1
|
Tantely ML, Guis H, Raharinirina MR, Ambinintsoa MF, Randriananjantenaina I, Velonirina HJ, Revillion C, Herbreteau V, Tran A, Girod R. Mosquito dynamics and their drivers in peri-urban Antananarivo, Madagascar: insights from a longitudinal multi-host single-site survey. Parasit Vectors 2024; 17:383. [PMID: 39256778 PMCID: PMC11385145 DOI: 10.1186/s13071-024-06393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Antananarivo, the capital city of Madagascar, is experiencing a steady increase in population growth. Due to the abundance of mosquito vectors in this locality, the population exposed to mosquito-borne diseases is therefore also increasing, as is the risk of epidemic episodes. The aim of the present study was to assess, in a resource-limited setting, the information on mosquito population dynamics and disease transmission risk that can be provided through a longitudinal entomological study carried out in a multi-host single site. METHODS Mosquitoes were collected every 15 days over 16 months (from January 2017 to April 2018) using six CDC-light traps in a peri-urban area of Antananarivo. Multivariable generalised linear models were developed using indoor and outdoor densities of the predominant mosquito species as response variables and moon illumination, environmental data and climatic data as the explanatory variables. RESULTS Overall, 46,737 mosquitoes belonging to at least 20 species were collected, of which Culex antennatus (68.9%), Culex quinquefasciatus (19.8%), Culex poicilipes (3.7%) and Anopheles gambiae sensu lato (2.3%) were the most abundant species. Mosquito densities were observed to be driven by moon illumination and climatic factors interacting at different lag periods. The outdoor models demonstrated biweekly and seasonal patterns of mosquito densities, while the indoor models demonstrated only a seasonal pattern. CONCLUSIONS An important diversity of mosquitoes exists in the peri-urban area of Antananarivo. Some well-known vector species, such as Cx. antennatus, a major vector of West Nile virus (WNV) and Rift-Valley fever virus (RVFV), Cx. quinquefasciatus, a major vector of WNV, Cx. poicilipes, a candidate vector of RVFV and An. gambiae sensu lato, a major vector of Plasmodium spp., are abundant. Importantly, these four mosquito species are present all year round, even though their abundance declines during the cold dry season, with the exception of Cx. quinquefasciatus. The main drivers of their abundance were found to be temperature, relative humidity and precipitation, as well as-for outdoor abundance only-moon illumination. Identifying these drivers is a first step towards the development of pathogen transmission models (R0 models), which are key to inform public health stakeholders on the periods of most risk for vector-borne diseases.
Collapse
Affiliation(s)
| | - Hélène Guis
- Unité d'entomologie médicale, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- CIRAD-UMR ASTRE, Antananarivo, Madagascar
- Unité d'épidémiologie et de recherche clinique, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- ASTRE, CIRAD, INRAE, Université de Montpellier, Montpellier, France
| | | | | | - Iavonirina Randriananjantenaina
- Unité d'entomologie médicale, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Département d'Entomologie, Université d'Antananarivo, Antananarivo, Madagascar
| | | | | | | | - Annelise Tran
- ASTRE, CIRAD, INRAE, Université de Montpellier, Montpellier, France
- CIRAD-UMR ASTRE, Montpellier, France
- CIRAD-UMR TETIS, Montpellier, France
- TETIS,Université de Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
| | - Romain Girod
- Unité d'entomologie médicale, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
2
|
Vythilingam I, Jeyaprakasam NK. Deforestation and non-human primate malarias will be a threat to malaria elimination in the future: Insights from Southeast Asia. Acta Trop 2024; 257:107280. [PMID: 38908421 DOI: 10.1016/j.actatropica.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
Malaria continues to be a global public health problem although it has been eliminated from many countries. Sri Lanka and China are two countries that recently achieved malaria elimination status, and many countries in Southeast Asia are currently in the pipeline for achieving the same goal by 2030. However, Plasmodium knowlesi, a non-human primate malaria parasite continues to pose a threat to public health in this region, infecting many humans in all countries in Southeast Asia except for Timor-Leste. Besides, other non-human primate malaria parasite such as Plasmodium cynomolgi and Plasmodium inui are infecting humans in the region. The non-human primates, the long-tailed and pig-tailed macaques which harbour these parasites are now increasingly prevalent in farms and forest fringes close by to the villages. Additionally, the Anopheles mosquitoes belonging to the Lecuosphyrus Group are also present in these areas which makes them ideal for transmitting the non-human primate malaria parasites. With changing landscape and deforestation, non-human primate malaria parasites will affect more humans in the coming years with the elimination of human malaria. Perhaps due to loss of immunity, more humans will be infected as currently being demonstrated in Malaysia. Thus, control measures need to be instituted rapidly to achieve the malaria elimination status by 2030. However, the zoonotic origin of the parasite and the changes of the vectors behaviour to early biting seems to be the stumbling block to the malaria elimination efforts in this region. In this review, we discuss the challenges faced in malaria elimination due to deforestation and the serious threat posed by non-human primate malaria parasites.
Collapse
Affiliation(s)
- Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Nantha Kumar Jeyaprakasam
- Biomedical Science Program, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Johnson E, Sunil Kumar Sharma R, Ruiz Cuenca P, Byrne I, Salgado-Lynn M, Suraya Shahar Z, Col Lin L, Zulkifli N, Dilaila Mohd Saidi N, Drakeley C, Matthiopoulos J, Nelli L, Fornace K. Landscape drives zoonotic malaria prevalence in non-human primates. eLife 2024; 12:RP88616. [PMID: 38753426 PMCID: PMC11098556 DOI: 10.7554/elife.88616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.
Collapse
Affiliation(s)
- Emilia Johnson
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUnited Kingdom
- Department of Disease Control, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | | | - Pablo Ruiz Cuenca
- Department of Disease Control, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Lancaster University, BailriggLancasterUnited Kingdom
- Liverpool School of Tropical Medicine, Pembroke Place LiverpoolLiverpoolUnited Kingdom
| | - Isabel Byrne
- Department of Disease Control, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Milena Salgado-Lynn
- School of Biosciences, Cardiff UniversityCardiffUnited Kingdom
- Wildlife Health, Genetic and Forensic Laboratory, Sabah Wildlife Department, Wisma MuisKota KinabaluMalaysia
- Danau Girang Field Centre, Sabah Wildlife DepartmentKinabalu SabahMalaysia
| | | | - Lee Col Lin
- Faculty of Veterinary Medicine, Universiti Putra MalaysiaSelangorMalaysia
| | - Norhadila Zulkifli
- Faculty of Veterinary Medicine, Universiti Putra MalaysiaSelangorMalaysia
| | | | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Jason Matthiopoulos
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUnited Kingdom
| | - Luca Nelli
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUnited Kingdom
| | - Kimberly Fornace
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUnited Kingdom
- Department of Disease Control, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Saw Swee Hock School of Public Health, National University of SingaporeSingaporeSingapore
| |
Collapse
|
4
|
Sánchez KL, Baird JK, Nielsen A, Nurillah A, Agustina F, Komara, Fadilah F, Prameswari W, Nugraha RTP, Saputra S, Nurkanto A, Dharmayanthi AB, Pratama R, Exploitasia I, Greenwood AD. Naturally acquired immunity to Plasmodium pitheci in Bornean orangutans ( Pongo pygmaeus). Parasitology 2024; 151:380-389. [PMID: 38361461 PMCID: PMC11044065 DOI: 10.1017/s0031182024000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Naturally acquired immunity to the different types of malaria in humans occurs in areas of endemic transmission and results in asymptomatic infection of peripheral blood. The current study examined the possibility of naturally acquired immunity in Bornean orangutans, Pongo pygmaeus, exposed to endemic Plasmodium pitheci malaria. A total of 2140 peripheral blood samples were collected between January 2017 and December 2022 from a cohort of 135 orangutans housed at a natural forested Rescue and Rehabilitation Centre in West Kalimantan, Indonesia. Each individual was observed for an average of 4.3 years during the study period. Blood samples were examined by microscopy and polymerase chain reaction for the presence of plasmodial parasites. Infection rates and parasitaemia levels were measured among age groups and all 20 documented clinical malaria cases were reviewed to estimate the incidence of illness and risk ratios among age groups. A case group of all 17 individuals that had experienced clinical malaria and a control group of 34 individuals having an event of >2000 parasites μL−1 blood but with no outward or clinical sign of illness were studied. Immature orangutans had higher-grade and more frequent parasitaemia events, but mature individuals were more likely to suffer from clinical malaria than juveniles. The case orangutans having patent clinical malaria were 256 times more likely to have had no parasitaemia event in the prior year relative to asymptomatic control orangutans. The findings are consistent with rapidly acquired immunity to P. pitheci illness among orangutans that wanes without re-exposure to the pathogen.
Collapse
Affiliation(s)
- Karmele Llano Sánchez
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
- International Animal Rescue, Uckfield, UK
- School of Veterinary Medicine, Freie Universität, Berlin, Germany
| | - John Kevin Baird
- Oxford University Clinical Research Unit-Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aileen Nielsen
- Center for Law and Economics, ETH Zurich, Zurich, Switzerland
| | - Andini Nurillah
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Fitria Agustina
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Komara
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Fina Fadilah
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Wendi Prameswari
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | | | - Sugiyono Saputra
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Arif Nurkanto
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Anik Budhi Dharmayanthi
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Rahadian Pratama
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Indra Exploitasia
- Biodiversity Conservation Directorate of the General Director of Natural Resources and Ecosystem Conservation, Ministry of Environment and Forestry of the Republic of Indonesia, Jakarta, Indonesia
| | - Alex D. Greenwood
- School of Veterinary Medicine, Freie Universität, Berlin, Germany
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
5
|
Davidson G, Speldewinde P, Manin BO, Cook A, Weinstein P, Chua TH. Forest Restoration and the Zoonotic Vector Anopheles balabacensis in Sabah, Malaysia. ECOHEALTH 2024; 21:21-37. [PMID: 38411846 DOI: 10.1007/s10393-024-01675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
Anthropogenic changes to forest cover have been linked to an increase in zoonotic diseases. In many areas, natural forests are being replaced with monoculture plantations, such as oil palm, which reduce biodiversity and create a mosaic of landscapes with increased forest edge habitat and an altered micro-climate. These altered conditions may be facilitating the spread of the zoonotic malaria parasite Plasmodium knowlesi in Sabah, on the island of Borneo, through changes to mosquito vector habitat. We conducted a study on mosquito abundance and diversity in four different land uses comprising restored native forest, degraded native forest, an oil palm estate and a eucalyptus plantation, these land uses varying in their vegetation types and structure. The main mosquito vector, Anopheles balabacensis, has adapted its habitat preference from closed canopy rainforest to more open logged forest and plantations. The eucalyptus plantations (Eucalyptus pellita) assessed in this study contained significantly higher abundance of many mosquito species compared with the other land uses, whereas the restored dipterocarp forest had a low abundance of all mosquitos, in particular, An. balabacensis. No P. knowlesi was detected by PCR assay in any of the vectors collected during the study; however, P. inui, P. fieldi and P. vivax were detected in An. balabacensis. These findings indicate that restoring degraded natural forests with native species to closed canopy conditions reduces abundance of this zoonotic malarial mosquito vector and therefore should be incorporated into future restoration research and potentially contribute to the control strategies against simian malaria.
Collapse
Affiliation(s)
- Gael Davidson
- School of Agriculture and Environment, University of Western Australia, Albany, Australia
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Peter Speldewinde
- School of Agriculture and Environment, University of Western Australia, Albany, Australia
| | - Benny Obrain Manin
- Borneo Medical and Health Research Centre (BMHRC), Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Tock H Chua
- Edulife Berhad, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
6
|
Guillén-Rodríguez YG, Chapa-Vargas L, Ibarra-Juárez LA, Ibáñez-Bernal S, Santiago-Alarcon D. The influence of humidity and temperature on the vertical richness and abundance of blood-sucking flies (Culicidae and Ceratopogonidae) in a montane cloud forest in Mexico. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 49:1-14. [PMID: 38147297 DOI: 10.52707/1081-1710-49.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/05/2023] [Indexed: 12/27/2023]
Abstract
Because the vertical distribution and diversity of blood-sucking flies are poorly known, we determined the diversity, structure, and composition of culicids between vertical vegetation strata. We evaluated the influence of microclimatic variables during different times of the day over a year. We used eight CDC traps baited with CO2 at a height of 1.5 m and 12-15 m. We conducted rank-abundance curves, similarity analysis (ANOSIM and SIMPER), and multivariate clustering with incidence and abundance data. We used GAM models to analyze the influence of strata (understory vs canopy), humidity, and temperature on insect richness and abundance. During the day, the difference between strata was mainly due to higher abundance of Wyeomyia arthrostigma and Wyeomyia ca. adelpha in the understory. During the night, the differences were mainly due to higher abundance of Culex stigmatosoma, Culex salinarius, and Aedes allotecnon in the canopy, and Wyeomyia arthrostigma in the understory. Seasonality played a role in the similarity between the strata. Diversity during the day was positively related to humidity and temperature, and nocturnal diversity increased with temperature but decreased with higher humidity. The effects of environmental factors on the spatiotemporal distribution of fly species are essential for epidemiological surveillance.
Collapse
Affiliation(s)
| | - Leonardo Chapa-Vargas
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica A.C., México
| | | | | | | |
Collapse
|
7
|
Pramasivan S, Ngui R, Jeyaprakasam NK, Low VL, Liew JWK, Vythilingam I. Spatial analyses of Plasmodium knowlesi vectors with reference to control interventions in Malaysia. Parasit Vectors 2023; 16:355. [PMID: 37814287 PMCID: PMC10563288 DOI: 10.1186/s13071-023-05984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Malaria parasites such as Plasmodium knowlesi, P. inui, and P. cynomolgi are spread from macaques to humans through the Leucosphyrus Group of Anopheles mosquitoes. It is crucial to know the distribution of these vectors to implement effective control measures for malaria elimination. Plasmodium knowlesi is the most predominant zoonotic malaria parasite infecting humans in Malaysia. METHODS Vector data from various sources were used to create distribution maps from 1957 to 2021. A predictive statistical model utilizing logistic regression was developed using significant environmental factors. Interpolation maps were created using the inverse distance weighted (IDW) method and overlaid with the corresponding environmental variables. RESULTS Based on the IDW analysis, high vector abundances were found in the southwestern part of Sarawak, the northern region of Pahang and the northwestern part of Sabah. However, most parts of Johor, Sabah, Perlis, Penang, Kelantan and Terengganu had low vector abundance. The accuracy test indicated that the model predicted sampling and non-sampling areas with 75.3% overall accuracy. The selected environmental variables were entered into the regression model based on their significant values. In addition to the presence of water bodies, elevation, temperature, forest loss and forest cover were included in the final model since these were significantly correlated. Anopheles mosquitoes were mainly distributed in Peninsular Malaysia (Titiwangsa range, central and northern parts), Sabah (Kudat, West Coast, Interior and Tawau division) and Sarawak (Kapit, Miri, and Limbang). The predicted Anopheles mosquito density was lower in the southern part of Peninsular Malaysia, the Sandakan Division of Sabah and the western region of Sarawak. CONCLUSION The study offers insight into the distribution of the Leucosphyrus Group of Anopheles mosquitoes in Malaysia. Additionally, the accompanying predictive vector map correlates well with cases of P. knowlesi malaria. This research is crucial in informing and supporting future efforts by healthcare professionals to develop effective malaria control interventions.
Collapse
Affiliation(s)
- Sandthya Pramasivan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya (UM), Kuala Lumpur, Malaysia
| | - Romano Ngui
- Department of ParaClinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Sarawak, Malaysia.
| | - Nantha Kumar Jeyaprakasam
- Biomedical Science Program, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Van Lun Low
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya (UM), Kuala Lumpur, Malaysia
| | | | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya (UM), Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Byrne I, William T, Chua TH, Patterson C, Hall T, Tan M, Chitnis C, Adams J, Singh SK, Grignard L, Tetteh KKA, Fornace KM, Drakeley CJ. Serological evaluation of risk factors for exposure to malaria in a pre-elimination setting in Malaysian Borneo. Sci Rep 2023; 13:12998. [PMID: 37563178 PMCID: PMC10415323 DOI: 10.1038/s41598-023-39670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Malaysia has reported no indigenous cases of P. falciparum and P. vivax for over 3 years. When transmission reaches such low levels, it is important to understand the individuals and locations where exposure risks are high, as they may be at greater risk in the case of a resurgence of transmission. Serology is a useful tool in low transmission settings, providing insight into exposure over longer durations than PCR or RDT. We ran blood samples from a 2015 population-based survey in northern Sabah, Malaysian Borneo on a multiplex bead assay. Using supervised machine learning methods, we characterised recent and historic exposure to Plasmodium falciparum and P. vivax and found recent exposure to P. falciparum to be very low, with exposure to both species increasing with age. We performed a risk-factor assessment on environmental, behavioural, demographic and household factors, and identified forest activity and longer travel times to healthcare as common risk-factors for exposure to P. falciparum and P. vivax. In addition, we used remote-sensing derived data and geostatistical models to assess environmental and spatial associations with exposure. We created predictive maps of exposure to recent P. falciparum in the study area and showed 3 clear foci of exposure. This study provides useful insight into the environmental, spatial and demographic risk factors for P. falciparum and P. vivax at a period of low transmission in Malaysian Borneo. The findings would be valuable in the case of resurgence of human malarias in the region.
Collapse
Affiliation(s)
- Isabel Byrne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK.
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Gleneagles Hospital, Kota Kinabalu, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Catriona Patterson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
| | - Tom Hall
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
| | - Mark Tan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
| | - Chetan Chitnis
- Department of Parasites and Insect Vectors, Malaria Parasite Biology and Vaccines, Institut Pasteur, Paris, France
| | - John Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Susheel K Singh
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lynn Grignard
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
| | - Kevin K A Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
| | - Kimberly M Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, Scotland
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
| |
Collapse
|
9
|
Phang WK, Hamid MHBA, Jelip J, Mudin RNB, Chuang TW, Lau YL, Fong MY. Predicting Plasmodium knowlesi transmission risk across Peninsular Malaysia using machine learning-based ecological niche modeling approaches. Front Microbiol 2023; 14:1126418. [PMID: 36876062 PMCID: PMC9977793 DOI: 10.3389/fmicb.2023.1126418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The emergence of potentially life-threatening zoonotic malaria caused by Plasmodium knowlesi nearly two decades ago has continued to challenge Malaysia healthcare. With a total of 376 P. knowlesi infections notified in 2008, the number increased to 2,609 cases in 2020 nationwide. Numerous studies have been conducted in Malaysian Borneo to determine the association between environmental factors and knowlesi malaria transmission. However, there is still a lack of understanding of the environmental influence on knowlesi malaria transmission in Peninsular Malaysia. Therefore, our study aimed to investigate the ecological distribution of human P. knowlesi malaria in relation to environmental factors in Peninsular Malaysia. A total of 2,873 records of human P. knowlesi infections in Peninsular Malaysia from 1st January 2011 to 31st December 2019 were collated from the Ministry of Health Malaysia and geolocated. Three machine learning-based models, maximum entropy (MaxEnt), extreme gradient boosting (XGBoost), and ensemble modeling approach, were applied to predict the spatial variation of P. knowlesi disease risk. Multiple environmental parameters including climate factors, landscape characteristics, and anthropogenic factors were included as predictors in both predictive models. Subsequently, an ensemble model was developed based on the output of both MaxEnt and XGBoost. Comparison between models indicated that the XGBoost has higher performance as compared to MaxEnt and ensemble model, with AUCROC values of 0.933 ± 0.002 and 0.854 ± 0.007 for train and test datasets, respectively. Key environmental covariates affecting human P. knowlesi occurrence were distance to the coastline, elevation, tree cover, annual precipitation, tree loss, and distance to the forest. Our models indicated that the disease risk areas were mainly distributed in low elevation (75-345 m above mean sea level) areas along the Titiwangsa mountain range and inland central-northern region of Peninsular Malaysia. The high-resolution risk map of human knowlesi malaria constructed in this study can be further utilized for multi-pronged interventions targeting community at-risk, macaque populations, and mosquito vectors.
Collapse
Affiliation(s)
- Wei Kit Phang
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Jenarun Jelip
- Disease Control Division, Ministry of Health Malaysia, Putrajaya, Malaysia
| | - Rose Nani Binti Mudin
- Sabah State Health Department, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Ting-Wu Chuang
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Chua TH, Manin BO, Fornace K. Life table analysis of Anopheles balabacensis, the primary vector of Plasmodium knowlesi in Sabah, Malaysia. Parasit Vectors 2022; 15:442. [PMID: 36434625 PMCID: PMC9701013 DOI: 10.1186/s13071-022-05552-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi has become a major public health concern in Sabah, Malaysian Borneo, where it is now the only cause of indigenous malaria. The importance of P. knowlesi has spurred on a series of studies on this parasite, as well as on the biology and ecology of its principal vector, Anopheles balabacensis. However, there remain critical knowledge gaps on the biology of An. balabacensis, such as life history data and life table parameters. To fill these gaps, we conducted a life table study of An. balabacensis in the laboratory. Characterising vector life cycles and survival rates can inform more accurate estimations of the serial interval, the time between two linked cases, which is crucial to understanding and monitoring potentially changing transmission patterns. METHODS Individuals of An. balabacensis were collected in the field in Ranau district, Sabah to establish a laboratory colony. Induced mating was used, and the life history parameters of the progeny were recorded. The age-stage, two-sex life table approach was used in the analysis. The culture conditions in the laboratory were 9 h light:15 h dark, mean temperature 25.7 °C ± 0.05 and relative humidity 75.8% ± 0.31. RESULTS The eggs hatched within 2 days, and the larval stage lasted for 10.5 days in total, with duration of instar stages I, II, III and IV of 2.3, 3.7, 2.3, 2.2 days, respectively. The maximum total fecundity was 729 for one particular female, while the maximum female age-specific mean fecundity (mx) was 142 at age 59 days. The gross reproductive rate or number of offspring per individual was about 102. On average, each female laid 1.81 ± 0.19 (range 1-7) batches of eggs, with 63% of the females producing only one batch; only one female laid six batches, while one other laid seven. Each batch comprised 159 ± 17.1 eggs (range 5-224) and the female ratio of offspring was 0.28 ± 0.06. The intrinsic rate of increase, finite rate of increase, net reproductive rate, mean generation time and doubling time were, respectively, 0.12 ± 0.01 day-1, 1.12 ± 0.01 day-1, 46.2 ± 14.97, 33.02 ± 1.85 and 5.97 days. CONCLUSIONS Both the net reproductive rate and intrinsic rate of increase of An. balabacensis are lower than those of other species in published studies. Our results can be used to improve models of P. knowlesi transmission and to set a baseline for assessing the impacts of environmental change on malaria dynamics. Furthermore, incorporating these population parameters of An. balabacensis into spatial and temporal models on the transmission of P. knowlesi would provide better insight and increase the accuracy of epidemiological forecasting.
Collapse
Affiliation(s)
- Tock H. Chua
- grid.265727.30000 0001 0417 0814Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Benny Obrain Manin
- grid.265727.30000 0001 0417 0814Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Kimberly Fornace
- grid.8756.c0000 0001 2193 314XSchool of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK ,grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Narrative Review of the Control and Prevention of Knowlesi Malaria. Trop Med Infect Dis 2022; 7:tropicalmed7080178. [PMID: 36006270 PMCID: PMC9414718 DOI: 10.3390/tropicalmed7080178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the reduction in the number of cases of human malaria throughout the world, the incidence rate of knowlesi malaria is continuing to rise, especially in Southeast Asia. The conventional strategies for the prevention and control of human malaria can provide some protection against knowlesi malaria. Despite the numerous studies on the risk factors and the innovative methods that may be used to prevent and control the vectors of Plasmodium knowlesi, the incidence rate remains high. An integrated approach that includes environmental intervention should be adopted in order to ensure the successful control of zoonotic malaria. A combination of personal-level protection, vector control and environmental control may mitigate the risk of Plasmodium knowlesi transmission from macaques to humans and, ultimately, reduce the incidence rate of knowlesi malaria.
Collapse
|
12
|
Non-Human Primate Malaria Infections: A Review on the Epidemiology in Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137888. [PMID: 35805545 PMCID: PMC9265734 DOI: 10.3390/ijerph19137888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023]
Abstract
Malaria remains a public health problem in many parts of the world, including Malaysia. Although Malaysia has been recognized as one of the countries free from indigenous human malaria since 2018, the rising trend of zoonotic malaria, particularly Plasmodium knowlesi cases, poses a threat to public health and is of great concern to the country’s healthcare system. We reviewed previously scattered information on zoonotic malaria infections in both Peninsular Malaysia and Malaysian Borneo to determine the epidemiology and distribution of emerging zoonotic malaria infections. Given the high prevalence of zoonotic malaria in Malaysia, efforts should be made to detect zoonotic malaria in humans, mosquito vectors, and natural hosts to ensure the success of the National Malaria Elimination Strategic Plan.
Collapse
|
13
|
van de Straat B, Sebayang B, Grigg MJ, Staunton K, Garjito TA, Vythilingam I, Russell TL, Burkot TR. Zoonotic malaria transmission and land use change in Southeast Asia: what is known about the vectors. Malar J 2022; 21:109. [PMID: 35361218 PMCID: PMC8974233 DOI: 10.1186/s12936-022-04129-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
Zoonotic Plasmodium infections in humans in many Southeast Asian countries have been increasing, including in countries approaching elimination of human-only malaria transmission. Most simian malarias in humans are caused by Plasmodium knowlesi, but recent research shows that humans are at risk of many different simian Plasmodium species. In Southeast Asia, simian Plasmodium species are mainly transmitted by mosquitoes in the Anopheles leucosphyrus and Anopheles dirus complexes. Although there is some evidence of species outside the Leucosphyrus Group transmitting simian Plasmodium species, these await confirmation of transmission to humans. The vectors of monkey malarias are mostly found in forests and forest fringes, where they readily bite long-tailed and pig-tailed macaques (the natural reservoir hosts) and humans. How changing land-uses influence zoonotic malaria vectors is still poorly understood. Fragmentation of forests from logging, agriculture and other human activities is associated with increased zoonotic Plasmodium vector exposure. This is thought to occur through altered macaque and mosquito distributions and behaviours, and importantly, increased proximity of humans, macaques, and mosquito vectors. Underlying the increase in vector densities is the issue that the land-use change and human activities create more oviposition sites and, in correlation, increases availably of human blood hosts. The current understanding of zoonotic malaria vector species is largely based on a small number of studies in geographically restricted areas. What is known about the vectors is limited: the data is strongest for distribution and density with only weak evidence for a limited number of species in the Leucosphyrus Group for resting habits, insecticide resistance, blood feeding habits and larval habitats. More data are needed on vector diversity and bionomics in additional geographic areas to understand both the impacts on transmission of anthropogenic land-use change and how this significant disease in humans might be controlled.
Collapse
Affiliation(s)
- Bram van de Straat
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Boni Sebayang
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Matthew J Grigg
- Menzies School of Health Research & Charles Darwin University, Casuarina, Australia
| | - Kyran Staunton
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Triwibowo Ambar Garjito
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development (NIHRD), The Ministry of Health of Indonesia, Jakarta, Indonesia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tanya L Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
14
|
Fornace K, Manin BO, Matthiopoulos J, Ferguson HM, Drakeley C, Ahmed K, Khoon KT, Ewers RM, Daim S, Chua TH. A protocol for a longitudinal, observational cohort study of infection and exposure to zoonotic and vector-borne diseases across a land-use gradient in Sabah, Malaysian Borneo: a socio-ecological systems approach. Wellcome Open Res 2022; 7:63. [PMID: 35284640 PMCID: PMC8886174 DOI: 10.12688/wellcomeopenres.17678.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction. Landscape changes disrupt environmental, social and biological systems, altering pathogen spillover and transmission risks. This study aims to quantify the impact of specific land management practices on spillover and transmission rates of zoonotic and vector-borne diseases within Malaysian Borneo. This protocol describes a cohort study with integrated ecological sampling to assess how deforestation and agricultural practices impact pathogen flow from wildlife and vector populations to human infection and detection by health facilities. This will focus on malaria, dengue and emerging arboviruses (Chikungunya and Zika), vector-borne diseases with varying contributions of simian reservoirs within this setting. Methods. A prospective longitudinal observational cohort study will be established in communities residing or working within the vicinity of the Stability of Altered Forest Ecosystems (SAFE) Project, a landscape gradient within Malaysian Borneo encompassing different plantation and forest types. The primary outcome of this study will be transmission intensity of selected zoonotic and vector-borne diseases, as quantified by changes in pathogen-specific antibody levels. Exposure will be measured using paired population-based serological surveys conducted at the beginning and end of the two-year cohort study. Secondary outcomes will include the distribution and infection rates of Aedes and Anopheles mosquito vectors, human risk behaviours and clinical cases reported to health facilities. Longitudinal data on human behaviour, contact with wildlife and GPS tracking of mobility patterns will be collected throughout the study period. This will be integrated with entomological surveillance to monitor densities and pathogen infection rates of Aedes and Anopheles mosquitoes relative to land cover. Within surrounding health clinics, continuous health facility surveillance will be used to monitor reported infections and febrile illnesses. Models will be developed to assess spillover and transmission rates relative to specific land management practices and evaluate abilities of surveillance systems to capture these risks.
Collapse
Affiliation(s)
- Kimberly Fornace
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Benny Obrain Manin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Heather M. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Kamruddin Ahmed
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Koay Teng Khoon
- Sabah State Health Department, Ministry of Health, Malaysia, Kota Kinabalu, Malaysia
| | | | - Sylvia Daim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- East Malaysia Zoonotic and Infectious Diseases Society, Kota Kinabalu, Malaysia
| | - Tock Hing Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- East Malaysia Zoonotic and Infectious Diseases Society, Kota Kinabalu, Malaysia
| |
Collapse
|
15
|
Vinagre‐Izquierdo C, Bodawatta KH, Chmel K, Renelies‐Hamilton J, Paul L, Munclinger P, Poulsen M, Jønsson KA. The drivers of avian-haemosporidian prevalence in tropical lowland forests of New Guinea in three dimensions. Ecol Evol 2022; 12:e8497. [PMID: 35222943 PMCID: PMC8844478 DOI: 10.1002/ece3.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/21/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian-haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host-parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host-parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian-haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three-dimensional spatial analyses of avian-haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community-level infections are primarily driven by host community composition.
Collapse
Affiliation(s)
- Celia Vinagre‐Izquierdo
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Conservation and Evolutionary Genetics GroupEstación Biológica de Doñana – CSICSevillaSpain
| | - Kasun H. Bodawatta
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Kryštof Chmel
- Department of ZoologyFaculty of SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
- Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
| | | | - Luda Paul
- New Guinea Binatang Research CentreMadangPapua New Guinea
| | - Pavel Munclinger
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Michael Poulsen
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Knud A. Jønsson
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
16
|
Jeyaprakasam NK, Low VL, Liew JWK, Pramasivan S, Wan-Sulaiman WY, Saeung A, Vythilingam I. Blood meal analysis of Anopheles vectors of simian malaria based on laboratory and field studies. Sci Rep 2022; 12:354. [PMID: 35013403 PMCID: PMC8748441 DOI: 10.1038/s41598-021-04106-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Blood feeding and host-seeking behaviors of a mosquito play an imperative role in determining its vectorial capacity in transmitting pathogens. Unfortunately, limited information is available regarding blood feeding behavior of Anopheles species in Malaysia. Collection of resting Anopheles mosquitoes for blood meal analysis poses a great challenge especially for forest dwelling mosquitoes. Therefore, a laboratory-based study was conducted to evaluate the potential use of mosquitoes caught using human landing catch (HLC) for blood meal analysis, and subsequently to document blood feeding behavior of local Anopheles mosquitoes in Peninsular Malaysia. The laboratory-based experiment from this study revealed that mosquitoes caught using HLC had the potential to be used for blood meal analysis. Besides HLC, mosquitoes were also collected using manual aspirator and Mosquito Magnet. Overall, 47.4% of 321 field-caught Anopheles mosquitoes belonging to six species were positive for vertebrate host DNA in their blood meal. The most frequent blood meal source was human (45.9%) followed by wild boar (27.4%), dog (15.3%) and monkey (7.5%). Interestingly, only Anopheles cracens and Anopheles introlatus (Leucosphyrus Group) fed on monkey. This study further confirmed that members of the Leucosphyrus Group are the predominant vectors for knowlesi malaria transmission in Peninsular Malaysia mainly due to their simio-anthropophagic feeding behavior.
Collapse
Affiliation(s)
| | - Van Lun Low
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Sandthya Pramasivan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Atiporn Saeung
- Department of Parasitology, Faculty of Medicine, Center of Insect Vector Study, Chiang Mai University, Chiang Mai, Thailand
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Sethi SS, Ewers RM, Jones NS, Sleutel J, Shabrani A, Zulkifli N, Picinali L. Soundscapes predict species occurrence in tropical forests. OIKOS 2021. [DOI: 10.1111/oik.08525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarab S. Sethi
- Norwegian Inst. for Nature Research Trondheim Norway
- Dept of Mathematics, Imperial College London London UK
| | | | - Nick S. Jones
- Dept of Mathematics, Imperial College London London UK
| | - Jani Sleutel
- Southeast Asia Rainforest Research Partnership Lahad Datu Malaysia
- Dept of Biology, Vrije Univ. Brussel Brussels Belgium
| | - Adi Shabrani
- WWF‐Malaysia, Sabah Office Kota Kinabalu Malaysia
| | | | - Lorenzo Picinali
- Dyson School of Design Engineering, Imperial College London London UK
| |
Collapse
|
18
|
Hendy A, Valério D, Fé NF, Hernandez-Acosta E, Mendonça C, Andrade E, Pedrosa I, Costa ER, Júnior JTA, Assunção FP, Chaves BA, Scarpassa VM, Gordo M, Buenemann M, de Lacerda MVG, Hanley KA, Vasilakis N. Microclimate and the vertical stratification of potential bridge vectors of mosquito‑borne viruses captured by nets and ovitraps in a central Amazonian forest bordering Manaus, Brazil. Sci Rep 2021; 11:21129. [PMID: 34702887 PMCID: PMC8548557 DOI: 10.1038/s41598-021-00514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/13/2021] [Indexed: 11/08/2022] Open
Abstract
In the Americas, some mosquito-borne viruses such as Zika, chikungunya, and dengue circulate among humans in urban transmission cycles, while others, including yellow fever and Mayaro, circulate among monkeys in sylvatic cycles. The intersection of humans and wildlife at forest edges creates risk for zoonotic virus exchange. We built a scaffold tower at the edge of a treefall gap in rainforest bordering Manaus, Brazil, to identify vectors that may bridge transmission between humans and monkeys. We vertically sampled diurnally active, anthropophilic mosquitoes using handheld nets at 0, 5, and 9 m and container-breeding mosquitoes in ovitraps at 0, 5, 10, and 15 m. Haemagogus janthinomys and Psorophora amazonica were present in high relative abundance in nets at each height sampled, while anthropophilic species were uncommon in ovitraps. Hg. janthinomys was more abundant at elevated heights than at ground level, while Ps. amazonica abundance was not significantly stratified across heights. The presence of each species increased with increasing 7-day rainfall lagged at 1 week, and at 1 and 4 weeks prior to collection, respectively. In addition, Hg. janthinomys was most frequently collected at 29.9 °C, irrespective of height. These data provide insight into the potential role of each species as bridge vectors.
Collapse
Affiliation(s)
- Adam Hendy
- Department of Pathology, Sealy Center for Vector-Borne and Zoonotic Diseases, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Danielle Valério
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
| | - Nelson Ferreira Fé
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
| | | | - Claudia Mendonça
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
| | - Eloane Andrade
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
| | - Igor Pedrosa
- Laboratório de Biologia da Conservação, Projeto Sauim-de-Coleira, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas, Manaus, Amazonas, Brazil
| | - Edson Rodrigues Costa
- Laboratório de Biologia da Conservação, Projeto Sauim-de-Coleira, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas, Manaus, Amazonas, Brazil
| | | | | | | | - Vera Margarete Scarpassa
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Marcelo Gordo
- Laboratório de Biologia da Conservação, Projeto Sauim-de-Coleira, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas, Manaus, Amazonas, Brazil
| | - Michaela Buenemann
- Department of Geography, New Mexico State University, Las Cruces, NM, USA
| | - Marcus Vinícius Guimarães de Lacerda
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- Instituto Leônidas & Maria Deane (Fiocruz - Amazônia), Manaus, Amazonas, Brazil
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| | - Nikos Vasilakis
- Department of Pathology, Sealy Center for Vector-Borne and Zoonotic Diseases, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
19
|
Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, Sokolow SH, Plowright RK, Dirzo R, De Leo GA, Mordecai EA. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr Biol 2021; 31:R1342-R1361. [PMID: 34637744 PMCID: PMC9255562 DOI: 10.1016/j.cub.2021.08.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing. At the forefront of these efforts is an attempt to clarify ways in which biodiversity conservation can help reduce the risk of zoonotic spillover of pathogens from wild animals, sparking epidemics and pandemics in humans and livestock. However, our understanding of the mechanisms by which biodiversity change influences the spillover process is incomplete, limiting the application of integrated strategies aimed at achieving positive outcomes for both conservation and disease management. Here, we review the literature, considering a broad scope of biodiversity dimensions, to identify cases where zoonotic pathogen spillover is mechanistically linked to changes in biodiversity. By reframing the discussion around biodiversity and disease using mechanistic evidence - while encompassing multiple aspects of biodiversity including functional diversity, landscape diversity, phenological diversity, and interaction diversity - we work toward general principles that can guide future research and more effectively integrate the related goals of biodiversity conservation and spillover prevention. We conclude by summarizing how these principles could be used to integrate the goal of spillover prevention into ongoing biodiversity conservation initiatives.
Collapse
Affiliation(s)
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Morgan P Kain
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA
| | | | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lisa Mandle
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Giulio A De Leo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Cuenca PR, Key S, Jumail A, Surendra H, Ferguson HM, Drakeley CJ, Fornace K. Epidemiology of the zoonotic malaria Plasmodium knowlesi in changing landscapes. ADVANCES IN PARASITOLOGY 2021; 113:225-286. [PMID: 34620384 DOI: 10.1016/bs.apar.2021.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within the past two decades, incidence of human cases of the zoonotic malaria Plasmodium knowlesi has increased markedly. P. knowlesi is now the most common cause of human malaria in Malaysia and threatens to undermine malaria control programmes across Southeast Asia. The emergence of zoonotic malaria corresponds to a period of rapid deforestation within this region. These environmental changes impact the distribution and behaviour of the simian hosts, mosquito vector species and human populations, creating new opportunities for P. knowlesi transmission. Here, we review how landscape changes can drive zoonotic disease emergence, examine the extent and causes of these changes across Southeast and identify how these mechanisms may be impacting P. knowlesi dynamics. We review the current spatial epidemiology of reported P. knowlesi infections in people and assess how these demographic and environmental changes may lead to changes in transmission patterns. Finally, we identify opportunities to improve P. knowlesi surveillance and develop targeted ecological interventions within these landscapes.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Henry Surendra
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia; Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
21
|
Vythilingam I, Chua TH, Liew JWK, Manin BO, Ferguson HM. The vectors of Plasmodium knowlesi and other simian malarias Southeast Asia: challenges in malaria elimination. ADVANCES IN PARASITOLOGY 2021; 113:131-189. [PMID: 34620382 DOI: 10.1016/bs.apar.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasmodium knowlesi, a simian malaria parasite of great public health concern has been reported from most countries in Southeast Asia and exported to various countries around the world. Currently P. knowlesi is the predominant species infecting humans in Malaysia. Besides this species, other simian malaria parasites such as P. cynomolgi and P. inui are also infecting humans in the region. The vectors of P. knowlesi and other Asian simian malarias belong to the Leucosphyrus Group of Anopheles mosquitoes which are generally forest dwelling species. Continual deforestation has resulted in these species moving into forest fringes, farms, plantations and human settlements along with their macaque hosts. Limited studies have shown that mosquito vectors are attracted to both humans and macaque hosts, preferring to bite outdoors and in the early part of the night. We here review the current status of simian malaria vectors and their parasites, knowledge of vector competence from experimental infections and discuss possible vector control measures. The challenges encountered in simian malaria elimination are also discussed. We highlight key knowledge gaps on vector distribution and ecology that may impede effective control strategies.
Collapse
Affiliation(s)
- Indra Vythilingam
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia.
| | - Tock Hing Chua
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia.
| | - Jonathan Wee Kent Liew
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia; Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Benny O Manin
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
22
|
Sebayang BF, Russell TL, Staunton KM, Townsend M, Paton C, Lehmann T, Burkot TR. Australian mosquito assemblages vary between ground and sub-canopy habitats. Parasit Vectors 2021; 14:515. [PMID: 34620217 PMCID: PMC8499491 DOI: 10.1186/s13071-021-04999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background The surveillance and control of mosquito-borne diseases is dependent upon understanding the bionomics and distribution of the vectors. Most studies of mosquito assemblages describe species abundance, richness and composition close to the ground defined often by only one sampling method. In this study, we assessed Australian mosquito species near the ground and in the sub-canopy using two traps baited with a variety of lures. Methods Mosquitoes were sampled using a 4 × 4 Latin square design at the Cattana Wetlands, Australia from February to April 2020, using passive box traps with octenol and carbon dioxide and three variations of a sticky net trap (unbaited, and baited with octenol or octenol and carbon dioxide). The traps were deployed at two different heights: ground level (≤ 1 m above the ground) and sub-canopy level (6 m above the ground). Results In total, 27 mosquito species were identified across the ground and sub-canopy levels from the different traps. The abundance of mosquitoes at the ground level was twofold greater than at the sub-canopy level. While the species richness at ground and sub-canopy levels was not significantly different, species abundance varied by the collection height. Conclusions The composition of mosquito population assemblages was correlated with the trap types and heights at which they were deployed. Coquillettidia species, which prefer feeding on birds, were mainly found in the sub-canopy whereas Anopheles farauti, Aedes vigilax and Mansonia uniformis, which have a preference for feeding on large mammals, were predominantly found near the ground. In addition to trap height, environmental factors and mosquito bionomic characteristics (e.g. larval habitat, resting behaviour and host blood preferences) may explain the vertical distribution of mosquitoes. This information is useful to better understand how vectors may acquire and transmit pathogens to hosts living at different heights. Graphical abstract ![]()
Collapse
Affiliation(s)
- Boni F Sebayang
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, 4878, Australia.
| | - Tanya L Russell
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, 4878, Australia
| | - Kyran M Staunton
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, 4878, Australia
| | - Michael Townsend
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, 4878, Australia
| | - Christopher Paton
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, 4878, Australia
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAH), National Institutes of Health (NIH), Rockville, MD, USA
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
23
|
Hod R, Mokhtar SA, Muharam FM, Shamsudin UK, Hisham Hashim J. Developing a Predictive Model for Plasmodium knowlesi-Susceptible Areas in Malaysia Using Geospatial Data and Artificial Neural Networks. Asia Pac J Public Health 2021; 34:182-190. [PMID: 34569889 DOI: 10.1177/10105395211048620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Plasmodium knowlesi is an emerging species for malaria in Malaysia, particularly in East Malaysia. This infection contributes to almost half of all malaria cases and deaths in Malaysia and poses a challenge in eradicating malaria. The aim of this study was to develop a predictive model for P. knowlesi susceptibility areas in Sabah, Malaysia, using geospatial data and artificial neural networks (ANNs). Weekly malaria cases from 2013 to 2014 were used to identify the malaria hotspot areas. The association of malaria cases with environmental factors (elevation, water bodies, and population density, and satellite images providing rainfall, land surface temperature, and normalized difference vegetation indices) were statistically determined. The significant environmental factors were used as input for the ANN analysis to predict malaria cases. Finally, the malaria susceptibility index and zones were mapped out. The results suggested integrating geospatial data and ANNs to predict malaria cases, with overall correlation coefficient of 0.70 and overall accuracy of 91.04%. From the malaria susceptibility index and zoning analyses, it was found that areas located along the Crocker Range of Sabah and the East part of Sabah were highly susceptible to P. knowlesi infections. Following this analysis, targetted entomological mapping and malaria control programs can be initiated.
Collapse
Affiliation(s)
- Rozita Hod
- Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
24
|
Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, Chua TH, Fornace KM. Environmental and spatial risk factors for the larval habitats of Plasmodium knowlesi vectors in Sabah, Malaysian Borneo. Sci Rep 2021; 11:11810. [PMID: 34083582 PMCID: PMC8175559 DOI: 10.1038/s41598-021-90893-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations and malaria transmission. These land-use changes have been linked to increased incidence in human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study investigates whether these associations are partially driven by fine-scale land-use changes creating more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote sensing data, we developed a sampling frame representative of all land use types within a major focus of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were collected in randomly selected areas stratified by land use type. Additional remote sensing data on environmental variables, land cover and landscape configuration were assembled for the study site. Risk factor analyses were performed over multiple spatial scales to determine associations between environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m), aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential larval habitats within the areas surveyed and used to generate a time-series of monthly predictive maps. These results indicate that land-use change and topography influence the suitability of larval habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The predictive maps, and identification of the spatial scales at which risk factors are most influential may aid spatio-temporally targeted vector control interventions.
Collapse
Affiliation(s)
- Isabel Byrne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK.
| | - Wilfredo Aure
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- Research Institute for Tropical Medicine, Manila, Philippines
| | - Benny O Manin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
| | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Kimberly M Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, Bloomsbury, London, WCIE 7HT, UK
| |
Collapse
|
25
|
Young KI, Buenemann M, Vasilakis N, Perera D, Hanley KA. Shifts in mosquito diversity and abundance along a gradient from oil palm plantations to conterminous forests in Borneo. Ecosphere 2021; 12. [PMID: 33996190 DOI: 10.1002/ecs2.3463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Deforestation precipitates spillover of enzootic, vector-borne viruses into humans, but specific mechanisms for this effect have rarely been investigated. Expansion of oil palm cultivation is a major driver of deforestation. Here, we demonstrate that mosquito abundance decreased over ten stepwise distances from interior forest into conterminous palm plantations in Borneo. Diversity in interior plantation narrowed to one species, Aedes albopictus, a potential bridge vector for spillover of multiple viruses. A. albopictus was equally abundant across all distances in forests, forest-plantation edge, and plantations, while A. niveus, a known vector of sylvatic dengue virus, was found only in forests. A. albopictus collections were significantly female-biased in plantation but not in edge or forest. Our data reveal that the likelihood of encountering any mosquito is greater in interior forest and edge than plantation, while the likelihood of encountering A. albopictus is equivalent across the gradient sampled from interior plantation to interior forest.
Collapse
Affiliation(s)
- Katherine I Young
- Department of Biology, New Mexico State University, 1780 E University Ave, Las Cruces, New Mexico 88003 USA
| | - Michaela Buenemann
- Department of Geography, New Mexico State University, 1780 E University Ave, Las Cruces, New Mexico 88003 USA
| | - Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center of Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555 USA
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, 1780 E University Ave, Las Cruces, New Mexico 88003 USA
| |
Collapse
|
26
|
Pereira-Silva JW, Ríos-Velásquez CM, Lima GRD, Marialva Dos Santos EF, Belchior HCM, Luz SLB, Naveca FG, Pessoa FAC. Distribution and diversity of mosquitoes and Oropouche-like virus infection rates in an Amazonian rural settlement. PLoS One 2021; 16:e0246932. [PMID: 33592052 PMCID: PMC7886159 DOI: 10.1371/journal.pone.0246932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/28/2021] [Indexed: 02/02/2023] Open
Abstract
Mosquito diversity and disease transmission are influenced by landscape modifications, i.e., vectors and pathogens previously found only in forests are now found close to human environments due to anthropic changes. This study determined the diversity and distribution of mosquitoes in forest environments in order to analyze the potential vectors of Amazonian forest arboviruses. Mosquitoes were collected by 1) vertical stratification from forest canopy and ground areas using Hooper Pugedo (HP) light traps and human attraction and 2) horizontal stratification using HP light traps in peridomicile, forest edge, and forest environments near the Rio Pardo rural settlement, Amazonas, Brazil. A total of 3,750 mosquitoes were collected, representing 46 species. 3,139 individuals representing 46 species were sampled by vertical stratification. Both the Shannon-Weaver diversity index (H’) and equitability (J’) were higher in the canopy than on the ground. 611 individuals representing 13 species were sampled by horizontal stratification. H’ decreased in the following order: forest edge > forest > peridomicile, and J’ was greater at the forest edge and smaller in the peridomicile environment. Moreover, H’ was higher for the human attraction collection method than the HP traps. A total of 671 pools were analyzed by RT-qPCR; three species were positive for Oropouche-like viruses (Ochlerotatus serratus, Psorophora cingulata, and Haemagogus tropicalis) and the minimum infection rate was 0.8%. The composition of mosquito species did not differ significantly between anthropic and forest environments in Rio Pardo. Some mosquito species, due to their abundance, dispersion in the three environments, and record of natural infection, were hypothesized to participate in the arbovirus transmission cycle in this Amazonian rural settlement.
Collapse
Affiliation(s)
- Jordam William Pereira-Silva
- Laboratório Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Condições de Vida e Situações de Saúde na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil
| | - Claudia María Ríos-Velásquez
- Laboratório Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Condições de Vida e Situações de Saúde na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil
| | - Gervilane Ribeiro de Lima
- Laboratório Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil
| | - Eric Fabrício Marialva Dos Santos
- Laboratório Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil
| | - Heliana Christy Matos Belchior
- Laboratório Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil
| | - Sergio Luiz Bessa Luz
- Laboratório Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Condições de Vida e Situações de Saúde na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil
| | - Felipe Gomes Naveca
- Laboratório Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil
| | - Felipe Arley Costa Pessoa
- Laboratório Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Condições de Vida e Situações de Saúde na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil.,Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas, Brasil
| |
Collapse
|
27
|
Cooper DJ, Rajahram GS, William T, Jelip J, Mohammad R, Benedict J, Alaza DA, Malacova E, Yeo TW, Grigg MJ, Anstey NM, Barber BE. Plasmodium knowlesi Malaria in Sabah, Malaysia, 2015-2017: Ongoing Increase in Incidence Despite Near-elimination of the Human-only Plasmodium Species. Clin Infect Dis 2021; 70:361-367. [PMID: 30889244 PMCID: PMC7768742 DOI: 10.1093/cid/ciz237] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/18/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Malaysia aims to eliminate malaria by 2020. However, while cases of Plasmodium falciparum and Plasmodium vivax have decreased substantially, the incidence of zoonotic malaria from Plasmodium knowlesi continues to increase, presenting a major challenge to regional malaria control efforts. Here we report incidence of all Plasmodium species in Sabah, including zoonotic P. knowlesi, during 2015-2017. METHODS Microscopy-based malaria notification data and polymerase chain reaction (PCR) results were obtained from the Sabah Department of Health and State Public Health Laboratory, respectively, from January 2015 to December 2017. From January 2016 this was complemented by a statewide prospective hospital surveillance study. Databases were matched, and species was determined by PCR, or microscopy if PCR was not available. RESULTS A total of 3867 malaria cases were recorded between 2015 and 2017, with PCR performed in 93%. Using PCR results, and microscopy if PCR was unavailable, P. knowlesi accounted for 817 (80%), 677 (88%), and 2030 (98%) malaria cases in 2015, 2016, and 2017, respectively. P. falciparum accounted for 110 (11%), 45 (6%), and 23 (1%) cases and P. vivax accounted for 61 (6%), 17 (2%), and 8 (0.4%) cases, respectively. Of those with P. knowlesi, the median age was 35 (interquartile range: 24-47) years, and 85% were male. CONCLUSIONS Malaysia is approaching elimination of the human-only Plasmodium species. However, the ongoing increase in P. knowlesi incidence presents a major challenge to malaria control and warrants increased focus on knowlesi-specific prevention activities. Wider molecular surveillance in surrounding countries is required.
Collapse
Affiliation(s)
- Daniel J Cooper
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah
| | - Giri S Rajahram
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah.,Clinical Research Centre - Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Ministry of Health, Sabah.,Sabah Department of Health, Kota Kinabalu, Ministry of Health, Sabah
| | | | - Jenarun Jelip
- Malaysian Ministry of Health, Kuala Lumpur, Malaysia
| | - Rashidah Mohammad
- Sabah Department of Health, Kota Kinabalu, Ministry of Health, Sabah
| | - Joseph Benedict
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah
| | - Danshy A Alaza
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah
| | - Eva Malacova
- QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| | - Tsin W Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Matthew J Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah
| | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah
| | - Bridget E Barber
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah.,QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| |
Collapse
|
28
|
Scott J. Proposed Integrated Control of Zoonotic Plasmodium knowlesi in Southeast Asia Using Themes of One Health. Trop Med Infect Dis 2020; 5:E175. [PMID: 33233871 PMCID: PMC7709578 DOI: 10.3390/tropicalmed5040175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 01/28/2023] Open
Abstract
Zoonotic malaria, Plasmodium knowlesi, threatens the global progression of malaria elimination. Southeast Asian regions are fronting increased zoonotic malaria rates despite the control measures currently implemented-conventional measures to control human-malaria neglect P. knowlesi's residual transmission between the natural macaque host and vector. Initiatives to control P. knowlesi should adopt themes of the One Health approach, which details that the management of an infectious disease agent should be scrutinized at the human-animal-ecosystem interface. This review describes factors that have conceivably permitted the emergence and increased transmission rates of P. knowlesi to humans, from the understanding of genetic exchange events between subpopulations of P. knowlesi to the downstream effects of environmental disruption and simian and vector behavioral adaptations. These factors are considered to advise an integrative control strategy that aligns with the One Health approach. It is proposed that surveillance systems address the geographical distribution and transmission clusters of P. knowlesi and enforce ecological regulations that limit forest conversion and promote ecosystem regeneration. Furthermore, combining individual protective measures, mosquito-based feeding trapping tools and biocontrol strategies in synergy with current control methods may reduce mosquito population density or transmission capacity.
Collapse
Affiliation(s)
- Jessica Scott
- College of Public Health and Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia
| |
Collapse
|
29
|
The vertical stratification of potential bridge vectors of mosquito-borne viruses in a central Amazonian forest bordering Manaus, Brazil. Sci Rep 2020; 10:18254. [PMID: 33106507 PMCID: PMC7589505 DOI: 10.1038/s41598-020-75178-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023] Open
Abstract
The emergence of Zika virus (ZIKV) in Latin America brought to the fore longstanding concerns that forests bordering urban areas may provide a gateway for arbovirus spillback from humans to wildlife. To bridge urban and sylvatic transmission cycles, mosquitoes must co-occur with both humans and potential wildlife hosts, such as monkeys, in space and time. We deployed BG-Sentinel traps at heights of 0, 5, 10, and 15 m in trees in a rainforest reserve bordering Manaus, Brazil, to characterize the vertical stratification of mosquitoes and their associations with microclimate and to identify potential bridge vectors. Haemagogus janthinomys and Sabethes chloropterus, two known flavivirus vectors, showed significant stratification, occurring most frequently above the ground. Psorophora amazonica, a poorly studied anthropophilic species of unknown vector status, showed no stratification and was the most abundant species at all heights sampled. High temperatures and low humidity are common features of forest edges and microclimate analyses revealed negative associations between minimum relative humidity, which was inversely correlated with maximum temperature, and the occurrence of Haemagogus and Sabethes mosquitoes. In this reserve, human habitations border the forest while tamarin and capuchin monkeys are also common to edge habitats, creating opportunities for the spillback of mosquito-borne viruses.
Collapse
|
30
|
Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P. The Role of Ecological Linkage Mechanisms in Plasmodium knowlesi Transmission and Spread. ECOHEALTH 2019; 16:594-610. [PMID: 30675676 DOI: 10.1007/s10393-019-01395-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/10/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Defining the linkages between landscape change, disease ecology and human health is essential to explain and predict the emergence of Plasmodium knowlesi malaria, a zoonotic parasite residing in Southeast Asian macaques, and transmitted by species of Anopheles mosquitos. Changing patterns of land use throughout Southeast Asia, particularly deforestation, are suggested to be the primary drivers behind the recent spread of this zoonotic parasite in humans. Local ecological changes at the landscape scale appear to be increasing the risk of disease in humans by altering the dynamics of transmission between the parasite and its primary hosts. This paper will focus on the emergence of P. knowlesi in humans in Malaysian Borneo and the ecological linkage mechanisms suggested to be playing an important role.
Collapse
Affiliation(s)
- Gael Davidson
- CENRM and School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | | | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
31
|
Vector compositions change across forested to deforested ecotones in emerging areas of zoonotic malaria transmission in Malaysia. Sci Rep 2019; 9:13312. [PMID: 31527622 PMCID: PMC6746737 DOI: 10.1038/s41598-019-49842-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/31/2019] [Indexed: 12/29/2022] Open
Abstract
In lowland areas of Malaysia, Plasmodium knowlesi infection is associated with land use change and high proportions of the vector Anopheles balabacensis. We conducted a 15-month study in two Malaysian villages to determine the effect of habitat on vector populations in understudied high-altitude, high-incidence districts. Anopheles mosquitoes were sampled in human settlements, plantations and forest edges, and screened for Plasmodium species by PCR. We report the first An. donaldi positive for P. knowlesi. This potential vector was associated with habitat fragmentation measured as disturbed forest edge:area ratio, while An. balabacensis was not, indicating fragmented land use could favour An. donaldi. Anopheline species richness and diversity decreased from forest edge, to plantation, to human settlement. Greater numbers of An. balabacensis and An. donaldi were found in forest edges compared to human settlements, suggesting exposure to vectors and associated zoonoses may be greater for people entering this habitat.
Collapse
|
32
|
Mark-release-recapture studies reveal preferred spatial and temporal behaviors of Anopheles barbirostris in West Sulawesi, Indonesia. Parasit Vectors 2019; 12:385. [PMID: 31370906 PMCID: PMC6676633 DOI: 10.1186/s13071-019-3640-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Population density, dispersion patterns, flight distances, and survival rate of vector mosquitoes are all contributors to vectorial capacity that may be estimated in a single experimental method: mark-release-recapture (MRR). In this study, these key parameters were measured for mosquito populations in Karama, West Sulawesi, Indonesia. METHODS Two mark-release-recapture (MRR) experiments were carried out in Karama village to characterize seasonality differences, if any: wet season (December 2013, MRR1) and dry season (May 2014, MRR2). For both experiments, mosquitoes were marked according to release site/date and were released on four consecutive nights. Four sampling methodologies were utilized to enable recapture: human landing catches (HLCs), kelambu traps and barrier screens. RESULTS 98.7% of all catches were molecularly confirmed as Anopheles barbirostris. During the wet season, An. barbirostris demonstrated no preference toward endophagy. In the dry season, An. barbirostris demonstrated an endophagic preference. The duration of the feeding cycle for An. barbirostris was determined to be 5 days during the wet season and 3.7 days during the dry season, though an anomaly likely caused the wet season feeding cycle to be overestimated. The largest percentages of recaptured mosquitoes were collected in a single site during both seasons. The only significant relationship with mosquito dispersal was site of release and recapture. Finally, dispersal rates of An. barbirostris frequently ranged up to 800 m (the maximum measurable distance in this study) within a single day of release. CONCLUSIONS This study estimated key vector parameters for An. barbirostris an understudied species complex, in Karama, West Sulawesi, Indonesia. Despite the length of the feeding cycle, the high indoor biting rates demonstrated by An. barbirostris in Karama suggest that the use of IRSs and LLINs, especially during the dry season, would have a substantial impact on the panmictic An. barbirostris population.
Collapse
|
33
|
Chua TH, Manin BO, Vythilingam I, Fornace K, Drakeley CJ. Effect of different habitat types on abundance and biting times of Anopheles balabacensis Baisas (Diptera: Culicidae) in Kudat district of Sabah, Malaysia. Parasit Vectors 2019; 12:364. [PMID: 31345256 PMCID: PMC6659233 DOI: 10.1186/s13071-019-3627-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We investigated the effect of five common habitat types on the diversity and abundance of Anopheles spp. and on the biting rate and time of Anopheles balabacensis (currently the only known vector for Plasmodium knowlesi in Sabah) at Paradason village, Kudat, Sabah. The habitats were forest edge, playground area, longhouse, oil palm plantation and shrub-bushes area. Sampling of Anopheles was done monthly using the human landing catch method in all habitat types for 14 months (October 2013 to December 2014, excluding June 2014). The Anopheles species were morphologically identified and subjected to PCR assay for the detection of Plasmodium parasites. Generalised linear mixed models (GLMM) were applied to test the variation in abundance and biting rates of An. balabacensis in different habitat types. RESULTS A total of 1599 Anopheles specimens were collected in the village, of which about 90% were An. balabacensis. Anopheles balabacensis was present throughout the year and was the dominant Anopheles species in all habitat types. The shrub bushes habitat had the highest Anopheles species diversity while forest edge had the greatest number of Anopheles individuals caught. GLMM analysis indicated that An. balabacensis abundance was not affected by the type of habitats, and it was more active during the early and late night compared to predawn and dawn. PCR assay showed that 1.61% of the tested An. balabacensis were positive for malaria parasites, most of which were caught in oil palm estates and infected with one to two Plasmodium species. CONCLUSIONS The identification of infected vectors in a range of habitats, including agricultural and farming areas, illustrates the potential for humans to be exposed to P. knowlesi outside forested areas. This finding contributes to a growing body of evidence implicating environmental changes due to deforestation, expansion of agricultural and farming areas, and development of human settlements near to forest fringes in the emergence of P. knowlesi in Sabah.
Collapse
Affiliation(s)
- Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Benny O Manin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
34
|
Benavente ED, Gomes AR, De Silva JR, Grigg M, Walker H, Barber BE, William T, Yeo TW, de Sessions PF, Ramaprasad A, Ibrahim A, Charleston J, Hibberd ML, Pain A, Moon RW, Auburn S, Ling LY, Anstey NM, Clark TG, Campino S. Whole genome sequencing of amplified Plasmodium knowlesi DNA from unprocessed blood reveals genetic exchange events between Malaysian Peninsular and Borneo subpopulations. Sci Rep 2019; 9:9873. [PMID: 31285495 PMCID: PMC6614422 DOI: 10.1038/s41598-019-46398-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
The zoonotic Plasmodium knowlesi parasite is the most common cause of human malaria in Malaysia. Genetic analysis has shown that the parasites are divided into three subpopulations according to their geographic origin (Peninsular or Borneo) and, in Borneo, their macaque host (Macaca fascicularis or M. nemestrina). Whilst evidence suggests that genetic exchange events have occurred between the two Borneo subpopulations, the picture is unclear in less studied Peninsular strains. One difficulty is that P. knowlesi infected individuals tend to present with low parasitaemia leading to samples with insufficient DNA for whole genome sequencing. Here, using a parasite selective whole genome amplification approach on unprocessed blood samples, we were able to analyse recent genomes sourced from both Peninsular Malaysia and Borneo. The analysis provides evidence that recombination events are present in the Peninsular Malaysia parasite subpopulation, which have acquired fragments of the M. nemestrina associated subpopulation genotype, including the DBPβ and NBPXa erythrocyte invasion genes. The NBPXb invasion gene has also been exchanged within the macaque host-associated subpopulations of Malaysian Borneo. Our work provides strong evidence that exchange events are far more ubiquitous than expected and should be taken into consideration when studying the highly complex P. knowlesi population structure.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ana Rita Gomes
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Matthew Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Harriet Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300, Kota Kinabalu, Sabah, Malaysia.,Clinical Research Centre, Queen Elizabeth Hospital, 88300, Kota Kinabalu, Sabah, Malaysia.,Jesselton Medical Centre, 88300, Kota Kinabalu, Sabah, Malaysia
| | - Tsin Wen Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Abhinay Ramaprasad
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Amy Ibrahim
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James Charleston
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Genomics Institute, Biopolis, Singapore
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Robert W Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom. .,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
35
|
Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P. Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework. Malar J 2019; 18:66. [PMID: 30849978 PMCID: PMC6408765 DOI: 10.1186/s12936-019-2693-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
Plasmodium knowlesi is a zoonotic malaria parasite normally residing in long-tailed and pig-tailed macaques (Macaca fascicularis and Macaca nemestrina, respectively) found throughout Southeast Asia. Recently, knowlesi malaria has become the predominant malaria affecting humans in Malaysian Borneo, being responsible for approximately 70% of reported cases. Largely as a result of anthropogenic land use changes in Borneo, vectors which transmit the parasite, along with macaque hosts, are both now frequently found in disturbed forest habitats, or at the forest fringes, thus having more frequent contact with humans. Having access to human hosts provides the parasite with the opportunity to further its adaption to the human immune system. The ecological drivers of the transmission and spread of P. knowlesi are operating over many different spatial (and, therefore, temporal) scales, from the molecular to the continental. Strategies to prevent and manage zoonoses, such as P. knowlesi malaria require interdisciplinary research exploring the impact of land use change and biodiversity loss on the evolving relationship between parasite, reservoir hosts, vectors, and humans over multiple spatial scales.
Collapse
Affiliation(s)
- Gael Davidson
- School of Agriculture and Environment, University of Western Australia, Stirling Terrace, Albany, WA, 6330, Australia. .,School of Population and Global Health, University of Western Australia, Perth, Australia.
| | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Peter Speldewinde
- School of Agriculture and Environment, University of Western Australia, Stirling Terrace, Albany, WA, 6330, Australia
| | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
36
|
Manin BO, Drakeley CJ, Chua TH. Mitochondrial variation in subpopulations of Anopheles balabacensis Baisas in Sabah, Malaysia (Diptera: Culicidae). PLoS One 2018; 13:e0202905. [PMID: 30138386 PMCID: PMC6107281 DOI: 10.1371/journal.pone.0202905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/10/2018] [Indexed: 11/19/2022] Open
Abstract
Anopheles balabacensis, the primary vector of Plasmodium knowlesi in Sabah, Malaysia, is both zoophilic and anthropophilic, feeding on macaques as well as humans. It is the dominant Anopheles species found in Kudat Division where it is responsible for all the cases of P. knowlesi. However there is a paucity of basic biological and ecological information on this vector. We investigated the genetic variation of this species using the sequences of cox1 (1,383 bp) and cox2 (685 bp) to gain an insight into the population genetics and inter-population gene flow in Sabah. A total of 71 An. balabacensis were collected from seven districts constituting 14 subpopulations. A total of 17, 10 and 25 haplotypes were detected in the subpopulations respectively using the cox1, cox2 and the combined sequence. Some of the haplotypes were common among the subpopulations due to gene flow occurring between them. AMOVA showed that the genetic variation was high within subpopulations as compared to between subpopulations. Mantel test results showed that the variation between subpopulations was not due to the geographical distance between them. Furthermore, Tajima's D and Fu's Fs tests showed that An. balabacensis in Sabah is experiencing population expansion and growth. High gene flow between the subpopulations was indicated by the low genetic distance and high gene diversity in the cox1, cox2 and the combined sequence. However the population at Lipasu Lama appeared to be isolated possibly due to its higher altitude at 873 m above sea level.
Collapse
Affiliation(s)
- Benny Obrain Manin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Chris J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tock H. Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- * E-mail:
| |
Collapse
|
37
|
Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, Drakeley CJ, Pain A, Sutherland CJ, Hibberd ML, Campino S, Clark TG. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations. PLoS Genet 2017; 13:e1007008. [PMID: 28922357 PMCID: PMC5619863 DOI: 10.1371/journal.pgen.1007008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022] Open
Abstract
The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Robert W. Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Michael J. Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L. Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Genome Institute of Singapore, Biopolis, Singapore
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
38
|
Young KI, Mundis S, Widen SG, Wood TG, Tesh RB, Cardosa J, Vasilakis N, Perera D, Hanley KA. Abundance and distribution of sylvatic dengue virus vectors in three different land cover types in Sarawak, Malaysian Borneo. Parasit Vectors 2017; 10:406. [PMID: 28859676 PMCID: PMC5580228 DOI: 10.1186/s13071-017-2341-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape. RESULTS Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing. CONCLUSIONS Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.
Collapse
Affiliation(s)
- Katherine I Young
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| | - Stephanie Mundis
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert B Tesh
- Department of Pathology and Center for Biodefense and Emerging Infectious Disease, Center for Tropical Diseases; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Disease, Center for Tropical Diseases; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - David Perera
- Institute of Health & Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
39
|
Hawkes F, Manin BO, Ng SH, Torr SJ, Drakeley C, Chua TH, Ferguson HM. Evaluation of electric nets as means to sample mosquito vectors host-seeking on humans and primates. Parasit Vectors 2017; 10:338. [PMID: 28720113 PMCID: PMC5516363 DOI: 10.1186/s13071-017-2277-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/06/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is found in macaques and is the only major zoonotic malaria to affect humans. Transmission of P. knowlesi between people and macaques depends on the host species preferences and feeding behavior of mosquito vectors. However, these behaviours are difficult to measure due to the lack of standardized methods for sampling potential vectors attracted to different host species. This study evaluated electrocuting net traps as a safe, standardised method for sampling P. knowlesi vectors attracted to human and macaque hosts. Field experiments were conducted within a major focus on P. knowlesi transmission in Malaysian Borneo to compare the performance of human (HENET) or macaque (MENET) odour-baited electrocuting nets, human landing catches (HLC) and monkey-baited traps (MBT) for sampling mosquitoes. The abundance and diversity of Anopheles sampled by different methods were compared over 40 nights, with a focus on the P. knowlesi vector Anopheles balabancensis. RESULTS HLC caught more An. balabacensis than any other method (3.6 per night). In contrast, no An. balabacensis were collected in MBT collections, which generally performed poorly for all mosquito taxa. Anopheles vector species including An. balabacensis were sampled in both HENET and MENET collections, but at a mean abundance of less than 1 per night. There was no difference between HENET and MENET in the overall abundance (P = 0.05) or proportion (P = 0.7) of An. balabacensis. The estimated diversity of Anopheles species was marginally higher in electrocuting net than HLC collections, and similar in collections made with humans or monkey hosts. CONCLUSIONS Host-baited electrocuting nets had moderate success for sampling known zoonotic malaria vectors. The primary vector An. balabacensis was collected with electrocuting nets baited both with humans and macaques, but at a considerably lower density than the HLC standard. However, electrocuting nets were considerably more successful than monkey-baited traps and representatively characterised anopheline species diversity. Consequently, their use allows inferences about relative mosquito attraction to be meaningfully interpreted while eliminating confounding factors due to trapping method. On this basis, electrocuting net traps should be considered as a useful standardised method for investigating vector contact with humans and wildlife reservoirs.
Collapse
Affiliation(s)
- Frances Hawkes
- Agriculture Health & Environment Department, Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Kent, ME4 4TB UK
| | - Benny Obrain Manin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah Malaysia
| | - Sui Han Ng
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah Malaysia
| | - Stephen J Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah Malaysia
| | - Heather M. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ UK
| |
Collapse
|
40
|
Grigg MJ, Cox J, William T, Jelip J, Fornace KM, Brock PM, von Seidlein L, Barber BE, Anstey NM, Yeo TW, Drakeley CJ. Individual-level factors associated with the risk of acquiring human Plasmodium knowlesi malaria in Malaysia: a case-control study. Lancet Planet Health 2017; 1:e97-e104. [PMID: 28758162 PMCID: PMC5531251 DOI: 10.1016/s2542-5196(17)30031-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND The emergence of human malaria due to the monkey parasite Plasmodium knowlesi threatens elimination efforts in southeast Asia. Changes in land use are thought to be driving the rise in reported P knowlesi cases, but the role of individual-level factors is unclear. To address this knowledge gap we assessed human and environmental factors associated with zoonotic knowlesi malaria risk. METHODS We did this population-based case-control study over a 2 year period in the state of Sabah in Malaysia. We enrolled cases with microscopy-positive, PCR-confirmed malaria who presented to two primary referral hospitals serving the adjacent districts of Kudat and Kota Marudu. We randomly selected three malaria-negative community controls per case, who were matched by village within 2 weeks of case detection. We obtained questionnaire data on demographics, behaviour, and residential malaria risk factors, and we also assessed glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. We used conditional logistic regression models to evaluate exposure risk between P knowlesi cases and controls, and between P knowlesi and human-only Plasmodium spp malaria cases. FINDINGS From Dec 5, 2012, to Jan 30, 2015, we screened 414 patients and subsequently enrolled 229 cases with P knowlesi malaria mono-infection and 91 cases with other Plasmodium spp infection. We enrolled 953 matched controls, including 683 matched to P knowlesi cases and 270 matched to non-P knowlesi cases. Age 15 years or older (adjusted odds ratio [aOR] 4·16, 95% CI 2·09-8·29, p<0·0001), male gender (4·20, 2·54-6·97, p<0·0001), plantation work (3·50, CI, 1·34-9·15, p=0·011), sleeping outside (3·61, 1·48-8·85, p=0·0049), travel (2·48, 1·45-4·23, p=0·0010), being aware of the presence of monkeys in the past 4 weeks (3·35, 1·91-5·88, p<0·0001), and having open eaves or gaps in walls (2·18, 1·33-3·59, p=0·0021) were independently associated with increased risk of symptomatic P knowlesi infection. Farming occupation (aOR 1·89, 95% CI 1·07-3·35, p=0·028), clearing vegetation (1·89, 1·11-3·22, p=0·020), and having long grass around the house (2·08, 1·25-3·46, p=0·0048) increased risk for P knowlesi infection but not other Plasmodium spp infection. G6PD deficiency seemed to be protective against P knowlesi (aOR 0·20, 95% CI 0·04-0·96, p=0·045), as did residual insecticide spraying of household walls (0·52, 0·31-0·87, p=0·014), with the presence of young sparse forest (0·35, 0·20-0·63, p=00040) and rice paddy around the house (0·16, 0·03-0·78, 0·023) also associated with decreased risk. INTERPRETATION Adult men working in agricultural areas were at highest risk of knowlesi malaria, although peri-domestic transmission also occurrs. Human behavioural factors associated with P knowlesi transmission could be targeted in future public health interventions. FUNDING United Kingdom Medical Research Council, Natural Environment Research Council, Economic and Social Research Council, and Biotechnology and Biosciences Research Council.
Collapse
Affiliation(s)
- Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Jonathan Cox
- London School of Hygiene & Tropical Medicine, London, UK
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia; Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia; Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Jenarun Jelip
- Sabah Department of Health, Kota Kinabalu, Sabah, Malaysia
| | | | - Patrick M Brock
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | | | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore
| | | |
Collapse
|
41
|
Richards J, Mueller I. Identifying the risks for human transmission of Plasmodium knowlesi. Lancet Planet Health 2017; 1:e83-e85. [PMID: 29851611 DOI: 10.1016/s2542-5196(17)30053-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 06/08/2023]
Affiliation(s)
- Jack Richards
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia; Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, VIC 3052, Australia; Institut Pasteur, Paris, France; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
42
|
Manin BO, Ferguson HM, Vythilingam I, Fornace K, William T, Torr SJ, Drakeley C, Chua TH. Investigating the Contribution of Peri-domestic Transmission to Risk of Zoonotic Malaria Infection in Humans. PLoS Negl Trop Dis 2016; 10:e0005064. [PMID: 27741235 PMCID: PMC5065189 DOI: 10.1371/journal.pntd.0005064] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In recent years, the primate malaria Plasmodium knowlesi has emerged in human populations throughout South East Asia, with the largest hotspot being in Sabah, Malaysian Borneo. Control efforts are hindered by limited knowledge of where and when people get exposed to mosquito vectors. It is assumed that exposure occurs primarily when people are working in forest areas, but the role of other potential exposure routes (including domestic or peri-domestic transmission) has not been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS We integrated entomological surveillance within a comprehensive case-control study occurring within a large hotspot of transmission in Sabah, Malaysia. Mosquitoes were collected at 28 pairs households composed of one where an occupant had a confirmed P. knowlesi infection within the preceding 3 weeks ("case") and an associated "control" where no infection was reported. Human landing catches were conducted to measure the number and diversity of mosquitoes host seeking inside houses and in the surrounding peri-domestic (outdoors but around the household) areas. The predominant malaria vector species was Anopheles balabacensis, most of which were caught outdoors in the early evening (6pm - 9pm). It was significantly more abundant in the peri-domestic area than inside houses (5.5-fold), and also higher at case than control households (0.28±0.194 vs 0.17±0.127, p<0.001). Ten out of 641 An. balabacensis tested were positive for simian malaria parasites, but none for P. knowlesi. CONCLUSIONS/SIGNIFICANCE This study shows there is a possibility that humans can be exposed to P. knowlesi infection around their homes. The vector is highly exophagic and few were caught indoors indicating interventions using bednets inside households may have relatively little impact.
Collapse
Affiliation(s)
- Benny O. Manin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Heather M. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, United Kingdom
| | - Indra Vythilingam
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kim Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Steve J. Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tock H. Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- * E-mail: ,
| |
Collapse
|