1
|
Xu W, Wang Z, Liu T, Ma X, Jiao M, Zhao W, Yu L, Hua Y, Cai Z, Li J, Zhang T. Eurycomanone inhibits osteosarcoma growth and metastasis by suppressing GRP78 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118709. [PMID: 39163893 DOI: 10.1016/j.jep.2024.118709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteosarcoma (OS) is characterized by rapid growth and frequent pulmonary metastasis. Eurycoma longifolia Jack, a flowering plant primarily found in Southeast Asian countries, is commonly used in traditional herbal medicine. Its root extract is mainly used for against cancer, malaria, parasites and other conditions. The active compound in its root extract, eurycomanone (EUR), has been proven to inhibit lung and liver cancer proliferation. AIM OF THE STUDY Our research aimed to investigate the inhibitory effect and underlying molecular mechanism of EUR on OS growth and metastasis. MATERIALS AND METHODS In vitro experiments: western blotting (WB) screened 41 compounds that inhibited GRP78 expression and evaluated the protein levels of GRP78, PARP, cleaved-PARP, MMP2, and MMP9. Cell proliferation was evaluated using CCK-8, EdU, colony formation assay, and cell apoptosis was assessed by flow cytometry. Transwell, wound healing, and tube formation assays were performed to determine the effect of EUR on tumor invasion, migration, and angiogenesis, respectively. Quantitative real-time polymerase chain (qRT-PCR) and dual-luciferase activity assays detected GRP78 mRNA stability and transcription levels post-EUR and thapsigargin treatment. RNA-Seq identified signaling pathways inhibited by EUR. In vivo experiments: effects of EUR in mice were evaluated by H&E staining to detect lung metastasis and potential toxic effects in tissues. Immunohistochemical (IHC) staining detected the expression of Ki-67, CD31, and cleaved caspase-3 in tumors. RESULTS GRP78 is highly expressed in OS and correlated with poor prognosis. In vitro, eurycomanone (EUR) significantly downregulated GRP78 expression, inhibited cell proliferation, migration, invasion, tube formation, and induced apoptosis. Moreover, it enhanced trichostatin A (TSA) sensitivity and exhibited inhibitory effects on other cancer types. Mechanistically, EUR decreased GRP78 mRNA stability and transcription. In vivo, EUR inhibited proliferation and invasion in tibial and PDX models. CONCLUSIONS Our study demonstrated that EUR inhibits the growth and metastasis of OS by reducing GRP78 mRNA stability and inhibiting its transcription, which offers a novel approach for clinical treatment of OS.
Collapse
Affiliation(s)
- Wenyuan Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Tongtong Liu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xinglong Ma
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ming Jiao
- Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lingfeng Yu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Jingjie Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Tao Zhang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
2
|
Shimizu F, Nakamori M. Blood-Brain Barrier Disruption in Neuroimmunological Disease. Int J Mol Sci 2024; 25:10625. [PMID: 39408955 PMCID: PMC11476930 DOI: 10.3390/ijms251910625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The blood-brain barrier (BBB) acts as a structural and functional barrier for brain homeostasis. This review highlights the pathological contribution of BBB dysfunction to neuroimmunological diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), autoimmune encephalitis (AE), and paraneoplastic neurological syndrome (PNS). The transmigration of massive lymphocytes across the BBB caused by the activation of cell adhesion molecules is involved in the early phase of MS, and dysfunction of the cortical BBB is associated with the atrophy of gray matter in the late phase of MS. At the onset of NMOSD, increased permeability of the BBB causes the entry of circulating AQP4 autoantibodies into the central nervous system (CNS). Recent reports have shown the importance of glucose-regulated protein (GRP) autoantibodies as BBB-reactive autoantibodies in NMOSD, which induce antibody-mediated BBB dysfunction. BBB breakdown has also been observed in MOGAD, NPSLE, and AE with anti-NMDAR antibodies. Our recent report demonstrated the presence of GRP78 autoantibodies in patients with MOGAD and the molecular mechanism responsible for GRP78 autoantibody-mediated BBB impairment. Disruption of the BBB may explain the symptoms in the brain and cerebellum in the development of PNS, as it induces the entry of pathogenic autoantibodies or lymphocytes into the CNS through autoimmunity against tumors in the periphery. GRP78 autoantibodies were detected in paraneoplastic cerebellar degeneration and Lambert-Eaton myasthenic syndrome, and they were associated with cerebellar ataxia with anti-P/Q type voltage-gated calcium channel antibodies. This review reports that therapies affecting the BBB that are currently available for disease-modifying therapies for neuroimmunological diseases have the potential to prevent BBB damage.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan;
| | | |
Collapse
|
3
|
Harada N, Yoshikatsu A, Yamamoto H, Nakaya Y. 2-Deoxy-D-Glucose Downregulates Fatty Acid Synthase Gene Expression Via an Endoplasmic Reticulum Stress-Dependent Pathway in HeLa Cells. Cell Biochem Biophys 2024; 82:2285-2296. [PMID: 38824236 DOI: 10.1007/s12013-024-01339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Fatty acid synthase (FASN) catalyzes the rate-limiting step of cellular lipogenesis. FASN expression is upregulated in various types of cancer cells, implying that FASN is a potential target for cancer therapy. 2-Deoxy-D-glucose (2-DG) specifically targets cancer cells by inhibiting glycolysis and glucose metabolism, resulting in multiple anticancer effects. However, whether the effects of 2-DG involve lipogenic metabolism remains to be elucidated. We investigated the effect of 2-DG administration on FASN expression in HeLa human cervical cancer cells. 2-DG treatment for 24 h decreased FASN mRNA and protein levels and suppressed the activity of an exogenous rat Fasn promoter. The use of a chemical activator or inhibitors or of a mammalian expression plasmid showed that neither AMPK nor the Sp1 transcription factor is responsible for the inhibitory effect of 2-DG on FASN expression. Administration of thapsigargin, an endoplasmic reticulum (ER) stress inducer, or 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), a site 1 protease inhibitor, mimicked the inhibitory effect of 2-DG on FASN expression. 2-DG did not further decrease FASN expression in the presence of thapsigargin or AEBSF. Site 1 protease mediates activation of ATF6, an ER stress mediator, as well as sterol regulatory element-binding protein 1 (SREBP1), a robust transcription factor for FASN. Administration of 2-DG or thapsigargin for 24 h suppressed activation of ATF6 and SREBP1, as did AEBSF. We speculated that these effects of 2-DG or thapsigargin are due to feedback inhibition via increased GRP78 expression following ER stress. Supporting this, exogenous overexpression of GRP78 in HeLa cells suppressed SREBP1 activation and Fasn promoter activity. These results suggest that 2-DG suppresses FASN expression via an ER stress-dependent pathway, providing new insight into the molecular basis of FASN regulation in cancer.
Collapse
Affiliation(s)
- Nagakatsu Harada
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, 151 Nishihayashigi, Izumo city, 693-8550, Shimane, Japan.
| | - Aya Yoshikatsu
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima city, 770-8503, Tokushima, Japan
| | - Hironori Yamamoto
- Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, 3-1-1 Ohde-cho, Echizen city, 915-8568, Fukui, Japan
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima city, 770-8503, Tokushima, Japan
| |
Collapse
|
4
|
Xu Z, Shi Y, Zhu L, Luo J, Hu Q, Jiang S, Xiao M, Jiang X, Wang H, Xu Y, Jin W, Zhou Y, Wang P, Wang K. Novel SERCA2 inhibitor Diphyllin displays anti-tumor effect in non-small cell lung cancer by promoting endoplasmic reticulum stress and mitochondrial dysfunction. Cancer Lett 2024; 598:217075. [PMID: 38909775 DOI: 10.1016/j.canlet.2024.217075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Abnormal calcium signaling is associated with non-small cell lung cancer (NSCLC) malignant progression, poor survival and chemotherapy resistance. Targeting endoplasmic reticulum (ER) Ca2+ channels or pumps to block calcium uptake in the ER induces ER stress and concomitantly promotes mitochondrial calcium uptake, leading to mitochondrial dysfunction and ultimately inducing cell death. Here, we identified Diphyllin was a potential specific inhibitor of endoplasmic reticulum (ER) calcium-importing protein sarco/endoplasmic-reticulum Ca2+ ATPase 2 (SERCA2). In vitro and in vivo studies showed that Diphyllin increased NSCLC cell apoptosis, along with inhibition of cell proliferation and migration. Mechanistically, Diphyllin promoted ER stress by directly inhibiting SERCA2 activity and decreasing ER Ca2+ levels. At the same time, the accumulated Ca2+ in cytoplasm flowed into mitochondria to increase reactive oxygen species (ROS) and decrease mitochondrial membrane potential (MMP), leading to cytochrome C (Cyto C) release and mitochondrial dysfunction. In addition, we found that Diphyllin combined with cisplatin could have a synergistic anti-tumor effect in vitro and in vivo. Taken together, our results suggested that Diphyllin, as a potential novel inhibitor of SERCA2, exerts anti-tumor effects by blocking ER Ca2+ uptake and thereby promoting ER stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Liang Zhu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jianhua Luo
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China; Department of Respiratory Medicine, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang, China
| | - Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Sujing Jiang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Mingshu Xiao
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Xinyuan Jiang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huan Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yun Xu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Wei Jin
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Pingli Wang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
5
|
Chakraborty S, Wei D, Tran M, Lang FF, Newman RA, Yang P. PBI-05204, a supercritical CO 2 extract of Nerium oleander, suppresses glioblastoma stem cells by inhibiting GRP78 and inducing programmed necroptotic cell death. Neoplasia 2024; 54:101008. [PMID: 38823209 PMCID: PMC11177059 DOI: 10.1016/j.neo.2024.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Successful treatment of glioblastoma multiforme (GBM), an aggressive form of primary brain neoplasm, mandates the need to develop new therapeutic strategies. In this study, we investigated the potential of PBI-05204 in targeting GBM stem cells (GSCs) and the underlying mechanisms. Treatment with PBI-05204 significantly reduced both the number and size of tumor spheres derived from patient-derived GSCs (GBM9, GSC28 and TS543), and suppressed the tumorigenesis of GBM9 xenografts. Moreover, PBI-05204 treatment led to a significant decrease in the expression of CD44 and NANOG, crucial markers of progenitor stem cells, in GBM9 and GSC28 GSCs. This treatment also down-regulated GRP78 expression in both GSC types. Knocking down GRP78 expression through GRP78 siRNA transfection in GBM9 and GSC28 GSCs also resulted in reduced spheroid size and CD44 expression. Combining PBI-05204 with GRP78 siRNA further decreased spheroid numbers compared to GRP78 siRNA treatment alone. PBI-05204 treatment led to increased expression of pRIP1K and pRIP3K, along with enhanced binding of RIPK1/RIPK3 in GBM9 and GSC28 cells, resembling the effects observed in GRP78-silenced GSCs, suggesting that PBI-05204 induced necroptosis in these cells. Furthermore, oleandrin, a principle active cardiac glycoside component of PBI-05204, showed the ability to inhibit the self-renewal capacity in GSCs. These findings highlight the potential of PBI-05204 as a promising candidate for the development of novel therapies that target GBM stem cells.
Collapse
Affiliation(s)
- Sharmistha Chakraborty
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Megan Tran
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Robert A Newman
- Phoenix Biotechnology, San Antonio, Texas 78217, United States
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.
| |
Collapse
|
6
|
Tanwar M, Singh A, Singh TP, Sharma S, Sharma P. Comprehensive Review on the Virulence Factors and Therapeutic Strategies with the Aid of Artificial Intelligence against Mucormycosis. ACS Infect Dis 2024; 10:1431-1457. [PMID: 38682683 DOI: 10.1021/acsinfecdis.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Mucormycosis, a rare but deadly fungal infection, was an epidemic during the COVID-19 pandemic. The rise in cases (COVID-19-associated mucormycosis, CAM) is attributed to excessive steroid and antibiotic use, poor hospital hygiene, and crowded settings. Major contributing factors include diabetes and weakened immune systems. The main manifesting forms of CAM─cutaneous, pulmonary, and the deadliest, rhinocerebral─and disseminated infections elevated mortality rates to 85%. Recent focus lies on small-molecule inhibitors due to their advantages over standard treatments like surgery and liposomal amphotericin B (which carry several long-term adverse effects), offering potential central nervous system penetration, diverse targets, and simpler dosing owing to their small size, rendering the ability to traverse the blood-brain barrier via passive diffusion facilitated by the phospholipid membrane. Adaptation and versatility in mucormycosis are facilitated by a multitude of virulence factors, enabling the pathogen to dynamically respond to various environmental stressors. A comprehensive understanding of these virulence mechanisms is imperative for devising effective therapeutic interventions against this highly opportunistic pathogen that thrives in immunocompromised individuals through its angio-invasive nature. Hence, this Review delineates the principal virulence factors of mucormycosis, the mechanisms it employs to persist in challenging host environments, and the current progress in developing small-molecule inhibitors against them.
Collapse
Affiliation(s)
- Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Tej Pal Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
7
|
Bai Y, Miao Y, Wang J, Gan J, Feng J. Predictive Value and Immunological Role of the HSPA5 Gene in Cervical Cancer. Biochem Genet 2024:10.1007/s10528-024-10782-w. [PMID: 38584219 DOI: 10.1007/s10528-024-10782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
Cervical cancer (CC) ranks fourth among women's malignancies worldwide and seriously affects women's health. HSPA5 is a heat shock protein, also known as glucose regulatory protein 78 (GRP78). Upregulation of HSPA5 has been reported to be closely associated with multiple types of tumors. However, the specific role of HSPA5 in cervical cancer has not been discovered. In our study, we explored the prognostic value of HSPA5 in CC. Here, we analyzed the (TCGA) and (UCSC) databases, the analysis of HSPA5 in many tumors types was conducted with the "wilcox. test" method. A False Discovery Rate (FDR) value < 0.05 and Log2 | (fold change, FC) |> 1 were set as the cutoffs. "*", "**", and "***" indicate FDR < 0.05, < 0.01, and < 0.001, respectively, and further used human cervical cancer cells for q-PCR and western blotting detection. q-PCR and western blotting results showed that HSPA5 was highly expressed in cervical cancer cells, while it was expressed at low levels in normal cells (P < 0.05).We also analyzed the immunohistochemical data. immunohistochemical analysis results showed that HSPA5 was highly expressed in human cervical cancer, while it was expressed at low levels in normal tissues (P < 0.05). Analysis in TCGA-UCSC showed that the proportion of G3 in the group with high expression of HSPA5 was relatively high (P < 0.05). Enrichment analysis and survival analysis showed that the increased expression of HSPA5 in cervical cancer was related to the survival of CC and was involved in the regulation of biological behavior and molecular signaling pathways of cervical cancer. The correlation analysis of immune checkpoint and immune infiltration showed that HSPA5 was involved in the regulation of immune process of cervical cancer (P < 0.05). Drug sensitivity correlation analysis showed that HSPA5 was a sensitive target for tumor drugs (P < 0.05). In brief, those results suggest that HSPA5 can act as an oncogene of CC development and can serve as an effective predictive biomarker in cervical cancer.
Collapse
Affiliation(s)
- Yingying Bai
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038, Shanxi, China
| | - Yandong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai, 264100, China
| | - Jiangtao Wang
- Department of General Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, 264000, China
| | - Jian Gan
- Department of General Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, 264000, China
| | - Jiang Feng
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038, Shanxi, China.
| |
Collapse
|
8
|
Wang B, He X, Zhang J, Zhang Y. Cell surface GRP78: A potential therapeutic target for high glucose-induced endothelial injury. Biochem Biophys Res Commun 2024; 692:149347. [PMID: 38056158 DOI: 10.1016/j.bbrc.2023.149347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Endothelial cell inflammation and oxidative stress are critical to developing diabetic vascular complications. GRP78 translocation to the cell surface has been observed in different types of endothelial cells, but the potential role of cell surface GRP78 in modulating endothelial inflammation and oxidative stress remains uncertain. In this study, we investigated whether inhibiting cell surface GRP78 function using a novel anti-GRP78 monoclonal antibody (MAb159) could suppress high glucose (HG)-induced endothelial inflammation and oxidative stress. Our findings demonstrated that the expression of cell surface GRP78 was increased in HG-treated HUVECs. Inhibition of cell surface GRP78 using MAb159 attenuated HG-induced endothelial injury, inflammation and oxidative stress, while activation of GRP78 by recombinant GRP78 further amplified HG-induced endothelial damage, inflammation and oxidative stress. Additionally, we discovered that cell surface GRP78 promoted HG-induced inflammation and oxidative stress by activating the TLR4/NF-κB signalling pathway. Moreover, HG-induced GRP78 translocation to the cell surface is dependent on ER stress. Our data demonstrate that targeting cell surface GRP78 could be a promising therapeutic strategy for mitigating endothelial injury, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Bo Wang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xin He
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jingliang Zhang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Yingjie Zhang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
9
|
Li S, Li X, Yang X, Lei Y, He M, Xiang X, Wu Q, Liu H, Wang J, Wang Q. Corilagin enhances the anti-tumor activity of 5-FU by downregulating the expression of GRP 78. Sci Rep 2023; 13:22661. [PMID: 38114593 PMCID: PMC10730900 DOI: 10.1038/s41598-023-49604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023] Open
Abstract
Colorectal cancer is one of the most common malignancies worldwide. Although initially effective, patients who receive chemotherapy ultimately experience various complications and develop chemo-resistance, leading to cancer recurrence. Therefore, we aimed to find a drug with good efficacy and low toxicity that could enhance the treatment with 5-Fluorouracil (a commonly used clinical drug) and reduce its dosing. Corilagin, an anti-tumor natural product, has received widespread attention. Glucose regulated protein 78 (GRP78) is overexpressed in colorectal cancer cells and plays a key role in the proliferation, migration and drug resistance of cancer cells. Importantly, GRP78 can affect the apoptosis induced by 5-fluorouracil in CRC cells. In the present study, we determined the synergistic anti-tumor activity of the combination treatment by cell proliferation assay, apoptosis assay, fluorescent staining, cell cycle analysis, WB and PCR assays. This synergistic effect was associated with S-phase blockade, intracellular reactive oxygen species production and downregulation of GRP78. Taken together, our results indicate that Corilagin acts as a potentiator of 5-fluorouracil and may have therapeutic potential for patients with CRC.
Collapse
Grants
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
Collapse
Affiliation(s)
- Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiliang Yang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Mingxin He
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Hongyun Liu
- School of Basic Medicine, Hubei University of Science and Technology, Wuhan, 437100, China.
| | - Jiadun Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
10
|
Guo W, Wang M, Yang Z, Liu D, Ma B, Zhao Y, Chen Y, Hu Y. Recent advances in small molecule and peptide inhibitors of glucose-regulated protein 78 for cancer therapy. Eur J Med Chem 2023; 261:115792. [PMID: 37690265 DOI: 10.1016/j.ejmech.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Glucose-regulated protein 78 (GRP78) is one of key endoplasmic reticulum (ER) chaperone proteins that regulates the unfolded protein response (UPR) to maintain ER homeostasis. As a core factor in the regulation of the UPR, GRP78 takes a critical part in the cellular processes required for tumorigenesis, such as proliferation, metastasis, anti-apoptosis, immune escape and chemoresistance. Overexpression of GRP78 is closely correlated with tumorigenesis and poor prognosis in various malignant tumors. Targeting GRP78 is regarded as a potentially promising therapeutic strategy for cancer therapy. Although none of the GRP78 inhibitors have been approved to date, there have been several studies of GRP78 inhibitors. Herein, we comprehensively review the structure, physiological functions of GRP78 and the recent progress of GRP78 inhibitors, and discuss the structures, in vitro and in vivo efficacies, and merits and demerits of these inhibitors to inspire further research. Additionally, the feasibility of GRP78-targeting proteolysis-targeting chimeras (PROTACs), disrupting GRP78 cochaperone interactions, or covalent inhibition are also discussed as novel strategies for drugs discovery targeting GRP78, with the hope that these strategies can provide new opportunities for targeted GRP78 antitumor therapy.
Collapse
Affiliation(s)
- Weikai Guo
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Manjie Wang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Zhengfan Yang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Danyang Liu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Borui Ma
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yanqun Zhao
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yanzhong Hu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
11
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|