1
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
2
|
Han D, Ma Q, Ballar P, Zhang C, Dai M, Luo X, Gu J, Wei C, Guo P, Zeng L, Hu M, Jiang C, Liang Y, Wang Y, Hou C, Wang X, Feng L, Shen Y, Shen Y, Hu X, Liu J. Reprogramming tumor-associated macrophages and inhibiting tumor neovascularization by targeting MANF-HSF1-HSP70-1 pathway: An effective treatment for hepatocellular carcinoma. Acta Pharm Sin B 2024; 14:4396-4412. [PMID: 39525584 PMCID: PMC11544390 DOI: 10.1016/j.apsb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 11/16/2024] Open
Abstract
In advanced hepatocellular carcinoma (HCC) tissues, M2-like tumor-associated macrophages (TAMs) are in the majority and promotes HCC progression. Contrary to the pro-tumor effect of M2-like TAMs, M1-like TAMs account for a small proportion and have anti-tumor effects. Since TAMs can switch from one type to another, reprogramming TAMs may be an important treatment for HCC therapy. However, the mechanisms of phenotypic switch and reprogramming TAMs are still obscure. In this study, we analyzed differential genes in normal macrophages and TAMs, and found that loss of MANF in TAMs accompanied by high levels of downstream genes negatively regulated by MANF. MANF reprogrammed TAMs into M1 phenotype. Meanwhile, loss of MANF promoted HCC progression in HCC patients and mice HCC model, especially tumor neovascularization. Additionally, macrophages with MANF supplement suppressed HCC progression in mice, suggesting MANF supplement in macrophage was an effective treatment for HCC. Mechanistically, MANF enhanced the HSF1-HSP70-1 interaction, restricted HSF1 in the cytoplasm of macrophages, and decreased both mRNA and protein levels of HSP70-1, which in turn led to reprogramming TAMs, and suppressing neovascularization of HCC. Our study contributes to the exploration the mechanism of TAMs reprogramming, which may provide insights for future therapeutic exploitation of HCC neovascularization.
Collapse
Affiliation(s)
- Dan Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Qiannan Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Petek Ballar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir 35130, Turkey
| | - Chunyang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Min Dai
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Xiaoyuan Luo
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Jiong Gu
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Panhui Guo
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Lulu Zeng
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Min Hu
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Can Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yanyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xian Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Xiangpeng Hu
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
3
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
4
|
Sun L, Fan C, Xu P, Sun FH, Tang HH, Wang WD. Identification of prognostic biomarkers for hepatocellular carcinoma with vascular invasion. Am J Transl Res 2024; 16:2828-2839. [PMID: 39114683 PMCID: PMC11301501 DOI: 10.62347/sqzw3775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Vascular invasion (VI) profoundly impacts the prognosis of hepatocellular carcinoma (HCC), yet the underlying biomarkers and mechanisms remain elusive. This study aimed to identify prognostic biomarkers for HCC patients with VI. METHODS Transcriptome data from primary HCC tissues and HCC tissues with VI were obtained through the Genome Expression Omnibus database. Differentially expressed genes (DEGs) in the two types of tissues were analyzed using functional enrichment analysis to evaluate their biological functions. We examined the correlation between DEGs and prognosis by combining HCC transcriptome data and clinical information from The Cancer Genome Atlas database. Univariate and multivariate Cox regression analyses, along with the least absolute shrinkage and selection operator (LASSO) method were utilized to develop a prognostic model. The effectiveness of the model was assessed through time-dependent receiver operating characteristic (ROC) curve, calibration diagram, and decision curve analysis. RESULTS In the GSE20017 and GSE5093 datasets, a total of 83 DEGs were identified. Gene Ontology analysis indicated that these DEGs were predominantly associated with xenobiotic stimulus, collagen-containing extracellular matrix, and oxygen binding. Additionally, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the DEGs were primarily involved in immune defense and cellular signal transduction. Cox and LASSO regression further identified 7 genes (HSPA8, ABCF2, EAF1, MARCO, EPS8L3, PLA3G1B, C6), which were used to construct a predictive model in the training cohort. We used X-tile software to calculate the optimal cut-off value to stratify HCC patients into low-risk and high-risk groups. Notably, the high-risk group exhibited poorer prognosis than the low-risk group (P < 0.001). The model demonstrated area under the ROC curve (AUC) values of 0.815, 0.730, and 0.710 at 1-year, 3-year, and 5-year intervals in the training cohort, respectively. In the validation cohort, the corresponding AUC values were 0.701, 0.571, and 0.575, respectively. The C-index of the calibration curve for the training and validation cohorts were 0.716 and 0.665. Decision curve analysis revealed the model's efficacy in guiding clinical decision-making. CONCLUSIONS The study indicates that 7 genes may be potential prognostic biomarkers and treatment targets for HCC patients with VI.
Collapse
Affiliation(s)
| | - Chen Fan
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Ping Xu
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Fei-Hu Sun
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Hao-Huan Tang
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | | |
Collapse
|
5
|
Xiao M, Wang L, Tang Q, Yang Q, Yang X, Zhu G, Lei L, Li S. Postoperative tumor treatment strategies: From basic research to clinical therapy. VIEW 2024; 5. [DOI: 10.1002/viw.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
AbstractDespite progression in advanced treatments for malignant tumors, surgery remains the primary treatment intervention, which removes a large portion of firm tumor tissues; however, the postoperative phase poses a possible risk for provincial tumor recurrence and metastasis. Consequently, the prevention of tumor recurrence and metastasis has attracted research attention. In this review, we summarized the postoperative treatment strategies for various tumors from both basic research and clinical perspectives. We delineated the underlying factors contributing to the recurrence of malignant tumors with a substantial prevalence rate, related molecular mechanisms of tumor recurrence post‐surgery, and related means of monitoring recurrence and metastasis after surgery. Furthermore, we described relevant therapeutic approaches for postoperative tumor recurrence, including chemotherapy, radiation therapy, immunotherapy, targeted therapy, and photodynamic therapy. This review focused on the emerging technologies used for postoperative tumor treatment in recent years in terms of functional classification, including the prevention of postoperative tumor recurrence, functional reconstruction, and monitoring of recurrence. Finally, we discussed the future development and deficiencies of postoperative tumor therapy. To understand postoperative treatment strategies for tumors from clinical treatment and basic research and further guide the research directions for postoperative tumors.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery Binzhou People's Hospital Binzhou China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lanjie Lei
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
6
|
Suo D, Gao X, Chen Q, Zeng T, Zhan J, Li G, Zheng Y, Zhu S, Yun J, Guan XY, Li Y. HSPA4 upregulation induces immune evasion via ALKBH5/CD58 axis in gastric cancer. J Exp Clin Cancer Res 2024; 43:106. [PMID: 38589927 PMCID: PMC11000359 DOI: 10.1186/s13046-024-03029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. Recently, targeted therapies including PD1 (programmed cell death 1) antibodies have been used in advanced GC patients. However, identifying new biomarker for immunotherapy is still urgently needed. The objective of this study is to unveil the immune evasion mechanism of GC cells and identify new biomarkers for immune checkpoint blockade therapy in patients with GC. METHODS Coimmunoprecipitation and meRIP were performed to investigate the mechanism of immune evasion of GC cells. Cocuture system was established to evaluate the cytotoxicity of cocultured CD8+ T cells. The clinical significance of HSPA4 upregulation was analyzed by multiplex fluorescent immunohistochemistry staining in GC tumor tissues. RESULTS Histone acetylation causes HSPA4 upregulation in GC tumor tissues. HSPA4 upregulation increases the protein stability of m6A demethylase ALKBH5. ALKBH5 decreases CD58 in GC cells through m6A methylation regulation. The cytotoxicity of CD8+ T cells are impaired and PD1/PDL1 axis is activated when CD8+ T cells are cocultured with HSPA4 overexpressed GC cells. HSPA4 upregulation is associated with worse 5-year overall survival of GC patients receiving only surgery. It is an independent prognosis factor for worse survival of GC patients. In GC patients receiving the combined chemotherapy with anti-PD1 immunotherapy, HSPA4 upregulation is observed in responders compared with non-responders. CONCLUSION HSPA4 upregulation causes the decrease of CD58 in GC cells via HSPA4/ALKBH5/CD58 axis, followed by PD1/PDL1 activation and impairment of CD8+ T cell's cytotoxicity, finally induces immune evasion of GC cells. HSPA4 upregulation is associated with worse overall survival of GC patients with only surgery. Meanwhile, HSPA4 upregulation predicts for better response in GC patients receiving the combined immunotherapy.
Collapse
Affiliation(s)
- Daqin Suo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaoling Gao
- The clinical Laboratory Center, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Qingyun Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Tingting Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiarong Zhan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guanghui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yinli Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Senlin Zhu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Clinical Oncology, The University of Hongkong, Hong Kong, China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Sogbe M, Bilbao I, Marchese FP, Zazpe J, De Vito A, Pozuelo M, D’Avola D, Iñarrairaegui M, Berasain C, Arechederra M, Argemi J, Sangro B. Prognostic value of ultra-low-pass whole-genome sequencing of circulating tumor DNA in hepatocellular carcinoma under systemic treatment. Clin Mol Hepatol 2024; 30:177-190. [PMID: 38163441 PMCID: PMC11016491 DOI: 10.3350/cmh.2023.0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND/AIMS New prognostic markers are needed to identify patients with hepatocellular carcinoma (HCC) who carry a worse prognosis. Ultra-low-pass whole-genome sequencing (ULP-WGS) (≤0.5× coverage) of cell-free DNA (cfDNA) has emerged as a low-cost promising tool to assess both circulating tumor DNA (ctDNA) fraction and large structural genomic alterations. Here, we studied the performance of ULP-WGS of plasma cfDNA to infer prognosis in patients with HCC. METHODS Plasma samples were obtained from patients with HCC prior to surgery, locoregional or systemic therapy, and were analyzed by ULP-WGS of cfDNA to an average genome-wide fold coverage of 0.3x. ctDNA and copy number alterations (CNA) were estimated using the software package ichorCNA. RESULTS Samples were obtained from 73 HCC patients at different BCLC stages (BCLC 0/A: n=37, 50.7%; BCLC B/C: n=36, 49.3%). ctDNA was detected in 18 out of 31 patients who received systemic treatment. Patients with detectable ctDNA showed significantly worse overall survival (median, 13.96 months vs not reached). ctDNA remained an independent predictor of prognosis after adjustment by clinical-pathologic features and type of systemic treatment (hazard ratio 7.69; 95%, CI 2.09-28.27). Among ctDNA-positive patients under systemic treatments, the loss of large genomic regions in 5q and 16q arms was associated with worse prognosis after multivariate analysis. CONCLUSION ULP-WGS of cfDNA provides clinically relevant information about the tumor biology. The presence of ctDNA and the loss of 5q and 16q arms in ctDNA-positive patients are independent predictors of worse prognosis in patients with advanced HCC receiving systemic therapy.
Collapse
Affiliation(s)
- Miguel Sogbe
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
| | - Idoia Bilbao
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
| | - Francesco P. Marchese
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jon Zazpe
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Annarosaria De Vito
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marta Pozuelo
- University of Navarra, Center for Applied Medical Research (CIMA), Computational Biology and Translational Genomics Program, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Delia D’Avola
- Clinica Universidad de Navarra, Internal Medicine Department, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Mercedes Iñarrairaegui
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| | - Carmen Berasain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- University of Navarra, Center for Applied Medical Research (CIMA), Hepatology Laboratory, Solid Tumors Program, Pamplona, Spain
| | - Maria Arechederra
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- University of Navarra, Center for Applied Medical Research (CIMA), Hepatology Laboratory, Solid Tumors Program, Pamplona, Spain
| | - Josepmaria Argemi
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- University of Navarra, Center for Applied Medical Research (CIMA), Hepatology Laboratory, Solid Tumors Program, Pamplona, Spain
| | - Bruno Sangro
- Clinica Universidad de Navarra, Liver Unit, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clinica Universidad de Navarra, Liver Unit, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
| |
Collapse
|
8
|
Gan S, Zhou S, Ma J, Xiong M, Xiong W, Fan X, Liu K, Gui Y, Chen B, Zhang B, Wang X, Wang F, Li Z, Yan W, Ma M, Yuan S. BAG5 regulates HSPA8-mediated protein folding required for sperm head-tail coupling apparatus assembly. EMBO Rep 2024; 25:2045-2070. [PMID: 38454159 PMCID: PMC11015022 DOI: 10.1038/s44319-024-00112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.
Collapse
Affiliation(s)
- Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jinzhe Ma
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenjing Xiong
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bei Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Beibei Zhang
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhean Li
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA, 90502, USA
| | - Meisheng Ma
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Wu WQ, Zou CD, Wu D, Fu HX, Wang XD, Yao F. Construction of molecular subtype model of osteosarcoma based on endoplasmic reticulum stress and tumor metastasis-related genes. Heliyon 2024; 10:e25691. [PMID: 38371978 PMCID: PMC10873750 DOI: 10.1016/j.heliyon.2024.e25691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Osteosarcoma, the prevailing primary bone malignancy among children and adolescents, is frequently associated with treatment failure primarily due to its pronounced metastatic nature. Methods This study aimed to establish potential associations between hub genes and subtypes for the treatment of metastatic osteosarcoma. Differentially expressed genes were extracted from patients diagnosed with metastatic osteosarcoma and a control group of non-metastatic patients, using the publicly available gene expression profile (GSE21257). The intersection of these gene sets was determined by focusing on endoplasmic reticulum (ER) stress-related genes sourced from the GeneCards database. We conducted various analytical techniques, including functional and pathway enrichment analysis, WGCNA analysis, protein-protein interaction (PPI) network construction, and assessment of immune cell infiltration, using the intersecting genes. Through this analysis, we identified potential hub genes. Results Osteosarcoma subtype models were developed using molecular consensus clustering analysis, followed by an examination of the associations between each subtype and hub genes. A total of 138 potential differentially expressed genes related to endoplasmic reticulum (ER) stress were identified. These genes were further investigated using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) pathways. Additionally, the PPI interaction network revealed 38 interaction relationships among the top ten hub genes. The findings of the analysis revealed a strong correlation between the extent of immune cell infiltration and both osteosarcoma metastasis and the expression of hub genes. Notably, the differential expression of the top ten hub genes was observed in osteosarcoma clusters 1 and 4, signifying their significant association with the disease. Conclusion The identification of ten key genes linked to osteosarcoma metastasis and endoplasmic reticulum stress bears potential clinical significance. Additionally, exploring the molecular subtype of osteosarcoma has the capacity to guide clinical treatment decisions, necessitating further investigations and subsequent clinical validations.
Collapse
Affiliation(s)
- Wang-Qiang Wu
- Department of Orthopaedics, Children's Hospital of Soochow University, 92# Zhongnan Street, Suzhou, Jiangsu 215025, China
| | - Cheng-Da Zou
- Children's Hospital of Soochow University, Children's Hospital of Wujiang District, China
| | - Di Wu
- Department of Orthopaedics, Children's Hospital of Soochow University, 92# Zhongnan Street, Suzhou, Jiangsu 215025, China
| | - Hou-Xin Fu
- Department of Orthopaedics, Children's Hospital of Soochow University, 92# Zhongnan Street, Suzhou, Jiangsu 215025, China
| | - Xiao-Dong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, 92# Zhongnan Street, Suzhou, Jiangsu 215025, China
| | - Feng Yao
- Department of Orthopaedics, Children's Hospital of Soochow University, 92# Zhongnan Street, Suzhou, Jiangsu 215025, China
| |
Collapse
|
10
|
Yang J, Wu X, You J. Unveiling the potential of HSPA4: a comprehensive pan-cancer analysis of HSPA4 in diagnosis, prognosis, and immunotherapy. Aging (Albany NY) 2024; 16:2517-2541. [PMID: 38305786 PMCID: PMC10911360 DOI: 10.18632/aging.205496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
With the global rise in cancer incidence and mortality rates, research on the topic has become increasingly urgent. Among the significant players in this field are heat shock proteins (HSPs), particularly HSPA4 from the HSP70 subfamily, which has recently garnered considerable interest for its role in cancer progression. However, despite numerous studies on HSPA4 in specific cancer types, a comprehensive analysis across all cancer types is lacking. This study employs various bioinformatics techniques to delve into the role of HSPA4 in pan-cancer. Our objective is to assess its potential in clinical diagnosis, prognosis, and as a future molecular target for therapy. The research findings reveal significant differences in HSPA4 expression across different cancer types, suggesting its diagnostic value and close association with cancer staging and patient survival rates. Furthermore, genetic variations and methylation status of HSPA4 play critical roles in tumorigenesis. Lastly, the interaction of HSPA4 with immune cells is linked to the tumor microenvironment (TME) and immunotherapy. In summary, HSPA4 emerges as a promising cancer biomarker and a vital member of the HSPs family, holding potential applications in diagnosis, prognosis, and immunotherapy.
Collapse
Affiliation(s)
- Junhao Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaoxiao Wu
- Department of Rheumatology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Jianhong You
- Department of Ultrasound, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| |
Collapse
|
11
|
Tang L, Chen Z, Wei C, Liu H, Wang B, Yu T, Tao X, Yang J, Guan J, Yi J, Zhu H, Li C, Tang P, Wang K. The significance of HAUS1 and its relationship with immune microenvironment in hepatocellular carcinoma. J Cancer 2024; 15:1328-1341. [PMID: 38356703 PMCID: PMC10861820 DOI: 10.7150/jca.90298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
Background: HAUS Augmin-like complex subunit 1(HAUS1), as a controlling gene, which affected the production of spindle was firstly discovered in Drosophila cells. Although HAUS1 has been intensively studied, but its significance and relationship with the immune microenvironment in Hepatocellular carcinoma (HCC) remain unclear. Materials and Methods: All data of HCC in this paper were obtained from The Cancer Genome Atlas(TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Omnibus (GEO) and the Human Protein Atlas(HPA) database. The role and potential value of HAUS1 in the tumorigenesis and development of HCC were studied by applying plenty of bioinformatics analysis methods. Knocked down the expression of HAUS1 through siRNA and further investigated the function of HAUS1 in HCC Results: HAUS1 was highly expressed in HCC, which led to a poor prognosis. ROC curve analysis showed that HAUS1 had a excellent diagnostic value. It was also associated with clinical stage, pathological grade and AFP of HCC. Univariate and multivariate COX regression analysis showed that HAUS1 was an independent prognostic factor for HCC patients. HAUS1 was associated with immune cells infiltrate and immune checkpoints in HCC, and it could generate significative therapeutic results when combined with anti-CTLA4 and anti-CD274 treatment. In vitro experiments, HAUS1 was found to promote the proliferation, invasion and metastasis, participated in cell cycle regulation and inhibited apoptosis of HCC. Conclusion: These results suggested that HAUS1 might serve as a potential therapeutic target, as well as a diagnostic, prognostic, and survival biomarker for HCC.
Collapse
Affiliation(s)
- Lei Tang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Zhonghuo Chen
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang 330009, China
| | - Chao Wei
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Hao Liu
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Ben Wang
- Department of General Surgery, No. 215 Hospital of Shanxi Nuclear Industry, Xianyang 712000, China
| | - Taozhi Yu
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Xiaofei Tao
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Jiale Yang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Jiafu Guan
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Jianwei Yi
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Hengchang Zhu
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Chen Li
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Peng Tang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Kai Wang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Ministry of Education, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Wang S, Wang YF, Yang G, Zhang HH, Yuan HF, Hou CY, Zhao LN, Suo YH, Sun J, Sun LL, Lv P, Sun Y, Zhang NN, Zhang XD, Lu W. Heat shock protein family A member 8 serving as a co-activator of transcriptional factor ETV4 up-regulates PHLDA2 to promote the growth of liver cancer. Acta Pharmacol Sin 2023; 44:2525-2536. [PMID: 37474643 PMCID: PMC10692233 DOI: 10.1038/s41401-023-01133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Heat shock protein family A member 8 (HSPA8) participates in the folding or degradation of misfolded proteins under stress and plays critical roles in cancer. In this study, we investigated the function of HSPA8 in the development of liver cancer. By analyzing the TCGA transcriptome dataset, we found that HSPA8 was upregulated in 134 clinical liver cancer tissue samples, and positively correlated with poor prognosis. IHC staining showed the nuclear and cytoplasmic localization of HSPA8 in liver cancer cells. Knockdown of HSPA8 resulted in a decrease in the proliferation of HepG2 and Huh-7 cells. ChIP-seq and RNA-seq analysis revealed that HSPA8 bound to the promoter of pleckstrin homology-like domain family A member 2 (PHLDA2) and regulated its expression. The transcription factor ETV4 in HepG2 cells activated PHLDA2 transcription. HSPA8 and ETV4 could interact with each other in the cells and colocalize in the nucleus. From a functional perspective, we demonstrated that HSPA8 upregulated PHDLA2 through the coactivating transcription factor ETV4 to enhance the growth of liver cancer in vitro and in vivo. From a therapeutic perspective, we identified both HSPA8 and PHDLA2 as novel targets in the treatment of HCC. In conclusion, this study demonstrates that HSPA8 serves as a coactivator of ETV4 and upregulates PHLDA2, leading to the growth of HCC, and is a potential therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Yu-Fei Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui-Hui Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong-Feng Yuan
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chun-Yu Hou
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Li-Na Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu-Hong Suo
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Jiao Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Lin-Lin Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Pan Lv
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Sun
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| | - Ning-Ning Zhang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China.
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China.
| |
Collapse
|
13
|
Bednarczyk M, Muc-Wierzgoń M, Dzięgielewska-Gęsiak S, Waniczek D. Relationship between the Ubiquitin-Proteasome System and Autophagy in Colorectal Cancer Tissue. Biomedicines 2023; 11:3011. [PMID: 38002011 PMCID: PMC10669458 DOI: 10.3390/biomedicines11113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Dysregulation of the autophagy process via ubiquitin is associated with the occurrence of a number of diseases, including cancer. The present study analyzed the changes in the transcriptional activity of autophagy-related genes and the ubiquitination process (UPS) in colorectal cancer tissue. (2) Methods: The process of measuring the transcriptional activity of autophagy-related genes was analyzed by comparing colorectal cancer samples from four clinical stages I-IV (CS I-IV) of adenocarcinoma to the control (C). The transcriptional activity of genes associated with the UPS pathway was determined via the microarray technique (HG-U133A, Affymetrix). (3) Results: Of the selected genes, only PTEN-induced kinase 1 (PINK1) indicated statistical significance for all groups of colon cancer tissue transcriptome compared to the control. The transcriptional activity of the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene increased in all stages of the cancer, but the p-value was only less than 0.05 in CSIV vs. C. Forkhead box O1 (FOXO 1) and ubiquitin B (UBB) are statistically overexpressed in CSI. (4) Conclusions: The pathological expression changes in the studied proteins observed especially in the early stages of colorectal cancer suggest that the dysregulation of ubiquitination and autophagy processes occur during early neoplastic transformation. Stopping or slowing down the processes of removal of damaged proteins and their accumulation may contribute to tumor progression and poor prognosis.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Hematology and Cancer Prevention, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Małgorzata Muc-Wierzgoń
- Department of Preventive Medicine, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | | | - Dariusz Waniczek
- Department of Surgical Nursing and Propaedeutics of Surgery, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
14
|
Shen K, Chen B, Yang L, Gao W. KYNU as a Biomarker of Tumor-Associated Macrophages and Correlates with Immunosuppressive Microenvironment and Poor Prognosis in Gastric Cancer. Int J Genomics 2023; 2023:4662480. [PMID: 37954130 PMCID: PMC10635752 DOI: 10.1155/2023/4662480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Background Kynureninase (KYNU) is a potential prognostic marker for various tumor types. However, no reports on the biological effects and prognostic value of KYNU in gastric cancer (GC) exist. Methods GC-associated single-cell RNA sequencing and bulk RNA sequencing (bulk-seq) data were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases, respectively. The differential expression of KYNU between GC and normal gastric tissues was first analyzed based on the bulk-seq data, followed by an exploration of the relationship between KYNU and various clinicopathological features. The Kaplan-Meier survival and Cox regression analyses were performed to determine the prognostic value of KYNU. The relationship between KYNU expression and immune cell infiltration and immune checkpoints was also explored. The biological function of KYNU was further examined at the single-cell level, and in vitro experiments were performed to examine the effect of KYNU on GC cell proliferation and invasion. Results KYNU expression was significantly elevated in GC samples. Clinical features and survival analysis indicated that high KYNU expression was associated with poor clinical phenotypes and prognosis, whereas Cox analysis showed that KYNU was an independent risk factor for patients with GC. Notably, high expression of KYNU induced a poor immune microenvironment and contributed to the upregulation of immune checkpoints. KYNU-overexpressing macrophages drove GC progression through unique ligand-receptor pairs and transcription factors and were associated with adverse clinical phenotypes in GC. KYNU was overexpressed in GC cells in vitro, and KYNU knockout significantly inhibited GC cell proliferation and invasion. Conclusion High KYNU expression promotes an adverse immune microenvironment and low survival rates in GC. KYNU and KYNU-related macrophages may serve as novel molecular targets in the treatment of GC.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
15
|
Tan YW, Teo FMS, Ler SG, Alli-Shaik A, Nyo M, Chong CY, Tan NWH, Wang RYL, Gunaratne J, Chu JJH. Potential relevance of salivary legumain for the clinical diagnostic of hand, foot, and mouth disease. J Med Virol 2023; 95:e29243. [PMID: 38009231 DOI: 10.1002/jmv.29243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
The fight against hand, foot, and mouth disease (HFMD) remains an arduous challenge without existing point-of-care (POC) diagnostic platforms for accurate diagnosis and prompt case quarantine. Hence, the purpose of this salivary biomarker discovery study is to set the fundamentals for the realization of POC diagnostics for HFMD. Whole salivary proteome profiling was performed on the saliva obtained from children with HFMD and healthy children, using a reductive dimethylation chemical labeling method coupled with high-resolution mass spectrometry-based quantitative proteomics technology. We identified 19 upregulated (fold change = 1.5-5.8) and 51 downregulated proteins (fold change = 0.1-0.6) in the saliva samples of HFMD patients in comparison to that of healthy volunteers. Four upregulated protein candidates were selected for dot blot-based validation assay, based on novelty as biomarkers and exclusions in oral diseases and cancers. Salivary legumain was validated in the Singapore (n = 43 healthy, 28 HFMD cases) and Taiwan (n = 60 healthy, 47 HFMD cases) cohorts with an area under the receiver operating characteristic curve of 0.7583 and 0.8028, respectively. This study demonstrates the feasibility of a broad-spectrum HFMD POC diagnostic test based on legumain, a virus-specific host systemic signature, in saliva.
Collapse
Affiliation(s)
- Yong Wah Tan
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fiona Mei Shan Teo
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siok Ghee Ler
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Asfa Alli-Shaik
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Min Nyo
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chia Yin Chong
- Infectious Disease Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Natalie Woon Hui Tan
- Infectious Disease Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Robert Y L Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children's Hospital, Linkou, Taiwan
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Yang C, Cao F, He Y. An Immune-Related Gene Signature for Predicting Survival and Immunotherapy Efficacy in Esophageal Adenocarcinoma. Med Sci Monit 2023; 29:e940157. [PMID: 37632137 PMCID: PMC10467311 DOI: 10.12659/msm.940157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/30/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapy has attracted wide attention in the treatment of malignant tumors. This study was designed to build a prognostic model based on immune-related genes for esophageal adenocarcinoma (EAC). MATERIAL AND METHODS The expression of immune-related differentially-expressed genes (IRDEGs) between EAC and normal samples from The Cancer Genome Atlas database was analyzed. Univariate and multivariate Cox regressions were used to identify the prognostic IRDEGs and construct an immune-related gene signature (IRGS) to predict the overall survival (OS) of EAC patients. Then, the molecular mechanisms and immune characteristics were comprehensively analyzed. RESULTS A total of 111 IRDEGs were obtained from the weighted gene co-expression network analysis. Univariate Cox regression analysis showed that 12 IRDEGs (P<0.05 for all) were linked with OS in the EAC patients. Four genes were used to construct the IRGS based on the multivariate Cox regression analysis. Patients in the high-risk group showed worse OS than those in the low-risk group (P<0.001). A high-risk score was related to DNA replication relevant pathways, an increase in mutation rate, and an increase in activated mast cell infiltration. Patients with high-risk scores had lower tumor immune dysfunction and exclusion scores (P<0.001). CONCLUSIONS IRDEGs may be involved in the progression of EAC. The high-risk group is more suitable for immunotherapy, which may provide a reference value for the treatment of clinical EAC patients. Therefore, it is possible to identify the patients who are better suited for ICI therapy.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Feng Cao
- Anhui Medical University, Hefei, Anhui, PR China
| | - Yan He
- Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
17
|
Chen XF, Chen XQ, Luo HL, Xia LN, Huang SH, Chen Q. PRM-based quantitative proteomics analysis of altered HSP abundance in villi and decidua of patients with early missed abortion. Proteome Sci 2023; 21:12. [PMID: 37587463 PMCID: PMC10429090 DOI: 10.1186/s12953-023-00213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
OBJECTIVE In this study, we aimed to identify differentially expressed heat shock protein (HSP) profiles in the villi and decidua from patients with early missed abortion (EMA). METHODS By using high-throughput and high-precision parallel reaction monitoring (PRM)-based targeted proteomics techniques, this study examined the abundance of HSPs in the villi and decidua of 10 patients with EMA and 10 controls. Moreover, the abundance of 3 HSPs in the villi of another 22 patients with EMA and 22 controls was verified with Western blotting and immunohistochemistry (IHC). RESULTS There were potential differences in the abundance of 16 HSPs and 42 polypeptides in human villi and decidua compared with those of the control group. Among them, HSP90AB1, HSPD1 and HSPA13 were downregulated in abundance in villi of patients with EMA, with a statistically significant difference, which was consistent with the verification results of Western blots and IHC. CONCLUSION Using a PRM-based targeted proteomics technique, this study is the first to screen and quantitatively analyze the expression profile of HSPs in the villi and decidua of patients with EMA. The significant downregulation of HSP90AB1, HSPD1 and HSPA13 was found to have a potentially intimate association with the occurrence of EMA. The findings in our study may provide novel potential research targets related to HSPs for the pathogenesis, prevention and treatment of EMA.
Collapse
Affiliation(s)
- Xiao-Fang Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, Jiangxi, China
| | - Xiao-Qing Chen
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, Jiangxi, China
| | - Hai-Lian Luo
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, Jiangxi, China
| | - Li-Na Xia
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, Jiangxi, China
| | - Shu-Hui Huang
- Key Laboratory of Birth Defect for Prevention and Control of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, Jiangxi, China.
| | - Qi Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
18
|
Zhang X, Nadolny C, Chen Q, Ali W, Hashmi SF, Deng R. Dysregulation and oncogenic activities of ubiquitin specific peptidase 2a in the pathogenesis of hepatocellular carcinoma. Am J Cancer Res 2023; 13:2392-2409. [PMID: 37424823 PMCID: PMC10326592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023] Open
Abstract
Ubiquitin specific peptidase 2a (USP2a) plays critical roles in protein degradation and other cellular activities. Currently, our understanding on USP2a dysregulation in subjects with hepatocellular carcinoma (HCC) and its roles in HCC pathogenesis is limited. In this study, we found that USP2a mRNA and protein levels were significantly upregulated in HCC tumors from both human and mice. USP2a overexpression in HepG2 and Huh 7 cells significantly increased cell proliferation while inhibition of USP2a activity by chemical inhibitor or stable knockout of USP2 by CRISPR markedly reduced cell proliferation. In addition, USP2a overexpression significantly augmented the resistance while knockout of USP2a markedly increased the susceptibility of HepG2 cells to bile acid-induced apoptosis and necrosis. Consistent with the oncogenic activities detected in vitro, overexpression of USP2a promoted de novo HCC development in mice with significantly increased tumor occurrence rates, tumor sizes and liver/body ratios. Further investigations with unbiased co-immunoprecipitation (Co-IP)-coupled proteomic analysis and Western blot identified novel USP2a target proteins involved in cell proliferation, apoptosis, and tumorigenesis. Analysis of those USP2a target proteins revealed that USP2a's oncogenic activities are mediated through multiple pathways, including modulating protein folding and assembling through regulating protein chaperones/co-chaperones HSPA1A, DNAJA1 and TCP1, promoting DNA replication and transcription through regulating RUVBL1, PCNA and TARDBP, and altering mitochondrial apoptotic pathway through regulating VDAC2. Indeed, those newly identified USP2a target proteins were markedly dysregulated in HCC tumors. In summary, USP2a was upregulated in HCC subjects and acted as an oncogene in the pathogenesis of HCC through multiple downstream pathways. The findings provided molecular and pathogenesis bases for developing interventions to treat HCC by targeting USP2a or its downstream pathways.
Collapse
Affiliation(s)
- Xinmu Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Christina Nadolny
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Qiwen Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Winifer Ali
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Syed F Hashmi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
19
|
Zuñiga-Hernandez J, Meneses C, Bastias M, Allende ML, Glavic A. Drosophila DAxud1 Has a Repressive Transcription Activity on Hsp70 and Other Heat Shock Genes. Int J Mol Sci 2023; 24:ijms24087485. [PMID: 37108646 PMCID: PMC10138878 DOI: 10.3390/ijms24087485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Drosophila melanogaster DAxud1 is a transcription factor that belongs to the Cysteine Serine Rich Nuclear Protein (CSRNP) family, conserved in metazoans, with a transcriptional transactivation activity. According to previous studies, this protein promotes apoptosis and Wnt signaling-mediated neural crest differentiation in vertebrates. However, no analysis has been conducted to determine what other genes it might control, especially in connection with cell survival and apoptosis. To partly answer this question, this work analyzes the role of Drosophila DAxud1 using Targeted-DamID-seq (TaDa-seq), which allows whole genome screening to determine in which regions it is most frequently found. This analysis confirmed the presence of DAxud1 in groups of pro-apoptotic and Wnt pathway genes, as previously described; furthermore, stress resistance genes that coding heat shock protein (HSP) family genes were found as hsp70, hsp67, and hsp26. The enrichment of DAxud1 also identified a DNA-binding motif (AYATACATAYATA) that is frequently found in the promoters of these genes. Surprisingly, the following analyses demonstrated that DAxud1 exerts a repressive role on these genes, which are necessary for cell survival. This is coupled with the pro-apoptotic and cell cycle arrest roles of DAxud1, in which repression of hsp70 complements the maintenance of tissue homeostasis through cell survival modulation.
Collapse
Affiliation(s)
- Jorge Zuñiga-Hernandez
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| | - Claudio Meneses
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
- Millennium Nucleus Development of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Macarena Bastias
- Centro de Biotecnología vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| | - Miguel L Allende
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| | - Alvaro Glavic
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| |
Collapse
|
20
|
Liver Organoids as an In Vitro Model to Study Primary Liver Cancer. Int J Mol Sci 2023; 24:ijms24054529. [PMID: 36901961 PMCID: PMC10003131 DOI: 10.3390/ijms24054529] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Primary liver cancers (PLC), including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are among the leading causes of cancer-related mortality worldwide. Bi-dimensional in vitro models are unable to recapitulate the key features of PLC; consequently, recent advancements in three-dimensional in vitro systems, such as organoids, opened up new avenues for the development of innovative models for studying tumour's pathological mechanisms. Liver organoids show self-assembly and self-renewal capabilities, retaining essential aspects of their respective in vivo tissue and allowing modelling diseases and personalized treatment development. In this review, we will discuss the current advances in the field of liver organoids focusing on existing development protocols and possible applications in regenerative medicine and drug discovery.
Collapse
|
21
|
Comparative RNA-Sequencing Analysis Reveals High Complexity and Heterogeneity of Transcriptomic and Immune Profiles in Hepatocellular Carcinoma Tumors of Viral (HBV, HCV) and Non-Viral Etiology. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121803. [PMID: 36557005 PMCID: PMC9785216 DOI: 10.3390/medicina58121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is the leading cause of cancer-related mortality. It arises and progresses against fibrotic or cirrhotic backgrounds mainly due to infection with hepatitis viruses B (HBV) or C (HCV) or non-viral causes that lead to chronic inflammation and genomic changes. A better understanding of molecular and immune mechanisms in HCC subtypes is needed. Materials and Methods: To identify transcriptional changes in primary HCC tumors with or without hepatitis viral etiology, we analyzed the transcriptomes of 24 patients by next-generation sequencing. Results: We identified common and unique differentially expressed genes for each etiological tumor group and analyzed the expression of SLC, ATP binding cassette, cytochrome 450, cancer testis, and heat shock protein genes. Metascape functional enrichment analysis showed mainly upregulated cell-cycle pathways in HBV and HCV and upregulated cell response to stress in non-viral infection. GeneWalk analysis identified regulator, hub, and moonlighting genes and highlighted CCNB1, ACTN2, BRCA1, IGF1, CDK1, AURKA, AURKB, and TOP2A in the HCV group and HSF1, HSPA1A, HSP90AA1, HSPB1, HSPA5, PTK2, and AURKB in the group without viral infection as hub genes. Immune infiltrate analysis showed that T cell, cytotoxic, and natural killer cell markers were significantly more highly expressed in HCV than in non-viral tumors. Genes associated with monocyte activation had the highest expression levels in HBV, while high expression of genes involved in primary adaptive immune response and complement receptor activity characterized tumors without viral infection. Conclusions: Our comprehensive study underlines the high degree of complexity of immune profiles in the analyzed groups, which adds to the heterogeneous HCC genomic landscape. The biomarkers identified in each HCC group might serve as therapeutic targets.
Collapse
|
22
|
Schlosser S, Tümen D, Volz B, Neumeyer K, Egler N, Kunst C, Tews HC, Schmid S, Kandulski A, Müller M, Gülow K. HCC biomarkers - state of the old and outlook to future promising biomarkers and their potential in everyday clinical practice. Front Oncol 2022; 12:1016952. [PMID: 36518320 PMCID: PMC9742592 DOI: 10.3389/fonc.2022.1016952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly tumors worldwide. Management of HCC depends on reliable biomarkers for screening, diagnosis, and monitoring of the disease, as well as predicting response towards therapy and safety. To date, imaging has been the established standard technique in the diagnosis and follow-up of HCC. However, imaging techniques have their limitations, especially in the early detection of HCC. Therefore, there is an urgent need for reliable, non/minimal invasive biomarkers. To date, alpha-fetoprotein (AFP) is the only serum biomarker used in clinical practice for the management of HCC. However, AFP is of relatively rather low quality in terms of specificity and sensitivity. Liquid biopsies as a source for biomarkers have become the focus of clinical research. Our review highlights alternative biomarkers derived from liquid biopsies, including circulating tumor cells, proteins, circulating nucleic acids, and exosomes, and their potential for clinical application. Using defined combinations of different biomarkers will open new perspectives for diagnosing, treating, and monitoring HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Ying B, Xu W, Nie Y, Li Y. HSPA8 Is a New Biomarker of Triple Negative Breast Cancer Related to Prognosis and Immune Infiltration. DISEASE MARKERS 2022; 2022:8446857. [PMID: 36452344 PMCID: PMC9705114 DOI: 10.1155/2022/8446857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/13/2022] [Indexed: 06/14/2024]
Abstract
Objective Triple negative breast cancer (TNBC) is a kind of cancer that endangers the lives of women all over the world in the 21st century. Heat shock protein member 8 (HSPA8) is the chaperone gene of the heat shock protein family. It is involved in many cellular functions. For example, it promotes the circulation between ATP and ADP, participates in protein folding, and can change the vitality of the cell and inhibit its growth. However, the abnormal expression of HSPA8 gene in TNBC and its diagnostic and prognostic significance still need to be further studied. Methods First, we used related databases (such as TCGA, GEO, GTEx, ONCOMINE, TIMER2.0, UALCAN, HPA, STRING, CCLE, and Kaplan-Meier plotter databases) to analyze the relationship between HSPA8 and TNBC by bioinformatics. Then, the analysis using only a small part of the experimental work is used to explain our findings. For example, HSPA8 protein expression was evaluated by immunohistochemical method in TNBC tissues. Western blotting experiments were carried out to verify the results. Then, the clinicopathological characteristics of patients with TNBC were analyzed by R software and Cox regression analysis. On the basis, a nomogram is constructed to estimate the 1-, 3-, and 5-year overall survival (OS). The prognostic nomogram performance was calibrated and evaluated by the calibration curve and receiver operating characteristic (ROC) curve. Results In the study, we analyzed the three GEO databases (including GSE86945, GSE106977, and GSE102088) and found that HSPA8 is one of the central genes of TNBC. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) researches indicated that HSPA8 was mainly involved in partner-mediated autophagy, mRNA catabolism, neutrophil activation, immune response, protein targeting, RNA splicing, RNA catabolism, and other biological processes. Next, we used bioinformatics technology to find that the expression level of HSPA8 in breast cancer (BC) and TNBC samples was significantly higher than that in normal breast tissues, which was determined by analyzing hospital patient samples and related experiments. In addition, the expression level of HSPA8 in BC and TNBC samples was significantly correlated with clinical indexes such as TNM stage. The Cox analysis revealed that the expression of HSPA8 in TNBC had significant clinical prognostic value. The results of nomogram and ROC test show that HSPA8 has significant predictive ability in TNBC. The results of immune infiltration of HSPA8 through the TIMER2.0 database showed that there was a significant correlation between HSPA8 and immune cell subsets. Conclusions Our results show that the expression of HSPA8 in TNBC has important clinical diagnostic significance and clarify the potential molecular mechanism that promotes the evolution of TNBC. The high expression of HSPA8 may be related with the poor clinical outcome of TNBC. This helps to provide us with a new direction of TNBC targeted therapy.
Collapse
Affiliation(s)
- Bicheng Ying
- Department of Breast Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenting Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Yan Nie
- Yanqing District Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yongtao Li
- Department of Breast Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
24
|
Lin ZH, Zhang J, Zhuang LK, Xin YN, Xuan SY. Establishment of a Prognostic Model for Hepatocellular Carcinoma Based on Bioinformatics and the Role of NR6A1 in the Progression of HCC. J Clin Transl Hepatol 2022; 10:901-912. [PMID: 36304495 PMCID: PMC9547269 DOI: 10.14218/jcth.2022.00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Generally acceptable prognostic models for hepatocellular carcinoma (HCC) are not available. This study aimed to establish a prognostic model for HCC by identifying immune-related differentially expressed genes (IR-DEGs) and to investigate the potential role of NR6A1 in the progression of HCC. METHODS Bioinformatics analysis using The Cancer Genome Atlas and ImmPort databases was used to identify IR-DEGs. Lasso Cox regression and multivariate Cox regression analysis were used to establish a prognostic model of HCC. Kaplan-Meier analysis and the receiver operating characteristic (ROC) curves were used to evaluate the performance of the prognostic model, which was further verified in the International Cancer Genome Consortium (ICGC) database. Gene set enrichment analysis was used to explore the potential pathways of NR6A1. Cell counting kit 8, colony formation, wound healing, and Transwell migration assays using Huh7 cells, and tumor formation models in nude mice were conducted. RESULTS A prognostic model established based on ten identified IR-DEGs including HSPA4, FABP6, MAPT, NDRG1, APLN, IL17D, LHB, SPP1, GLP1R, and NR6A1, effectively predicted the prognosis of HCC patients, was confirmed by the ROC curves and verified in ICGC database. NR6A1 expression was significantly up-regulated in HCC patients, and NR6A1 was significantly associated with a low survival rate. Gene set enrichment analysis showed the enrichment of cell cycle, mTOR, WNT, and ERBB signaling pathways in patients with high NR6A1 expression. NR6A1 promoted cell proliferation, invasiveness, migration, and malignant tumor formation and growth in vitro and in vivo. CONCLUSIONS An effective prognostic model for HCC, based on a novel signature of 10 immune-related genes, was established. NR6A1 was up-regulated in HCC and was associated with a poor prognosis of HCC. NR6A1 promoted cell proliferation, migration, and growth of HCC, most likely through the cell cycle, mTOR, WNT, and ERBB signaling pathways.
Collapse
Affiliation(s)
- Zhong-Hua Lin
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Jie Zhang
- Medical College, Qingdao University, Qingdao, Shandong, China
| | - Li-Kun Zhuang
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Yong-Ning Xin
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Correspondence to: Yong-Ning Xin, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. ORCID: https://orcid.org/0000-0002-3692-7655. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail: ; Shi-Ying Xuan, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| | - Shi-Ying Xuan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Correspondence to: Yong-Ning Xin, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. ORCID: https://orcid.org/0000-0002-3692-7655. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail: ; Shi-Ying Xuan, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| |
Collapse
|
25
|
Zhao X, Chen J, Yin S, Shi J, Zheng M, He C, Meng H, Han Y, Han J, Guo J, Yuan Z, Wang Y. The expression of cuproptosis-related genes in hepatocellular carcinoma and their relationships with prognosis. Front Oncol 2022; 12:992468. [PMID: 36313717 PMCID: PMC9614267 DOI: 10.3389/fonc.2022.992468] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
Background The mechanism of cuproptosis has recently been reported in lipoylated proteins of the tricarboxylic acid (TCA) cycle. Besides, the role of copper was previously recognized in cancer progression. We evaluated the prognostic value of cuproptosis-related gene expression in hepatocellular carcinoma (HCC). Methods Remarkable genes were selected both in differential expression analysis and Kaplan-Meier survival analysis from ninety-six cuproptosis-related genes using The Cancer Genome Atlas (TCGA) database. The relationships between clinical characteristics and gene expression were performed with Wilcoxon signed-rank test, Kruskal-Wallis test, and logistic regression. Clinicopathologic factors correlated with overall survival in HCCs conducting univariate and multivariate Cox regression analysis. Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Human Protein Atlas (HPA) databases were utilized to verify the results. Furthermore, Gene Set Enrichment Analysis (GSEA) identified the potential key pathways that dominate cuproptosis in HCC. Results Elevated ATP7A, SLC25A3, SCO2, COA6, TMEM199, ATP6AP1, LIPT1, DLAT, PDHA1, MTF1, ACP1, FDX2, NUBP2, CIAPIN1, ISCA2 and NDOR1 expression, as well as declined AOC1, FDX1, MT-CO1, and ACO1 expression were significantly emerged in HCC tumor tissues and were significantly associated with HCCs poor survival. The expressions of screened cuproptosis-related genes were prominently related to clinical features. GSEA analysis reported many key signaling pathways (such as natural killer cell mediated cytotoxicity, TCA cycle, glutathione metabolism, ATP-binding cassette (ABC) transporters, Notch signaling pathway, ErbB signaling pathway, and metabolism of xenobiotics by cytochrome p450) were differentially enriched in HCCs with varying degrees of cuproptosis-related genes expression. Conclusions The twenty cuproptosis-related genes might be utilized as new candidate prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Xueying Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jin Chen
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shangqi Yin
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jingren Shi
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mei Zheng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chaonan He
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huan Meng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jinyu Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Guo
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Zhengrong Yuan, ; Yajie Wang,
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhengrong Yuan, ; Yajie Wang,
| |
Collapse
|
26
|
Sun Q, Lv Y, Sun W. Inhibition of DNAJC12 Inhibited Tumorigenesis of Rectal Cancer via Downregulating HSPA4 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1027895. [PMID: 36185081 PMCID: PMC9519347 DOI: 10.1155/2022/1027895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Background Dysregulation of DnaJ heat shock protein family (HSP40) member C12 (DNAJC12) is implicated in the malignancy progression of multiple cancers. The current study aimed to determine the biology function and mechanism of DNAJC12 in rectal cancer (RC). Methods RC tissues, adjacent tissues, RC cell lines, and normal colorectal epithelial cell lines were collected to analyze DNAJC12 expression. The abilities of DNAJC12 on proliferation, migration, and apoptosis of RC cells were detected by CCK-8, wound healing, and flow cytometry assays. Co-IP assays were carried out to confirm the association between DNAJC12 and HSPA4. The effect of DNAJC12 on tumor growth was detected by using the xenograft model of nude mice. Results Elevation of DNAJC12 was uncovered in RC tissues and cell lines. DNAJC12 upregulation facilitated RC cell proliferation and migration and induced apoptosis, while DNAJC12 interference showed the opposite results. Besides, HSAP4 served as a potential binding protein for DNAJC12. Rescue experiments revealed that elevated of HSAP4 restored the impact of DNAJC12 silencing on the cell functions. Finally, DNAJC12 silencing hampered tumor growth of RC in vivo. Conclusion In summary, this study highlighted a key player of DNAJC12 in modulating the malignant biological progression of RC via DNAJC12/HSPA4 axis, displaying a potential therapeutic target for RC.
Collapse
Affiliation(s)
- Qi Sun
- Third Ward of Cancer Center, The PLA Navy Anqing Hospital, Anqing 246003, Anhui, China
| | - Yan Lv
- Department of Oncology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| | - Weihua Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| |
Collapse
|
27
|
HAUS Augmin-Like Complex Subunit 1 Influences Tumour Microenvironment and Prognostic Outcomes in Glioma. JOURNAL OF ONCOLOGY 2022; 2022:8027686. [PMID: 35865089 PMCID: PMC9296284 DOI: 10.1155/2022/8027686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Background. The expression of HAUS Augmin-like complex subunit 1 (HAUS1), a protein-coding gene, is low in normal samples among various cancers with pan-cancer analysis. The depletion of HAUS1 in cells decreases the G2/M cell compartment and induces apoptosis. However, the detailed expression pattern of HAUS1 and its correlation with immune infiltration in glioma (LGG and GBM) (LGG: low-grade glioma; GBM: glioblastoma) remain unknown. Therefore, in this study, we examined the role and prognostic value of HAUS1 in glioma. Methods. Transcriptional expression data of HAUS1 were collected from the CGGA and TCGA databases. The Kaplan–Meier analysis, univariate and multivariate Cox analyses, and receiver operating characteristic (ROC) curves were used to analyse the clinical significance of HAUS1 in glioma. The STRING database was used to analyse protein-protein interactions (PPI), and the “ClusterProfiler” package was used for functional enrichment analysis to examine the possible biological roles of HAUS1. In addition, the HAUS1 promoter methylation modification was analysed using MEXPRESS, and the association between HAUS1 expression and tumour-infiltrating immune cells was investigated using CIBERSORT. Results. Based on the data retrieved from TCGA (703 samples) and CGGA (1018 samples), an elevated expression of HAUS1 was observed in glioma samples, which was associated with poorer survival of patients, unfavourable clinical characteristics, 1p/19q codeletion status, WHO grade, and IDH mutation status. Furthermore, multivariate and univariate Cox analyses revealed that HAUS1 was an independent predictor of glioma. HAUS1 expression level was associated with several tumour-infiltrating immune cells, such as Th2 cells, macrophages, and activated dendritic cells. The outcomes of ROC curve analysis showed that HAUS1 was good to prognosticate immune infiltrating levels in glioma with a higher area under the curve (AUC) value (AUC = 0.974). Conclusions. HAUS1 was upregulated and served as a biomarker for poor prognosis in patients with glioma. High HAUS1 expression was associated with several tumour-infiltrating immune cells such as Th2 cells, macrophages, and activated dendritic cells, which had high infiltration levels. Therefore, these findings suggest that HAUS1 is a potential biomarker for predicting the prognosis of patients with glioma and plays a pivotal role in immune infiltration in glioma.
Collapse
|
28
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
29
|
Bufalin suppresses ovarian cancer cell proliferation via EGFR pathway. Chin Med J (Engl) 2021; 135:456-461. [PMID: 34935692 PMCID: PMC8869555 DOI: 10.1097/cm9.0000000000001879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Previous studies have shown that bufalin exerts antitumor effects through various mechanisms. This study aimed to determine the antineoplastic mechanism of bufalin, an extract of traditional Chinese medicine toad venom, in ovarian cancer. Methods: The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2′-deoxyuridine (EdU), and colony formation assays were used to investigate the antiproliferative effect of bufalin on the ovarian cancer cell line SK-OV-3. Molecular docking was used to investigate the combination of bufalin and epidermal growth factor receptor (EGFR) protein. Western blotting was performed to detect the expression of EGFR protein and its downstream targets. Results: Bufalin inhibited the proliferation of SK-OV-3 cells in a dose- and time-dependent manner. Bufalin was confirmed to combine with EGFR protein using molecular docking and downregulate expression of EGFR. Bufalin inhibited phosphorylation of EGFR, protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). Conclusion: Bufalin suppresses the proliferation of ovarian cancer cells through the EGFR/AKT/ERK signaling pathway.
Collapse
|