bioremediation of other different kinds of pyrethroid insecticides.
Collapse
Affiliation(s)
- Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| | - Yan Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yanxiu Gao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yafei Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yunjuan Yang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
16
|
Lin K, Han S, Zheng S. Application of Corynebacterium glutamicum engineering display system in three generations of biorefinery. Microb Cell Fact 2022; 21:14. [PMID: 35090458 PMCID: PMC8796525 DOI: 10.1186/s12934-022-01741-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/09/2022] [Indexed: 11/29/2022] Open
Abstract
The fermentation production of platform chemicals in biorefineries is a sustainable alternative to the current petroleum refining process. The natural advantages of Corynebacterium glutamicum in carbon metabolism have led to C. glutamicum being used as a microbial cell factory that can use various biomass to produce value-added platform chemicals and polymers. In this review, we discussed the use of C. glutamicum surface display engineering bacteria in the three generations of biorefinery resources, and analyzed the C. glutamicum engineering display system in degradation, transport, and metabolic network reconstruction models. These engineering modifications show that the C. glutamicum engineering display system has great potential to become a cell refining factory based on sustainable biomass, and further optimizes the inherent properties of C. glutamicum as a whole-cell biocatalyst. This review will also provide a reference for the direction of future engineering transformation.
Collapse
Affiliation(s)
- Kerui Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
17
|
Ghodke VM, Punekar NS. Environmental role of aromatic carboxylesterases. Environ Microbiol 2021; 24:2657-2668. [PMID: 34528362 DOI: 10.1111/1462-2920.15774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023]
Abstract
The carboxylesterases (EC 3.1.1.x) are widely distributed and form an important yet diverse group of hydrolases catalysing the ester bond cleavage in a variety of substrates. Besides acting on plant cell wall components like cutin, tannin and feruloyl esters, they are often the first line of defence to metabolize drugs, xenobiotics, pesticides, insecticides and plastic. But for the promiscuity of some carboxylesterases and cutinases, very few enzymes act exclusively on aromatic carboxylic acid esters. Infrequent occurrence of aromatic carboxylesterases suggests that aromatic carboxylesters are inherently more difficult to hydrolyse than the regular carboxylesters because of both steric and polar effects. Naturally occurring aromatic carboxylesters were rare before the anthropogenic activity augmented their environmental presence and diversity. An appraisal of the literature shows that the hydrolysis of aromatic carboxylic esters is a uniquely difficult endeavour and hence deserves special attention. Enzymes to hydrolyse such esters are evolving rapidly in nature. Very few such enzymes are known and they often display much lower catalytic efficiencies. Obviously, the esters of aromatic carboxylic acids, including polyethylene terephthalate waste, pose an environmental challenge. In this review, we highlight the uniqueness of aromatic carboxylesters and then underscore the importance of relevant carboxylesterases.
Collapse
Affiliation(s)
- Venkatesh M Ghodke
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Narayan S Punekar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
18
|
An integrated overview of bacterial carboxylesterase: Structure, function and biocatalytic applications. Colloids Surf B Biointerfaces 2021; 205:111882. [PMID: 34087776 DOI: 10.1016/j.colsurfb.2021.111882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Carboxylesterases (CEs) are members of prominent esterase, and as their name imply, they catalyze the cleavage of ester linkages. By far, a considerable number of novel CEs have been identified to investigate their exquisite physiological and biochemical properties. They are abundant enzymes in nature, widely distributed in relatively broad temperature range and in various sources; both macroorganisms and microorganisms. Given the importance of these enzymes in broad industries, interest in the study of their mechanisms and structural-based engineering are greatly increasing. This review presents the current state of knowledge and understanding about the structure and functions of this ester-metabolizing enzyme, primarily from bacterial sources. In addition, the potential biotechnological applications of bacterial CEs are also encompassed. This review will be useful in understanding the molecular basis and structural protein of bacterial CEs that are significant for the advancement of enzymology field in industries.
Collapse
|