1
|
Wan L, Huo J, Huang Q, Ji X, Song L, Zhang Z, Pan L, Fu J, Abd Elhamid MA, Soaud SA, Heakel RMY, Gao J, Wei S, El-Sappah AH. Genetics and metabolic responses of Artemisia annua L to the lake of phosphorus under the sparingly soluble phosphorus fertilizer: evidence from transcriptomics analysis. Funct Integr Genomics 2024; 24:26. [PMID: 38329581 DOI: 10.1007/s10142-024-01301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The medicinal herb Artemisia annua L. is prized for its capacity to generate artemisinin, which is used to cure malaria. Potentially influencing the biomass and secondary metabolite synthesis of A. annua is plant nutrition, particularly phosphorus (P). However, most soil P exist as insoluble inorganic and organic phosphates, which results to low P availability limiting plant growth and development. Although plants have developed several adaptation strategies to low P levels, genetics and metabolic responses to P status remain largely unknown. In a controlled greenhouse experiment, the sparingly soluble P form, hydroxyapatite (Ca5OH(PO4)3/CaP) was used to simulate calcareous soils with low P availability. In contrast, the soluble P form KH2PO4/KP was used as a control. A. annua's morphological traits, growth, and artemisinin concentration were determined, and RNA sequencing was used to identify the differentially expressed genes (DEGs) under two different P forms. Total biomass, plant height, leaf number, and stem diameter, as well as leaf area, decreased by 64.83%, 27.49%, 30.47%, 38.70%, and 54.64% in CaP compared to KP; however, LC-MS tests showed an outstanding 37.97% rise in artemisinin content per unit biomass in CaP contrary to KP. Transcriptome analysis showed 2015 DEGs (1084 up-regulated and 931 down-regulated) between two P forms, including 39 transcription factor (TF) families. Further analysis showed that DEGs were mainly enriched in carbohydrate metabolism, secondary metabolites biosynthesis, enzyme catalytic activity, signal transduction, and so on, such as tricarboxylic acid (TCA) cycle, glycolysis, starch and sucrose metabolism, flavonoid biosynthesis, P metabolism, and plant hormone signal transduction. Meanwhile, several artemisinin biosynthesis genes were up-regulated, including DXS, GPPS, GGPS, MVD, and ALDH, potentially increasing artemisinin accumulation. Furthermore, 21 TF families, including WRKY, MYB, bHLH, and ERF, were up-regulated in reaction to CaP, confirming their importance in P absorption, internal P cycling, and artemisinin biosynthesis regulation. Our results will enable us to comprehend how low P availability impacts the parallel transcriptional control of plant development, growth, and artemisinin production in A. annua. This study could lay the groundwork for future research into the molecular mechanisms underlying A. annua's low P adaptation.
Collapse
Affiliation(s)
- Lingyun Wan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Juan Huo
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Xiaowen Ji
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lisha Song
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhanjiang Zhang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Limei Pan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jine Fu
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | | | - Salma A Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Rania M Y Heakel
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jihai Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shugen Wei
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| | - Ahmed H El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
2
|
Wan L, Huang Q, Ji X, Song L, Zhang Z, Pan L, Fu J, Elbaiomy RG, Eldomiaty AS, Rather SA, Elashtokhy MMA, Gao J, Guan L, Wei S, El-Sappah AH. RNA sequencing in Artemisia annua L explored the genetic and metabolic responses to hardly soluble aluminum phosphate treatment. Funct Integr Genomics 2023; 23:141. [PMID: 37118364 DOI: 10.1007/s10142-023-01067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Artemisia annua L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work aimed to explore the genetic and metabolic response of A. annua to hardly soluble aluminum phosphate (AlPO4, AlP), using soluble monopotassium phosphate (KH2PO4, KP) as a control. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze artemisinin. RNA sequencing, gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to analyze the differentially expressed genes (DEGs) under poor P conditions. Results showed a significant reduction in plant growth parameters, such as plant height, stem diameter, number of leaves, leaf areas, and total biomass of A. annua. Conversely, LC-MS analysis revealed a significant increase in artemisinin concentration under the AlP compared to the KP. Transcriptome analysis revealed 762 differentially expressed genes (DEGs) between the AlP and the KP. GH3, SAUR, CRE1, and PYL, all involved in plant hormone signal transduction, showed differential expression. Furthermore, despite the downregulation of HMGR in the artemisinin biosynthesis pathway, the majority of genes (ACAT, FPS, CYP71AV1, and ALDH1) were upregulated, resulting in increased artemisinin accumulation in the AlP. In addition, 12 transcription factors, including GATA and MYB, were upregulated in response to AlP, confirming their importance in regulating artemisinin biosynthesis. Overall, our findings could contribute to a better understanding the parallel transcriptional regulation of plant hormone transduction and artemisinin biosynthesis in A. annua L. in response to hardly soluble phosphorus fertilizer.
Collapse
Affiliation(s)
- Lingyun Wan
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.
| | - Xiaowen Ji
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lisha Song
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhanjiang Zhang
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Limei Pan
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jine Fu
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Rania G Elbaiomy
- Faculty of Pharmacy, Ahram Canadian University, 6 October, Giza, Egypt
| | - Ahmed S Eldomiaty
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shabir A Rather
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | | | - Jihai Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shugen Wei
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| | - Ahmed H El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
3
|
Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. FRONTIERS IN PLANT SCIENCE 2022; 13:780257. [PMID: 35197994 PMCID: PMC8859114 DOI: 10.3389/fpls.2022.780257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
Collapse
Affiliation(s)
- Karim Farmanpour-Kalalagh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Arman Beyraghdar Kashkooli,
| | - Alireza Babaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Rezaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
4
|
Vergara-Martínez VM, Estrada-Soto SE, Valencia-Díaz S, Garcia-Sosa K, Peña-Rodríguez LM, Arellano-García JDJ, Perea-Arango I. Methyl jasmonate enhances ursolic, oleanolic and rosmarinic acid production and sucrose induced biomass accumulation, in hairy roots of Lepechinia caulescens. PeerJ 2021; 9:e11279. [PMID: 33986996 PMCID: PMC8086586 DOI: 10.7717/peerj.11279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Ursolic (UA), oleanolic (OA) and rosmarinic (RA) acids are bioactive metabolites found in Lepechinia caulescens that have generated interest for their health benefits, which include antimicrobial, antioxidant, antimutagenic, gastroprotective, antidiabetic, antihypertensive and anti-inflammatory properties, among others. To date, very few attempts have been made to evaluate the potential for simultaneous production of these bioactive compounds, using a biotechnological approach. Hairy root cultures offer a biotechnology approach that can be used to study the factors affecting the biosynthesis and the production of UA, OA and RA. In the current study, we established hairy root cultures of L. caulescens and evaluated the effect of sucrose on biomass accumulation, and the effect of different concentrations and times of exposure of methyl jasmonate (MeJA), on the accumulation of UA, OA and RA. Methods Leaves from plants of L. caulescens were inoculated with Agrobacterium rhizogenes strain ATCC 15834. PCR of rolB gene confirmed the transgenic nature of hairy roots. Hairy roots were subcultured in semisolid MSB5 medium, supplemented with 15, 30, 45 or 60 g/L sucrose and after 4 weeks, dry weight was determined. The accumulation of UA, OA and RA of wild plants and hairy roots were determined by HPLC. Finally, the hairy roots were treated with 0, 100, 200 and 300 µM of MeJA and the content of bioactive compounds was analyzed, after 24, 48 and 72 h. Results High frequency transformation (75%) was achieved, using leaf explants from axenic seedlings, infected with A. rhizogenes. The hairy roots showed an enhanced linear biomass accumulation, in response to the increase in sucrose concentration. The hairy root cultures in MSB5 medium, supplemented with 45 g/L sucrose, were capable to synthesizing UA (0.29 ± 0.00 mg/g DW), OA (0.57 ± 0.00 mg/g DW) and RA (41.66 ± 0.31 mg/g DW), about two, seven and three times more, respectively, than in roots from wild plants. Elicitation time and concentration of MeJA resulted in significant enhancement in the production of UA, OA and RA, with treatments elicited for 24 h, with a concentration of 300 µM of MeJA, exhibiting greatest accumulation. Conclusion This is the first report on development of hairy root cultures of L. caulescens. Future studies should aim towards further improving triterpenes and polyphenolic compound production in hairy roots of L. caulescens, for use in the pharmaceutical and biotechnological industry.
Collapse
Affiliation(s)
- Victor M Vergara-Martínez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Samuel E Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Susana Valencia-Díaz
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Karlina Garcia-Sosa
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - Luis Manuel Peña-Rodríguez
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | | | - Irene Perea-Arango
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Matvieieva NA, Morgun BV, Lakhneko OR, Duplij VP, Shakhovsky AM, Ratushnyak YI, Sidorenko M, Mickevicius S, Yevtushenko DP. Agrobacterium rhizogenes-mediated transformation enhances the antioxidant potential of Artemisia tilesii Ledeb. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:177-183. [PMID: 32422534 DOI: 10.1016/j.plaphy.2020.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Plants belonging to the genus Artemisia L. have been used for medicinal purposes since ancient times. These aromatic plants produce and accumulate a wide range of potent secondary metabolites, many of which have shown antioxidant, antiparasitic, antimicrobial, anti-inflammatory, and even anticancer activities. Enhanced biosynthesis of these compounds is a prerequisite for comprehensive studies of their therapeutic properties and cost-efficient use. Transformation of plants with Agrobacterium rhizogenes native root locus (rol) genes is a promising approach to increase the biosynthesis of plant secondary metabolites. The aim of the present study was to evaluate the effects of A. rhizogenes-mediated transformation on the flavonoid contents in hairy roots of medicinal herb A. tilesii Ledeb. Transgenic A. tilesii hairy root lines were analyzed for stable integration of the rolB and rolC transgenes into the plant genome, total flavonoid contents, antioxidant activities of extracts, and the spatiotemporal expression of two flavonoid biosynthetic genes, phenylalanine ammonialyase (PAL) and chalcone synthase (CHS). The flavonoid contents of A. tilesii directly correlated with the antiradical activity and reducing power of their respective lines, with the greatest antioxidant activity found in the plants with the highest level of total flavonoids. Furthermore, all hairy root lines demonstrated altered expression of plant native PAL and CHS genes. Most importantly, A. rhizogenes-mediated transformation enhanced the biosynthesis of natural antioxidants in A. tilesii, producing almost twice the amount of flavonoids than controls. These findings provide an opportunity for the identification of the bioactive molecules in A. tilesii extracts and their potential health benefits.
Collapse
Affiliation(s)
- Nadiia A Matvieieva
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Bogdan V Morgun
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Olha R Lakhneko
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Volodymyr P Duplij
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Anatolij M Shakhovsky
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Yakiv I Ratushnyak
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | | | | | - Dmytro P Yevtushenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
6
|
Metabolite profiling of Artemisia carvifolia Buch transgenic plants and estimation of their anticancer and antidiabetic potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Zafar S, Dilshad E, Ismail H, Rizvi CB, Mirza B. Rol genes enhance content of artemisinin and other secondary metabolites in Shennong hybrid of Artemisia annua. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Guerriero G, Berni R, Muñoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA, Alatar AA, Cantini C, Cai G, Hausman JF, Siddiqui KS, Hernández-Sotomayor SMT, Faisal M. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes (Basel) 2018; 9:E309. [PMID: 29925808 PMCID: PMC6027220 DOI: 10.3390/genes9060309] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phenolic compounds, alkaloids and sulphur-containing compounds. These phytochemicals can be antimicrobial, act as attractants/repellents, or as deterrents against herbivores. The synthesis of such a rich variety of phytochemicals is also observed in undifferentiated plant cells under laboratory conditions and can be further induced with elicitors or by feeding precursors. In this review, we discuss the recent literature on the production of representatives of three plant secondary metabolite classes: artemisinin (a sesquiterpene), lignans (phenolic compounds) and caffeine (an alkaloid). Their respective production in well-known plants, i.e., Artemisia, Coffea arabica L., as well as neglected species, like the fibre-producing plant Urtica dioica L., will be surveyed. The production of artemisinin and caffeine in heterologous hosts will also be discussed. Additionally, metabolic engineering strategies to increase the bioactivity and stability of plant secondary metabolites will be surveyed, by focusing on glycosyltransferases (GTs). We end our review by proposing strategies to enhance the production of plant secondary metabolites in cell cultures by inducing cell wall modifications with chemicals/drugs, or with altered concentrations of the micronutrient boron and the quasi-essential element silicon.
Collapse
Affiliation(s)
- Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
- Trees and timber institute-National research council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - J Armando Muñoz-Sanchez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 # 130 X 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico.
| | - Fabio Apone
- Arterra Biosciences srl/Vitalab srl, via B. Brin 69, 80142 Naples, Italy.
| | - Eslam M Abdel-Salam
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Ahmad A Qahtan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Claudio Cantini
- Trees and timber institute-National research council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Khawar Sohail Siddiqui
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia.
| | - S M Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 # 130 X 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico.
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Kayani WK, Kiani BH, Dilshad E, Mirza B. Biotechnological approaches for artemisinin production in Artemisia. World J Microbiol Biotechnol 2018; 34:54. [PMID: 29589124 PMCID: PMC5871647 DOI: 10.1007/s11274-018-2432-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/09/2018] [Indexed: 12/01/2022]
Abstract
Abstract Artemisinin and its analogues are naturally occurring most effective antimalarial secondary metabolites. These compounds also possess activity against various types of cancer cells, schistosomiasis, and some viral diseases. Artemisinin and its derivatives (A&D) are found in very low amounts in the only natural source i.e. Artemisia plant. To meet the global needs, plant sources have been exploited for the enhanced production of these natural products because their chemical synthesis is not profitable. The generally adopted approaches include non-transgenic (tissue and cell cultures) and transgenic together with the cell, tissue, and whole transgenic plant cultures. The genes targeted for the overproduction of A&D include the biosynthetic pathway genes, trichome development genes and rol genes, etc. Artemisinin is naturally produced in trichomes of leaves. At the same time, transgenic hairy roots are considered a good source to harvest artemisinin. However, the absence of trichomes in hairy roots suggests that artemisinin biosynthesis is not limited to trichomes. Moreover, the expression of the gene involved in trichome development and sesquiterpenoid biosynthesis (TFAR1) in transgenic and non-transgenic roots provokes researchers to look for new insight of artemisinin biosynthesis. Here we discuss and review precisely the various biotechnological approaches for the enhanced biosynthesis of A&D. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 230 53, Alnarp, Sweden.
| | - Bushra Hafeez Kiani
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, 45320, Pakistan
| | - Erum Dilshad
- Department of Biosciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
10
|
Ikram NKBK, Simonsen HT. A Review of Biotechnological Artemisinin Production in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1966. [PMID: 29187859 PMCID: PMC5694819 DOI: 10.3389/fpls.2017.01966] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/31/2017] [Indexed: 05/03/2023]
Abstract
Malaria is still an eminent threat to major parts of the world population mainly in sub-Saharan Africa. Researchers around the world continuously seek novel solutions to either eliminate or treat the disease. Artemisinin, isolated from the Chinese medicinal herb Artemisia annua, is the active ingredient in artemisinin-based combination therapies used to treat the disease. However, naturally artemisinin is produced in small quantities, which leads to a shortage of global supply. Due to its complex structure, it is difficult chemically synthesize. Thus to date, A. annua remains as the main commercial source of artemisinin. Current advances in genetic and metabolic engineering drives to more diverse approaches and developments on improving in planta production of artemisinin, both in A. annua and in other plants. In this review, we describe efforts in bioengineering to obtain a higher production of artemisinin in A. annua and stable heterologous in planta systems. The current progress and advancements provides hope for significantly improved production in plants.
Collapse
Affiliation(s)
- Nur K. B. K. Ikram
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Henrik T. Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Ali M, Abbasi BH, Ahmad N, Khan H, Ali GS. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends. Crit Rev Biotechnol 2017; 37:833-851. [PMID: 28049347 DOI: 10.1080/07388551.2016.1261082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.
Collapse
Affiliation(s)
- Mohammad Ali
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan.,b Department of Biotechnology, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Pakistan
| | - Bilal Haider Abbasi
- b Department of Biotechnology, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Pakistan
| | - Nisar Ahmad
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan
| | - Haji Khan
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan
| | - Gul Shad Ali
- c Mid-Florida Research and Education Center and Department of Plant Pathology , University of Florida/Institute of Food and Agricultural Sciences , Apopka , FL , USA
| |
Collapse
|
12
|
Pala Z, Shukla V, Alok A, Kudale S, Desai N. Enhanced production of an anti-malarial compound artesunate by hairy root cultures and phytochemical analysis of Artemisia pallens Wall. 3 Biotech 2016; 6:182. [PMID: 28330254 PMCID: PMC5002272 DOI: 10.1007/s13205-016-0496-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 08/16/2016] [Indexed: 11/29/2022] Open
Abstract
Artemisinin and its derivatives are still one of the most effective drugs for the treatment of malaria. Artemisia pallens commonly known as Dhavanam, is an aromatic herb belonging to the family Asteraceae. Increasing the artemisinin content of A. pallens by genetic engineering would improve the availability of this much needed drug. In the present study, Agrobacterium rhizogenes (strain NCIM 5140) mediated genetic transformation of Artemisia pallens were carried out for hairy root induction. The effect of different media (Half MS, MS, MS along with BAP 0.5 mg/l and MS along with Kinetin 0.5 mg/l) and type of explants (leaf and stem) on hairy root induction and culture were also studied. Maximum transformation efficiency (70.0 %) was observed in case of stem explants when it was co-cultivated with Agrobacterium rhizogenes and kept on half strength MS media. Artesunate is a derivative of artemisinin, was quantified using HPLC from dried aerial extract and hairy roots. The content of artesunate in hairy roots was increased up to twofold as compared to aerial part of Artemisia pallens. The maximum amount of artesunate found in hairy roots was 5.62 ± 0.16 μg/g of dry weight. Apart from artesunate the other phytochemicals like alkaloids, polyphenols, and flavonoids are important because they impart the medicinal properties in this plant. Therefore, we have also quantified total alkaloids, flavonoids and polyphenolic content in the aerial part of the plants. The total alkaloids and flavonoids content were found 1.72 ± 0.00 mg/g dry weight in aqueous extract and 3.8 ± 0.00 mg/g in methanolic extract in terms of colchicine and rutin equivalents, respectively. Similarly, total phenolic content is 3.70 ± 0.01 mg/g in ethanolic extract in terms of tannic acid equivalent.
Collapse
Affiliation(s)
- Zarna Pala
- School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, India
- Department of Biological Sciences, BITS Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Vishnu Shukla
- School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, India
- National Agri-Food Biotechnology Institute, Govt. of India, Mohali, Punjab, India
| | - Anshu Alok
- School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, India
- National Agri-Food Biotechnology Institute, Govt. of India, Mohali, Punjab, India
| | - Subhash Kudale
- School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, India
| | - Neetin Desai
- School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, India.
- Amity Institute of Biotechnology, Amity University, Mumbai, India.
| |
Collapse
|
13
|
Muangphrom P, Seki H, Fukushima EO, Muranaka T. Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites. J Nat Med 2016; 70:318-34. [PMID: 27250562 PMCID: PMC4935751 DOI: 10.1007/s11418-016-1008-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
Malaria is a worldwide disease caused by Plasmodium parasites. A sesquiterpene endoperoxide artemisinin isolated from Artemisia annua was discovered and has been accepted for its use in artemisinin-based combinatorial therapies, as the most effective current antimalarial treatment. However, the quantity of this compound produced from the A. annua plant is very low, and the availability of artemisinin is insufficient to treat all infected patients. In addition, the emergence of artemisinin-resistant Plasmodium has been reported recently. Several techniques have been applied to enhance artemisinin availability, and studies related to its mode of action and the mechanism of resistance of malaria-causing parasites are ongoing. In this review, we summarize the application of modern technologies to improve the production of artemisinin, including our ongoing research on artemisinin biosynthetic genes in other Artemisia species. The current understanding of the mode of action of artemisinin as well as the mechanism of resistance against this compound in Plasmodium parasites is also presented. Finally, the current situation of malaria infection and the future direction of antimalarial drug development are discussed.
Collapse
Affiliation(s)
- Paskorn Muangphrom
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Continuing Professional Development Center, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Dilshad E, Ismail H, Haq IU, Cusido RM, Palazon J, Ramirez-Estrada K, Mirza B. Rol genes enhance the biosynthesis of antioxidants in Artemisia carvifolia Buch. BMC PLANT BIOLOGY 2016; 16:125. [PMID: 27251864 PMCID: PMC4890517 DOI: 10.1186/s12870-016-0811-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The secondary metabolites of the Artemisia genus are well known for their important therapeutic properties. This genus is one of the valuable sources of flavonoids and other polyphenols, but due to the low contents of these important metabolites, there is a need to either enhance their concentration in the original plant or seek alternative sources for them. The aim of the current study was to detect and enhance the yield of antioxidant compounds of Artemisia carvifolia Buch. HPLC analysis was performed to detect the antioxidants. With the aim of increasing flavonoid content, Rol gene transgenics of A. carvifolia were established. Two genes of the flavonoid biosynthetic pathway, phenylalanine ammonia-lyase and chalcone synthase, were studied by real time qPCR. Antioxidant potential was determined by performing different antioxidant assays. RESULTS HPLC analysis of wild-type A. carvifolia revealed the presence of flavonoids such as caffeic acid (30 μg/g DW), quercetin (10 μg/g DW), isoquercetin (400 μg/g DW) and rutin (300 μg/g DW). Compared to the untransformed plants, flavonoid levels increased 1.9-6-fold and 1.6-4-fold in rol B and rol C transgenics, respectively. RT qPCR analysis showed a variable expression of the flavonoid biosynthetic genes, including those encoding phenylalanine ammonia-lyase and chalcone synthase, which were found to be relatively more expressed in transformed than wild-type plants, thus correlating with the metabolite concentration. Methanolic extracts of transgenics showed higher antioxidant capacity, reducing power, and protection against free radical-induced DNA damage. Among the transgenic plants, those harboring rol B were slightly more active than the rol C-transformants. CONCLUSION As well as demonstrating the effectiveness of rol genes in inducing plant secondary metabolism, this study provides insight into the molecular dynamics of the flavonoid accumulation pattern, which correlated with the expression of biosynthetic genes.
Collapse
Affiliation(s)
- Erum Dilshad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan-Ul- Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rosa Maria Cusido
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, Barcelona, Spain
| | - Karla Ramirez-Estrada
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, Barcelona, Spain
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
15
|
Kiani BH, Suberu J, Mirza B. Cellular engineering of Artemisia annua and Artemisia dubia with the rol ABC genes for enhanced production of potent anti-malarial drug artemisinin. Malar J 2016; 15:252. [PMID: 27142388 PMCID: PMC4855502 DOI: 10.1186/s12936-016-1312-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is causing more than half of a million deaths and 214 million clinical cases annually. Despite tremendous efforts for the control of malaria, the global morbidity and mortality have not been significantly changed in the last 50 years. Artemisinin, extracted from the medicinal plant Artemisia sp. is an effective anti-malarial drug. In 2015, elucidation of the effectiveness of artemisinin as a potent anti-malarial drug was acknowledged with a Nobel prize. Owing to the tight market and low yield of artemisinin, an economical way to increase its production is to increase its content in Artemisia sp. through different biotechnological approaches including genetic transformation. METHODS Artemisia annua and Artemisia dubia were transformed with rol ABC genes through Agrobacterium tumefacienes and Agrobacterium rhizogenes methods. The artemisinin content was analysed and compared between transformed and untransformed plants with the help of LC-MS/MS. Expression of key genes [Cytochrome P450 (CYP71AV1), aldehyde dehydrogenase 1 (ALDH1), amorpha-4, 11 diene synthase (ADS)] in the biosynthetic pathway of artemisinin and gene for trichome development and sesquiterpenoid biosynthetic (TFAR1) were measured using Quantitative real time PCR (qRT-PCR). Trichome density was analysed using confocal microscope. RESULTS Artemisinin content was significantly increased in transformed material of both Artemisia species when compared to un-transformed plants. The artemisinin content within leaves of transformed lines was increased by a factor of nine, indicating that the plant is capable of synthesizing much higher amounts than has been achieved so far through traditional breeding. Expression of all artemisinin biosynthesis genes was significantly increased, although variation between the genes was observed. CYP71AV1 and ALDH1 expression levels were higher than that of ADS. Levels of the TFAR1 expression were also increased in all transgenic lines. Trichome density was also significantly increased in the leaves of transformed plants, but no trichomes were found in control roots or transformed roots. The detection of significantly raised levels of expression of the genes involved in artemisinin biosynthesis in transformed roots correlated with the production of significant amounts of artemisinin in these tissues. This suggests that synthesis is occurring in tissues other than the trichomes, which contradicts previous theories. CONCLUSION Transformation of Artemisia sp. with rol ABC genes can lead to the increased production of artemisinin, which will help to meet the increasing demand of artemisinin because of its diverse pharmacological and anti-malarial importance.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- />Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
- />Department of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - John Suberu
- />Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Bushra Mirza
- />Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
16
|
Effect of Rol Genes on Polyphenols Biosynthesis in Artemisia annua and Their Effect on Antioxidant and Cytotoxic Potential of the Plant. Appl Biochem Biotechnol 2016; 179:1456-68. [PMID: 27085357 DOI: 10.1007/s12010-016-2077-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/03/2016] [Indexed: 10/21/2022]
|
17
|
Andre CM, Hausman JF, Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. FRONTIERS IN PLANT SCIENCE 2016; 7:19. [PMID: 26870049 PMCID: PMC4740396 DOI: 10.3389/fpls.2016.00019] [Citation(s) in RCA: 734] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
Cannabis sativa L. is an important herbaceous species originating from Central Asia, which has been used in folk medicine and as a source of textile fiber since the dawn of times. This fast-growing plant has recently seen a resurgence of interest because of its multi-purpose applications: it is indeed a treasure trove of phytochemicals and a rich source of both cellulosic and woody fibers. Equally highly interested in this plant are the pharmaceutical and construction sectors, since its metabolites show potent bioactivities on human health and its outer and inner stem tissues can be used to make bioplastics and concrete-like material, respectively. In this review, the rich spectrum of hemp phytochemicals is discussed by putting a special emphasis on molecules of industrial interest, including cannabinoids, terpenes and phenolic compounds, and their biosynthetic routes. Cannabinoids represent the most studied group of compounds, mainly due to their wide range of pharmaceutical effects in humans, including psychotropic activities. The therapeutic and commercial interests of some terpenes and phenolic compounds, and in particular stilbenoids and lignans, are also highlighted in view of the most recent literature data. Biotechnological avenues to enhance the production and bioactivity of hemp secondary metabolites are proposed by discussing the power of plant genetic engineering and tissue culture. In particular two systems are reviewed, i.e., cell suspension and hairy root cultures. Additionally, an entire section is devoted to hemp trichomes, in the light of their importance as phytochemical factories. Ultimately, prospects on the benefits linked to the use of the -omics technologies, such as metabolomics and transcriptomics to speed up the identification and the large-scale production of lead agents from bioengineered Cannabis cell culture, are presented.
Collapse
Affiliation(s)
- Christelle M. Andre
- Environmental Research and Innovation, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | | | | |
Collapse
|