1
|
Minwuyelet A, Abiye M, Zeleke AJ, Getie S. Plasmodium gametocyte carriage in humans and sporozoite rate in anopheline mosquitoes in Gondar zuria district, Northwest Ethiopia. PLoS One 2024; 19:e0306289. [PMID: 38950022 PMCID: PMC11216604 DOI: 10.1371/journal.pone.0306289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Although the overall burden of malaria is decreasing in Ethiopia, a recent report of an unpredictable increased incidence may be related to the presence of community-wide gametocyte-carrier individuals and a high proportion of infected vectors. This study aimed to reveal the current prevalence of gametocyte-carriage and the sporozoite infectivity rate of Anopheles vectors for Plasmodium parasites. A community-based cross-sectional study was conducted from May 01 to June 30/2019. A total of 53 households were selected using systematic random sampling and a 242 study participants were recruited. Additionally,515 adult female Anopheles mosquitoes were collected using Center for Diseases Control and Prevention (CDC) light traps and mouth aspirators. Parasite gametocytemia was determined using giemsa stain microscopy, while sporozoite infection was determined by giemsa staining microscopy and enzyme linked immunosorbent assay (ELISA). Among the total 242 study participants, 5.4% (95%, CI = 2.9-8.3) of them were positive for any of the Plasmodium species gametocyte. Furthermore, being female [AOR = 15.5(95%, CI = 1.71-140.39)], age group between 15-29 years old [AOR = 16.914 (95%, CI = 1.781-160.63)], no ITNs utilization [AOR = 16.7(95%, CI = 1.902 -146.727)], and high asexual parasite density [(95%, CI = 0.057-0.176, P = 0.001, F = 18.402)] were identified as statistically significant factors for gametocyte carriage. Whereas sporozoite infection rate was 11.6% (95%, CI = 8.2-15.5) and 12.7% (95%, CI = 9.6-16.3) by microscopy and ELISA, respectively. Overall, this study indicated that malaria remains to be an important public health problem in Gondar Zuria district where high gametocyte carriage rate and sporozoite infection rate could sustain its transmission and burden. Therefore, in Ethiopia, where malaria elimination program is underway, frequent, and active community-based surveillance of gametocytemia and sporozoite infection rate is important.
Collapse
Affiliation(s)
- Awoke Minwuyelet
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Melkam Abiye
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Ayalew Jejaw Zeleke
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Sisay Getie
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Markwalter CF, Lapp Z, Abel L, Kimachas E, Omollo E, Freedman E, Chepkwony T, Amunga M, McCormick T, Bérubé S, Mangeni JN, Wesolowski A, Obala AA, Taylor SM, Prudhomme O'Meara W. Plasmodium falciparum infection in humans and mosquitoes influence natural Anopheline biting behavior and transmission. Nat Commun 2024; 15:4626. [PMID: 38816383 PMCID: PMC11139876 DOI: 10.1038/s41467-024-49080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
The human infectious reservoir of Plasmodium falciparum is governed by transmission efficiency during vector-human contact and mosquito biting preferences. Understanding biting bias in a natural setting can help target interventions to interrupt transmission. In a 15-month cohort in western Kenya, we detected P. falciparum in indoor-resting Anopheles and human blood samples by qPCR and matched mosquito bloodmeals to cohort participants using short-tandem repeat genotyping. Using risk factor analyses and discrete choice models, we assessed mosquito biting behavior with respect to parasite transmission. Biting was highly unequal; 20% of people received 86% of bites. Biting rates were higher on males (biting rate ratio (BRR): 1.68; CI: 1.28-2.19), children 5-15 years (BRR: 1.49; CI: 1.13-1.98), and P. falciparum-infected individuals (BRR: 1.25; CI: 1.01-1.55). In aggregate, P. falciparum-infected school-age (5-15 years) boys accounted for 50% of bites potentially leading to onward transmission and had an entomological inoculation rate 6.4x higher than any other group. Additionally, infectious mosquitoes were nearly 3x more likely than non-infectious mosquitoes to bite P. falciparum-infected individuals (relative risk ratio 2.76, 95% CI 1.65-4.61). Thus, persistent P. falciparum transmission was characterized by disproportionate onward transmission from school-age boys and by the preference of infected mosquitoes to feed upon infected people.
Collapse
Affiliation(s)
| | - Zena Lapp
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Lucy Abel
- Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Emmah Kimachas
- Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | | | - Elizabeth Freedman
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Tabitha Chepkwony
- Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Mark Amunga
- Academic Model Providing Access to Healthcare, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Tyler McCormick
- Departments of Statistics & Sociology, University of Washington, Seattle, WA, USA
| | - Sophie Bérubé
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Judith N Mangeni
- School of Public Health, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew A Obala
- School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya
| | - Steve M Taylor
- Duke Global Health Institute, Duke University, Durham, NC, USA.
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.
| | - Wendy Prudhomme O'Meara
- Duke Global Health Institute, Duke University, Durham, NC, USA.
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Greyling N, van der Watt M, Gwarinda H, van Heerden A, Greenhouse B, Leroy D, Niemand J, Birkholtz LM. Genetic complexity alters drug susceptibility of asexual and gametocyte stages of Plasmodium falciparum to antimalarial candidates. Antimicrob Agents Chemother 2024; 68:e0129123. [PMID: 38259087 PMCID: PMC10916389 DOI: 10.1128/aac.01291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.
Collapse
Affiliation(s)
- Nicola Greyling
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Hazel Gwarinda
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Bryan Greenhouse
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Omondi S, Kosgei J, Musula G, Muchoki M, Abong'o B, Agumba S, Ogwang C, McDermott DP, Donnelly MJ, Staedke SG, Schultz J, Gutman JR, Gimnig JE, Ochomo E. Late morning biting behaviour of Anopheles funestus is a risk factor for transmission in schools in Siaya, western Kenya. Malar J 2023; 22:366. [PMID: 38037026 PMCID: PMC10691009 DOI: 10.1186/s12936-023-04806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Children in Kenya spend a substantial amount of time at school, including at dawn and dusk when mosquitoes are active. With changing vector behaviour towards early morning biting, it is important to determine whether there is an additional risk of transmission in schools. This study sought to understand whether late morning biting by Anopheles funestus, previously documented in households in western Kenya, was replicated in schools. METHODS From the 4th to the 6th of August 2023, human landing collections were conducted hourly in four schools in Alego Usonga sub-County, Siaya County. The collections were conducted in and outside five classrooms in each school and ran for 17 h, starting at 18:00 until 11:00 h the next morning. RESULTS Anopheles funestus was the predominant species collected, forming 93.2% (N = 727) of the entire collection, with peak landing between 06:00 and 07:00 h and continuing until 11:00 h. More than half of the collected An. funestus were either fed or gravid, potentially indicative of multiple bloodmeals within each gonotrophic cycle, and had a sporozoite rate of 2.05%. CONCLUSION School children spend up to 10 h of their daytime in schools, reporting between 06:00 and 07:00 h and staying in school until as late as 17:00 h, meaning that they receive potentially infectious mosquito bites during the morning hours in these settings. There is a need to consider vector control approaches targeting schools and other peridomestic spaces in the morning hours when An. funestus is active.
Collapse
Affiliation(s)
- Seline Omondi
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Jackline Kosgei
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - George Musula
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Margaret Muchoki
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Bernard Abong'o
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Silas Agumba
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Caroline Ogwang
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Daniel P McDermott
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sarah G Staedke
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jonathan Schultz
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Julie R Gutman
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - John E Gimnig
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya.
| |
Collapse
|
5
|
Mbewe RB, Keven JB, Mangani C, Wilson ML, Mzilahowa T, Mathanga DP, Valim C, Laufer MK, Walker ED, Cohee LM. Genotyping of Anopheles mosquito blood meals reveals nonrandom human host selection: implications for human-to-mosquito Plasmodium falciparum transmission. Malar J 2023; 22:115. [PMID: 37029433 PMCID: PMC10080529 DOI: 10.1186/s12936-023-04541-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Control of malaria parasite transmission can be enhanced by understanding which human demographic groups serve as the infectious reservoirs. Because vector biting can be heterogeneous, some infected individuals may contribute more to human-to-mosquito transmission than others. Infection prevalence peaks in school-age children, but it is not known how often they are fed upon. Genotypic profiling of human blood permits identification of individual humans who were bitten. The present investigation used this method to estimate which human demographic groups were most responsible for transmitting malaria parasites to Anopheles mosquitoes. It was hypothesized that school-age children contribute more than other demographic groups to human-to-mosquito malaria transmission. METHODS In a region of moderate-to-high malaria incidence in southeastern Malawi, randomly selected households were surveyed to collect human demographic information and blood samples. Blood-fed, female Anopheles mosquitoes were sampled indoors from the same houses. Genomic DNA from human blood samples and mosquito blood meals of human origin was genotyped using 24 microsatellite loci. The resultant genotypes were matched to identify which individual humans were sources of blood meals. In addition, Plasmodium falciparum DNA in mosquito abdomens was detected with polymerase chain reaction. The combined results were used to identify which humans were most frequently bitten, and the P. falciparum infection prevalence in mosquitoes that resulted from these blood meals. RESULTS Anopheles females selected human hosts non-randomly and fed on more than one human in 9% of the blood meals. Few humans contributed most of the blood meals to the Anopheles vector population. Children ≤ 5 years old were under-represented in mosquito blood meals while older males (31-75 years old) were over-represented. However, the largest number of malaria-infected blood meals was from school age children (6-15 years old). CONCLUSIONS The results support the hypothesis that humans aged 6-15 years are the most important demographic group contributing to the transmission of P. falciparum to the Anopheles mosquito vectors. This conclusion suggests that malaria control and prevention programmes should enhance efforts targeting school-age children and males.
Collapse
Affiliation(s)
- Rex B Mbewe
- Department of Entomology, Michigan State University, East Lansing, MI, USA.
- Department of Physics and Biochemical Sciences, Malawi University of Business and Applied Sciences, Blantyre, Malawi.
| | - John B Keven
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Public Health, College of Health Sciences, University of California-Irvine, Irvine, CA, USA
| | - Charles Mangani
- Malaria Alert Center, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Mark L Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Themba Mzilahowa
- Malaria Alert Center, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Don P Mathanga
- Malaria Alert Center, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Clarissa Valim
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Miriam K Laufer
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward D Walker
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Lauren M Cohee
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Hubbard A, Hemming-Schroeder E, Machani MG, Afrane Y, Yan G, Lo E, Janies D. Implementing landscape genetics in molecular epidemiology to determine drivers of vector-borne disease: A malaria case study. Mol Ecol 2023; 32:1848-1859. [PMID: 36645165 PMCID: PMC10694861 DOI: 10.1111/mec.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
This study employs landscape genetics to investigate the environmental drivers of a deadly vector-borne disease, malaria caused by Plasmodium falciparum, in a more spatially comprehensive manner than any previous work. With 1804 samples from 44 sites collected in western Kenya in 2012 and 2013, we performed resistance surface analysis to show that Lake Victoria acts as a barrier to transmission between areas north and south of the Winam Gulf. In addition, Mantel correlograms clearly showed significant correlations between genetic and geographic distance over short distances (less than 70 km). In both cases, we used an identity-by-state measure of relatedness tailored to find highly related individual parasites in order to focus on recent gene flow that is more relevant to disease transmission. To supplement these results, we performed conventional population genetics analyses, including Bayesian clustering methods and spatial ordination techniques. These analyses revealed some differentiation on the basis of geography and elevation and a cluster of genetic similarity in the lowlands north of the Winam Gulf of Lake Victoria. Taken as a whole, these results indicate low overall genetic differentiation in the Lake Victoria region, but with some separation of parasite populations north and south of the Winam Gulf that is explained by the presence of the lake as a geographic barrier to gene flow. We recommend similar landscape genetics analyses in future molecular epidemiology studies of vector-borne diseases to extend and contextualize the results of traditional population genetics.
Collapse
Affiliation(s)
- Alfred Hubbard
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina, Charlotte, USA
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Elizabeth Hemming-Schroeder
- Department of Microbiology, Center for Vector-borne Infectious Diseases (CVID), Colorado State University, Fort Collins, Colorado, USA
| | | | - Yaw Afrane
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California, USA
| | - Eugenia Lo
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina, Charlotte, USA
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
7
|
Mbacham HF, Mosume DM, Apinjoh TO, Ntui VN, Moyeh MN, Kalaji LN, Wepnje GB, Ghogomu SM, Dionne JA, Tita ATN, Achidi EA, Anchang-Kimbi JK. Sub-microscopic Plasmodium falciparum parasitaemia, dihydropteroate synthase (dhps) resistance mutations to sulfadoxine-pyrimethamine, transmission intensity and risk of malaria infection in pregnancy in Mount Cameroon Region. Malar J 2023; 22:73. [PMID: 36864514 PMCID: PMC9979436 DOI: 10.1186/s12936-023-04485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Plasmodium falciparum resistance to intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) continues to spread throughout sub-Saharan Africa. This study assessed the occurrence of microscopic and sub-microscopic P. falciparum parasitaemia, dihydropteroate synthase mutations associated with resistance to SP and maternal anaemia in the Mount Cameroon area. METHODS Consenting pregnant women living in semi-rural and semi-urban/urbanized settings were enrolled in this cross-sectional study. Socio-demographic, antenatal and clinical data were documented. Microscopic and sub-microscopic parasitaemia were diagnosed using peripheral blood microscopy and nested polymerase chain reaction (PCR) respectively. The dhps mutations were genotyped by restriction fragment length polymorphism analysis. The presence of A437G, K540E, and A581G was considered a marker for high-level resistance. Haemoglobin levels and anaemia status were determined. RESULTS Among the women, the prevalence of microscopic and sub-microscopic P. falciparum infection were 7.7% (67/874) and 18.6% (93/500) respectively. Predictors of microscopic infection were younger age (< 21 years) (AOR = 2.89; 95% CI 1.29-6.46) and semi-rural settings (AOR = 2.27; 95% CI 1.31-3.96). Determinants of sub-microscopic infection were the rainy season (AOR, 3.01; 95% CI 1.77-5.13), primigravidity (AOR = 0.45; 95% CI 0.21-0.94) and regular ITN usage (AOR = 0.49; 95% CI 0.27-0.90). Of the145 P. falciparum isolates genotyped, 66.9% (97) carried mutations associated with resistance to SP; 33.8% (49), 0%, 52.4% (76) and 19.3% (28) for A437G, K540E, A581G and A437G + A581G respectively. The A581G mutation was associated with ≥ 3 SP doses evident only among sub-microscopic parasitaemia (P = 0.027) and multigravidae (P = 0.009). Women with microscopic infection were more likely from semi-rural settings (AOR = 7.09; 95% CI 2.59-19.42), to report history of fever (AOR = 2.6; 95% CI 1.07-6.31), to harbour parasites with double resistant mutations (AOR = 6.65; 95% CI 1.85-23.96) and were less likely to have received 2 SP doses (AOR = 0.29; 95% CI 1.07-6.31). Microscopic infection decreased Hb levels more than sub-microscopic infection. CONCLUSION The occurrence of sub-microscopic P. falciparum parasites resistant to SP and intense malaria transmission poses persistent risk of malaria infection during pregnancy in the area. ITN usage and monitoring spread of resistance are critical.
Collapse
Affiliation(s)
- Harry F Mbacham
- Department of Animal Biology and Conservation, University of Buea, Buea, Cameroon
| | - Diange M Mosume
- Department of Animal Biology and Conservation, University of Buea, Buea, Cameroon
| | - Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Vincent N Ntui
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Marcel N Moyeh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Laken N Kalaji
- Department of Animal Biology and Conservation, University of Buea, Buea, Cameroon
| | - Godlove B Wepnje
- Department of Animal Biology and Conservation, University of Buea, Buea, Cameroon
| | - Stephen M Ghogomu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Jodie A Dionne
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Alan T N Tita
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, USA
| | - Eric A Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | | |
Collapse
|
8
|
The Impact of Submicroscopic Parasitemia on Malaria Rapid Diagnosis in Northeastern Tanzania, an Area with Diverse Transmission Patterns. Infect Dis Rep 2022; 14:798-809. [PMID: 36412740 PMCID: PMC9680434 DOI: 10.3390/idr14060082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Global malaria epidemiology has changed in the last decade with a substantial increase in cases and deaths being recorded. Tanzania accounts for about 4% of all cases and deaths reported in recent years. Several factors contribute to the resurgence of malaria, parasite resistance to antimalarials and mosquito resistance to insecticides being at the top of the list. The presence of sub-microscopic infections poses a significant challenge to malaria rapid diagnostic tests (mRDT). Our cross-sectional surveys in Handeni and Moshi, Tanzania assessed the effect of low parasite density on mRDT. Handeni had higher malaria prevalence by mRDT (39.6%), light microscopy (LM) (16.9%) and polymerase chain reaction (PCR) (18.5%), compared to Moshi with prevalence of 0.2%, 1.3% and 2.3%, respectively. A significant difference (p ˂ 0.001) in malaria prevalence by mRDT, LM and nested PCR was found among age groups. In comparison to all other groups, school-age children (5-15 years) had the highest prevalence of malaria. Our results show that mRDT may miss up to 6% of cases of malaria mainly due to low-density parasitemia when compared to LM and PCR. Routinely used mRDT will likely miss the sub-microscopic parasitemia which will ultimately contribute to the spread of malaria and hinder efforts of elimination.
Collapse
|
9
|
Otambo WO, Onyango PO, Wang C, Olumeh J, Ondeto BM, Lee MC, Atieli H, Githeko AK, Kazura J, Zhong D, Zhou G, Githure J, Ouma C, Yan G. Influence of landscape heterogeneity on entomological and parasitological indices of malaria in Kisumu, Western Kenya. Parasit Vectors 2022; 15:340. [PMID: 36167549 PMCID: PMC9516797 DOI: 10.1186/s13071-022-05447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background Identification and characterization of larval habitats, documentation of Anopheles spp. composition and abundance, and Plasmodium spp. infection burden are critical components of integrated vector management. The present study aimed to investigate the effect of landscape heterogeneity on entomological and parasitological indices of malaria in western Kenya. Methods A cross-sectional entomological and parasitological survey was conducted along an altitudinal transect in three eco-epidemiological zones: lakeshore along the lakeside, hillside, and highland plateau during the wet and dry seasons in 2020 in Kisumu County, Kenya. Larval habitats for Anopheles mosquitoes were identified and characterized. Adult mosquitoes were sampled using pyrethrum spray catches (PSC). Finger prick blood samples were taken from residents and examined for malaria parasites by real-time PCR (RT-PCR). Results Increased risk of Plasmodium falciparum infection was associated with residency in the lakeshore zone, school-age children, rainy season, and no ITNs (χ2 = 41.201, df = 9, P < 0.0001). Similarly, lakeshore zone and the rainy season significantly increased Anopheles spp. abundance. However, house structures such as wall type and whether the eave spaces were closed or open, as well as the use of ITNs, did not affect Anopheles spp. densities in the homes (χ2 = 38.695, df = 7, P < 0.0001). Anopheles funestus (41.8%) and An. arabiensis (29.1%) were the most abundant vectors in all zones. Sporozoite prevalence was 5.6% and 3.2% in the two species respectively. The lakeshore zone had the highest sporozoite prevalence (4.4%, 7/160) and inoculation rates (135.2 infective bites/person/year). High larval densities were significantly associated with lakeshore zone and hillside zones, animal hoof prints and tire truck larval habitats, wetland and pasture land, and the wet season. The larval habitat types differed significantly across the landscape zones and seasonality (χ2 = 1453.044, df = 298, P < 0.0001). Conclusion The empirical evidence on the impact of landscape heterogeneity and seasonality on vector densities, parasite transmission, and Plasmodium infections in humans emphasizes the importance of tailoring specific adaptive environmental management interventions to specific landscape attributes to have a significant impact on transmission reduction. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05447-9.
Collapse
Affiliation(s)
- Wilfred Ouma Otambo
- Department of Zoology, Maseno University, Kisumu, Kenya. .,International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya.
| | | | - Chloe Wang
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Julius Olumeh
- School of Natural and Environmental Science, Newcastle University, Newcastle, UK
| | - Benyl M Ondeto
- International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya.,Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Harrysone Atieli
- International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James Kazura
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Centre for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daibin Zhong
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Guofa Zhou
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - John Githure
- International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Deora N, Yadav C, Pande V, Sinha A. A systematic review and meta-analysis on sub-microscopic Plasmodium infections in India: Different perspectives and global challenges. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2022; 2:100012. [PMID: 37383294 PMCID: PMC10305983 DOI: 10.1016/j.lansea.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Background The long-term maintenance of parasite biomass below the detection threshold of microscopy may stymie malaria elimination. Variation in microscopists' competencies to detect and correctly identify parasite species reflect in microscopy sensitivity, resulting in incorrect species-specific burden. Methods The study estimated Plasmodium SMI pooled burden from published reports using a random effect model & identifies their hotspots in India. The study applied a prediction model for the first time on Indian data, emphasizing the importance of such models that can predict PCR-prevalence from slide- prevalence. Findings A total of 17,449 samples from 39 districts were examined for Plasmodium by microscopy and PCR. The overall heterogeneity in clinic-based and community-based studies was 91% and 96%, respectively, with the pooled prevalence of 3.63%. The SMI prevalence in individual studies ranged from 38.4% to 0.4%. Sensitivity of microscopy for mono-P. vivax (91%) was found to be better than mono-P. falciparum (82 %). But surprisingly, it was much lower for mixed PfPv (45%). Interpretation Primary regional data in the form of SMIs hot spots should be generated from countries on the verge of malaria elimination, and genetic monitoring should be integrated into national programs, particularly in key areas for successful malaria elimination. Funding Not applicable.
Collapse
Affiliation(s)
- Nimita Deora
- ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - C.P. Yadav
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Abhinav Sinha
- ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
11
|
Otambo WO, Omondi CJ, Ochwedo KO, Onyango PO, Atieli H, Lee MC, Wang C, Zhou G, Githeko AK, Githure J, Ouma C, Yan G, Kazura J. Risk associations of submicroscopic malaria infection in lakeshore, plateau and highland areas of Kisumu County in western Kenya. PLoS One 2022; 17:e0268463. [PMID: 35576208 PMCID: PMC9109926 DOI: 10.1371/journal.pone.0268463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Persons with submicroscopic malaria infection are a major reservoir of gametocytes that sustain malaria transmission in sub-Saharan Africa. Despite recent decreases in the national malaria burden in Kenya due to vector control interventions, malaria transmission continues to be high in western regions of the country bordering Lake Victoria. The objective of this study was to advance knowledge of the topographical, demographic and behavioral risk factors associated with submicroscopic malaria infection in the Lake Victoria basin in Kisumu County. METHODS Cross-sectional community surveys for malaria infection were undertaken in three eco-epidemiologically distinct zones in Nyakach sub-County, Kisumu. Adjacent regions were topologically characterized as lakeshore, hillside and highland plateau. Surveys were conducted during the 2019 and 2020 wet and dry seasons. Finger prick blood smears and dry blood spots (DBS) on filter paper were collected from 1,777 healthy volunteers for microscopic inspection and real time-PCR (RT-PCR) diagnosis of Plasmodium infection. Persons who were PCR positive but blood smear negative were considered to harbor submicroscopic infections. Topographical, demographic and behavioral risk factors were correlated with community prevalence of submicroscopic infections. RESULTS Out of a total of 1,777 blood samples collected, 14.2% (253/1,777) were diagnosed as submicroscopic infections. Blood smear microscopy and RT-PCR, respectively, detected 3.7% (66/1,777) and 18% (319/1,777) infections. Blood smears results were exclusively positive for P. falciparum, whereas RT-PCR also detected P. malariae and P. ovale mono- and co-infections. Submicroscopic infection prevalence was associated with topographical variation (χ2 = 39.344, df = 2, p<0.0001). The highest prevalence was observed in the lakeshore zone (20.6%, n = 622) followed by the hillside (13.6%, n = 595) and highland plateau zones (7.9%, n = 560). Infection prevalence varied significantly according to season (χ2 = 17.374, df = 3, p<0.0001). The highest prevalence was observed in residents of the lakeshore zone in the 2019 dry season (29.9%, n = 167) and 2020 and 2019 rainy seasons (21.5%, n = 144 and 18.1%, n = 155, respectively). In both the rainy and dry seasons the likelihood of submicroscopic infection was higher in the lakeshore (AOR: 2.71, 95% CI = 1.85-3.95; p<0.0001) and hillside (AOR: 1.74, 95% CI = 1.17-2.61, p = 0.007) than in the highland plateau zones. Residence in the lakeshore zone (p<0.0001), male sex (p = 0.025), school age (p = 0.002), and living in mud houses (p = 0.044) increased the risk of submicroscopic malaria infection. Bed net use (p = 0.112) and occupation (p = 0.116) were not associated with submicroscopic infection prevalence. CONCLUSION Topographic features of the local landscape and seasonality are major correlates of submicroscopic malaria infection in the Lake Victoria area of western Kenya. Diagnostic tests more sensitive than blood smear microscopy will allow for monitoring and targeting geographic sites where additional vector interventions are needed to reduce malaria transmission.
Collapse
Affiliation(s)
- Wilfred Ouma Otambo
- Department of Zoology, Maseno University, Kisumu, Kenya
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collince J. Omondi
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Kevin O. Ochwedo
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | | | - Harrysone Atieli
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - Chloe Wang
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - Guofa Zhou
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Githure
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Guiyun Yan
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - James Kazura
- Centre for Global Health & Diseases, Case Western University Reserve, Cleveland, Ohio, United States of America
| |
Collapse
|
12
|
Otambo WO, Olumeh JO, Ochwedo KO, Magomere EO, Debrah I, Ouma C, Onyango P, Atieli H, Mukabana WR, Wang C, Lee MC, Githeko AK, Zhou G, Githure J, Kazura J, Yan G. Health care provider practices in diagnosis and treatment of malaria in rural communities in Kisumu County, Kenya. Malar J 2022; 21:129. [PMID: 35459178 PMCID: PMC9034626 DOI: 10.1186/s12936-022-04156-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Accurate malaria diagnosis and appropriate treatment at local health facilities are critical to reducing morbidity and human reservoir of infectious gametocytes. The current study assessed the accuracy of malaria diagnosis and treatment practices in three health care facilities in rural western Kenya. METHODS The accuracy of malaria detection and treatment recommended compliance was monitored in two public and one private hospital from November 2019 through March 2020. Blood smears from febrile patients were examined by hospital laboratory technicians and re-examined by an expert microscopists thereafter subjected to real-time polymerase chain reaction (RT-PCR) for quality assurance. In addition, blood smears from patients diagnosed with malaria rapid diagnostic tests (RDT) and presumptively treated with anti-malarial were re-examined by an expert microscopist. RESULTS A total of 1131 febrile outpatients were assessed for slide positivity (936), RDT (126) and presumptive diagnosis (69). The overall positivity rate for Plasmodium falciparum was 28% (257/936). The odds of slide positivity was higher in public hospitals, 30% (186/624, OR:1.44, 95% CI = 1.05-1.98, p < 0.05) than the private hospital 23% (71/312, OR:0.69, 95% CI = 0.51-0.95, p < 0.05). Anti-malarial treatment was dispensed more at public hospitals (95.2%, 177/186) than the private hospital (78.9%, 56/71, p < 0.0001). Inappropriate anti-malarial treatment, i.e. artemether-lumefantrine given to blood smear negative patients was higher at public hospitals (14.6%, 64/438) than the private hospital (7.1%, 17/241) (p = 0.004). RDT was the most sensitive (73.8%, 95% CI = 39.5-57.4) and specific (89.2%, 95% CI = 78.5-95.2) followed by hospital microscopy (sensitivity 47.6%, 95% CI = 38.2-57.1) and specificity (86.7%, 95% CI = 80.8-91.0). Presumptive diagnosis had the lowest sensitivity (25.7%, 95% CI = 13.1-43.6) and specificity (75.0%, 95% CI = 50.6-90.4). RDT had the highest non-treatment of negatives [98.3% (57/58)] while hospital microscopy had the lowest [77.3% (116/150)]. Health facilities misdiagnosis was at 27.9% (77/276). PCR confirmed 5.2% (4/23) of the 77 misdiagnosed cases as false positive and 68.5% (37/54) as false negative. CONCLUSIONS The disparity in malaria diagnosis at health facilities with many slide positives reported as negatives and high presumptive treatment of slide negative cases, necessitates augmenting microscopic with RDTs and calls for Ministry of Health strengthening supportive infrastructure to be in compliance with treatment guidelines of Test, Treat, and Track to improve malaria case management.
Collapse
Affiliation(s)
- Wilfred Ouma Otambo
- grid.442486.80000 0001 0744 8172Department of Zoology, Maseno University, Kisumu, Kenya ,International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Julius O. Olumeh
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya ,grid.10604.330000 0001 2019 0495Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Kevin O. Ochwedo
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya ,grid.10604.330000 0001 2019 0495Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Edwin O. Magomere
- grid.8301.a0000 0001 0431 4443Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Isaiah Debrah
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya ,grid.8652.90000 0004 1937 1485West Africa Centre for Cell Biology of Infectious Pathogen, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Collins Ouma
- grid.442486.80000 0001 0744 8172Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Patrick Onyango
- grid.442486.80000 0001 0744 8172Department of Zoology, Maseno University, Kisumu, Kenya
| | - Harrysone Atieli
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Wolfgang R. Mukabana
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya ,grid.10604.330000 0001 2019 0495Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Chloe Wang
- grid.266093.80000 0001 0668 7243Depatment of Population Health and Disease Prevention, University of California, Irvine, CA USA
| | - Ming-Chieh Lee
- grid.266093.80000 0001 0668 7243Depatment of Population Health and Disease Prevention, University of California, Irvine, CA USA
| | - Andrew K. Githeko
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guofa Zhou
- grid.266093.80000 0001 0668 7243Depatment of Population Health and Disease Prevention, University of California, Irvine, CA USA
| | - John Githure
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - James Kazura
- grid.67105.350000 0001 2164 3847Centre for Global Health and Diseases, Case Western University Reserve, Cleveland, OH USA
| | - Guiyun Yan
- grid.266093.80000 0001 0668 7243Depatment of Population Health and Disease Prevention, University of California, Irvine, CA USA
| |
Collapse
|
13
|
Madumla EP, Moore SJ, Moore J, Mbuba E, Mbeyela EM, Kibondo UA, C S, Mmbaga, Kobe D, Baraka J, Msellemu D, Swai JK, Mboma ZM, Odufuwa OG. "In starvation, a bone can also be meat": a mixed methods evaluation of factors associated with discarding of long-lasting insecticidal nets in Bagamoyo, Tanzania. Malar J 2022; 21:101. [PMID: 35331242 PMCID: PMC8944021 DOI: 10.1186/s12936-022-04126-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/17/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Between 2000 and 2019, more than 1.8 billion long-lasting insecticidal nets (LLINs) were distributed in Africa. While the insecticidal durability of LLINs is around 3 years, nets are commonly discarded 2 years post distribution. This study investigated the factors associated with the decision of users to discard LLINs. METHODS A mixed-method sequential explanatory approach using a structured questionnaire followed by focus group discussions (FGDs) to collect information on experiences, views, reasons, how and when LLINs are discarded. Out of 6,526 households that responded to the questionnaire of LLINs durability trial, 160 households were randomly selected from the households in four villages in Bagamoyo Tanzania for FGDs but only 155 households participated in the FGDs. Five of the household representatives couldn't participate due to unexpected circumstances. A total of sixteen FGDs each comprising of 8-10 adults were conducted; older women (40-60 years), older men (40-60 years), younger women (18-39 years), younger men (18-39 years). During the FGDs, participants visually inspected seven samples of LLINs that were "too-torn" based on Proportionate Hole Index recommended by the World Health Organization (WHO) guidelines on LLIN testing, the nets were brought to the discussion and participants had to determine if such LLINs were to be kept or discarded. The study assessed responses from the same participants that attended FGD and also responded to the structured questionnaire, 117 participants fulfilled the criteria, thus data from only 117 participants are analysed in this study. RESULTS In FGDs, integrity of LLIN influenced the decision to discard or keep a net. Those of older age, women, and householders with lower income were more likely to classify a WHO "too-torn" net as "good". The common methods used to discard LLINs were burning and burying. The findings were seen in the quantitative analysis. For every additional hole, the odds of discarding a WHO "too-torn" LLIN increased [OR = 1.05 (95%CI (1.04-1.07)), p < 0.001]. Younger age group [OR = 4.97 (95%CI (3.25-7.32)), p < 0.001], male-headed households [OR = 6.85 (95%CI (4.44 -10.59)), p < 0.001], and wealthy households [OR = 3.88 (95%CI (2.33-6.46)), p < 0.001] were more likely to discard LLINs. CONCLUSION Integrity of LLIN was the main determinant for discarding or keeping LLINs and the decision to discard the net is associated with socioeconomic status of the household, and the age and gender of respondents. WHO "too torn" nets are encouraged to be used instead of none until replacement, and disposal of nets should be based on recommendation.
Collapse
Affiliation(s)
- Edith P Madumla
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.
- Nelson Mandela African Institution of Science and Technology, Tengeru, Arusha, Tanzania.
| | - Sarah J Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Nelson Mandela African Institution of Science and Technology, Tengeru, Arusha, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, St. Petersplatz 1, CH-4002, Basel, Switzerland
| | - Jason Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
| | - Emmanuel Mbuba
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, St. Petersplatz 1, CH-4002, Basel, Switzerland
| | - Edgar M Mbeyela
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ummi A Kibondo
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Mmbaga
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Dickson Kobe
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Jitihada Baraka
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Daniel Msellemu
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, St. Petersplatz 1, CH-4002, Basel, Switzerland
| | - Johnson K Swai
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Zawadi M Mboma
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
14
|
Application of dried blood spot sample pooling strategies for Plasmodium 18S rRNA biomarker testing to facilitate identification of infected persons in large-scale epidemiological studies. Malar J 2021; 20:391. [PMID: 34620192 PMCID: PMC8499573 DOI: 10.1186/s12936-021-03907-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium 18S rRNA is a sensitive biomarker for detecting Plasmodium infection in human blood. Dried blood spots (DBS) are a practical sample type for malaria field studies to collect, store, and transport large quantities of blood samples for diagnostic testing. Pooled testing is a common way to reduce reagent costs and labour. This study examined performance of the Plasmodium 18S rRNA biomarker assay for DBS, improved assay sensitivity for pooled samples, and created graphical user interface (GUI) programmes for facilitating optimal pooling. Methods DBS samples of varied parasite densities from clinical specimens, Plasmodium falciparum in vitro culture, and P. falciparum Armored RNA® were tested using the Plasmodium 18S rRNA quantitative triplex reverse transcription polymerase chain reaction (qRT-PCR) assay and a simplified duplex assay. DBS sample precision, linearity, limit of detection (LoD) and stability at varied storage temperatures were evaluated. Novel GUIs were created to model two-stage hierarchy, square matrix, and three-stage hierarchy pooling strategies with samples of varying positivity rates and estimated test counts. Seventy-eight DBS samples from persons residing in endemic regions with sub-patent infections were tested in pools and deconvoluted to identify positive cases. Results Assay performance showed linearity for DBS from 4 × 107 to 5 × 102 parasites/mL with strong correlation to liquid blood samples (r2 > 0.96). There was a minor quantitative reduction in DBS rRNA copies/mL compared to liquid blood samples. Analytical sensitivity for DBS was estimated 5.3 log copies 18S rRNA/mL blood (28 estimated parasites/mL). Properly preserved DBS demonstrated minimal degradation of 18S rRNA when stored at ambient temperatures for one month. A simplified duplex qRT-PCR assay omitting the human mRNA target showed improved analytical sensitivity, 1 parasite/mL blood, and was optimized for pooling. Optimal pooling sizes varied depending on prevalence. A pilot DBS study of the two-stage hierarchy pooling scheme corroborated results previously determined by testing individual DBS. Conclusions The Plasmodium 18S rRNA biomarker assay can be applied to DBS collected in field studies. The simplified Plasmodium qRT-PCR assay and GUIs have been established to provide efficient means to test large quantities of DBS samples. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03907-8.
Collapse
|
15
|
Salgado C, Ayodo G, Macklin MD, Gould MP, Nallandhighal S, Odhiambo EO, Obala A, O'Meara WP, John CC, Tran TM. The prevalence and density of asymptomatic Plasmodium falciparum infections among children and adults in three communities of western Kenya. Malar J 2021; 20:371. [PMID: 34535134 PMCID: PMC8447531 DOI: 10.1186/s12936-021-03905-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/03/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Further reductions in malaria incidence as more countries approach malaria elimination require the identification and treatment of asymptomatic individuals who carry mosquito-infective Plasmodium gametocytes that are responsible for furthering malaria transmission. Assessing the relationship between total parasitaemia and gametocytaemia in field surveys can provide insight as to whether detection of low-density, asymptomatic Plasmodium falciparum infections with sensitive molecular methods can adequately detect the majority of infected individuals who are potentially capable of onward transmission. METHODS In a cross-sectional survey of 1354 healthy children and adults in three communities in western Kenya across a gradient of malaria transmission (Ajigo, Webuye, and Kapsisywa-Kipsamoite), asymptomatic P. falciparum infections were screened by rapid diagnostic tests, blood smear, and quantitative PCR of dried blood spots targeting the varATS gene in genomic DNA. A multiplex quantitative reverse-transcriptase PCR assay targeting female and male gametocyte genes (pfs25, pfs230p), a gene with a transcriptional pattern restricted to asexual blood stages (piesp2), and human GAPDH was also developed to determine total parasite and gametocyte densities among parasitaemic individuals. RESULTS The prevalence of varATS-detectable asymptomatic infections was greatest in Ajigo (42%), followed by Webuye (10%). Only two infections were detected in Kapsisywa. No infections were detected in Kipsamoite. Across all communities, children aged 11-15 years account for the greatest proportion total and sub-microscopic asymptomatic infections. In younger age groups, the majority of infections were detectable by microscopy, while 68% of asymptomatically infected adults (> 21 years old) had sub-microscopic parasitaemia. Piesp2-derived parasite densities correlated poorly with microscopy-determined parasite densities in patent infections relative to varATS-based detection. In general, both male and female gametocytaemia increased with increasing varATS-derived total parasitaemia. A substantial proportion (41.7%) of individuals with potential for onward transmission had qPCR-estimated parasite densities below the limit of microscopic detection, but above the detectable limit of varATS qPCR. CONCLUSIONS This assessment of parasitaemia and gametocytaemia in three communities with different transmission intensities revealed evidence of a substantial sub-patent infectious reservoir among asymptomatic carriers of P. falciparum. Experimental studies are needed to definitively determine whether the low-density infections in communities such as Ajigo and Webuye contribute significantly to malaria transmission.
Collapse
Affiliation(s)
- Christina Salgado
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Ayodo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Michael D Macklin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Srinivas Nallandhighal
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eliud O Odhiambo
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Obala
- School of Medicine, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
16
|
Whittaker C, Slater H, Nash R, Bousema T, Drakeley C, Ghani AC, Okell LC. Global patterns of submicroscopic Plasmodium falciparum malaria infection: insights from a systematic review and meta-analysis of population surveys. LANCET MICROBE 2021; 2:e366-e374. [PMID: 34382027 PMCID: PMC8332195 DOI: 10.1016/s2666-5247(21)00055-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Adoption of molecular techniques to detect Plasmodium falciparum infection has revealed many previously undetected (by microscopy) yet transmissible low-density infections. The proportion of these infections is typically highest in low transmission settings, but drivers of submicroscopic infection remain unclear. Here, we updated a previous systematic review of asexual P falciparum prevalence by microscopy PCR in the same population. We aimed to explore potential drivers of submicroscopic infection and to identify the locations where submicroscopic infections are most common. Methods In this systematic review and meta-analysis we searched PubMed and Web of Science from Jan 1, 2010, until Oct 11, 2020, for cross-sectional studies reporting data on asexual P falciparum prevalence by both microscopy and PCR. Surveys of pregnant women, surveys in which participants had been chosen based on symptoms or treatment, or surveys that did not involve a population from a defined location were excluded. Both the number of individuals tested and the number of individuals who tested positive by microscopy or PCR, or both, for P falciparum infection were extracted. Bayesian regression modelling was used to explore determinants of the size of the submicroscopic reservoir including geographical location, seasonality, age, methodology, and current or historical patterns of transmission. Findings Of 4893 identified studies, we retained 121 after screening and removal of duplicates. 45 studies from a previous systematic review were included giving 166 studies containing 551 cross-sectional survey microscopy and PCR prevalence pairs. Our results show that submicroscopic infections predominate in low-transmission settings across all regions, but also reveal marked geographical variation, with the proportion of infections that are submicroscopic being highest in South American surveys and lowest in west African surveys. Although current transmission levels partly explain these results, we find that historical transmission intensity also represents a crucial determinant of the size of the submicroscopic reservoir, as does the demographic structure of the infected population (with submicroscopic infection more likely to occur in adults than in children) and the PCR or microscopy methodology used. We also observed a small yet significant influence of seasonality, with fewer submicroscopic infections observed in the wet season than the dry season. Integrating these results with estimates of infectivity in relation to parasite density suggests the contribution of submicroscopic infections to transmission across different settings is likely to be highly variable. Interpretation Significant variation in the prevalence of submicroscopic infection exists even across settings characterised by similar current levels of transmission. These differences in submicroscopic epidemiology potentially warrant different approaches to targeting this infected subgroup across different settings to eliminate malaria. Funding Bill & Melinda Gates Foundation, The Royal Society, and the UK Medical Research Council.
Collapse
Affiliation(s)
- Charles Whittaker
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Hannah Slater
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.,PATH, Seattle, WA, USA
| | - Rebecca Nash
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
17
|
Samuels AM, Odero NA, Odongo W, Otieno K, Were V, Shi YP, Sang T, Williamson J, Wiegand R, Hamel MJ, Kachur SP, Slutsker L, Lindblade KA, Kariuki SK, Desai MR. Impact of Community-Based Mass Testing and Treatment on Malaria Infection Prevalence in a High-Transmission Area of Western Kenya: A Cluster Randomized Controlled Trial. Clin Infect Dis 2021; 72:1927-1935. [PMID: 32324850 DOI: 10.1093/cid/ciaa471] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Global gains toward malaria elimination have been heterogeneous and have recently stalled. Interventions targeting afebrile malaria infections may be needed to address residual transmission. We studied the efficacy of repeated rounds of community-based mass testing and treatment (MTaT) on malaria infection prevalence in western Kenya. METHODS Twenty clusters were randomly assigned to 3 rounds of MTaT per year for 2 years or control (standard of care for testing and treatment at public health facilities along with government-sponsored mass long-lasting insecticidal net [LLIN] distributions). During rounds, community health volunteers visited all households in intervention clusters and tested all consenting individuals with a rapid diagnostic test. Those positive were treated with dihydroartemisinin-piperaquine. Cross-sectional community infection prevalence surveys were performed in both study arms at baseline and each year after 3 rounds of MTaT. The primary outcome was the effect size of MTaT on parasite prevalence by microscopy between arms by year, adjusted for age, reported LLIN use, enhanced vegetative index, and socioeconomic status. RESULTS Demographic and behavioral characteristics, including LLIN usage, were similar between arms at each survey. MTaT coverage across the 3 annual rounds ranged between 75.0% and 77.5% in year 1, and between 81.9% and 94.3% in year 2. The adjusted effect size of MTaT on the prevalence of parasitemia between arms was 0.93 (95% confidence interval [CI], .79-1.08) and 0.92 (95% CI, .76-1.10) after year 1 and year 2, respectively. CONCLUSIONS MTaT performed 3 times per year over 2 years did not reduce malaria parasite prevalence in this high-transmission area. CLINICAL TRIALS REGISTRATION NCT02987270.
Collapse
Affiliation(s)
- Aaron M Samuels
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nobert Awino Odero
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Wycliffe Odongo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kephas Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Were
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ya Ping Shi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tony Sang
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Williamson
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ryan Wiegand
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mary J Hamel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S Patrick Kachur
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Laurence Slutsker
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kim A Lindblade
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Simon K Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Meghna R Desai
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Motshoge T, Haiyambo DH, Ayanful-Torgby R, Aleksenko L, Ntebela D, Malleret B, Rénia L, Peloewetse E, Paganotti GM, Quaye IK. Recent Molecular Assessment of Plasmodium vivax and Plasmodium falciparum Asymptomatic Infections in Botswana. Am J Trop Med Hyg 2021; 104:2159-2164. [PMID: 33939635 PMCID: PMC8176517 DOI: 10.4269/ajtmh.21-0083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023] Open
Abstract
In 2016, we reported the presence of Plasmodium vivax in Botswana through active case detection. A real-time PCR was used during a similar study in 10 districts to assess changes in the P. vivax prevalence. We assessed 1,614 children (2-13 years of age) for hemoglobin (Hb; g/dL) and Plasmodium parasites. The median age of all participants was 5.0 years (25th percentile, 3 years; 75th percentile, 8 years). The median Hb (g/dL) level was 12.1, but 18.3% of the participants had anemia (Hb < 11.0 g/dL); these participants were clustered in the younger than 5 years age group in all districts (P < 0.001). The risk of anemia decreased with age 5 years or older (odds ratio [OR], 0.26; 95% confidence interval [CI], 0.197-0.34; P < 0.001). The prevalence rates of Plasmodium parasites were as follows: P. vivax, 12.7%; P. falciparum, 12.7%; P. malariae, 0.74%; and P. ovale (P. ovale curtisi), 0.68%. Mixed infection rates were as follows: P. falciparum and P. vivax, 2.35%; P. falciparum and P. ovale curtisi, 0.56%; P. vivax and P. malariae, 0.06%; and P. falciparum and P. malariae, 0.68%. The infections were largely asymptomatic (99.6%). Using logistic regression, the risk of infection with P. vivax was highest in Kweneng East (OR, 6.2; 95% CI, 2.9-13.1), followed by South East (OR, 5.6; 95% CI, 2.5-12.3) and Ngami (OR, 5.1; 95% CI, 2.2-12.0). Compared to the risk of infection for children younger than 5 years, the risk of infection decreased for children 5 years or older in regions with high rates of P. vivax and P. falciparum infections. P. vivax and P. falciparum have expanded within the asymptomatic population in Botswana; therefore, careful attention is required for their elimination.
Collapse
Affiliation(s)
- Thato Motshoge
- University of Botswana, Department of Biological Science, Gaborone, Botswana
| | | | - Ruth Ayanful-Torgby
- Regent University College of Science and Technology, Department of Engineering, Computing and Allied Health Sciences, Accra, Ghana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research–Water Research Institute, Council Close, Accra, Ghana
| | | | - Davies Ntebela
- National Malaria Program Ministry of Health and Wellness, Gaborone, Botswana
| | - Benoit Malleret
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Elias Peloewetse
- University of Botswana, Department of Biological Science, Gaborone, Botswana
| | - Giacomo Maria Paganotti
- Botswana–University of Pennsylvania Partnership, University of Botswana, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Isaac K. Quaye
- Regent University College of Science and Technology, Department of Engineering, Computing and Allied Health Sciences, Accra, Ghana
| |
Collapse
|
19
|
Cohee LM, Valim C, Coalson JE, Nyambalo A, Chilombe M, Ngwira A, Bauleni A, Seydel KB, Wilson ML, Taylor TE, Mathanga DP, Laufer MK. School-based screening and treatment may reduce P. falciparum transmission. Sci Rep 2021; 11:6905. [PMID: 33767384 PMCID: PMC7994823 DOI: 10.1038/s41598-021-86450-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
In areas where malaria remains entrenched, novel transmission-reducing interventions are essential for malaria elimination. We report the impact screening-and-treatment of asymptomatic Malawian schoolchildren (n = 364 in the rainy season and 341 in the dry season) had on gametocyte-the parasite stage responsible for human-to-mosquito transmission-carriage. We used concomitant household-based surveys to predict the potential reduction in transmission in the surrounding community. Among 253 students with P. falciparum infections at screening, 179 (71%) had infections containing gametocytes detected by Pfs25 qRT-PCR. 84% of gametocyte-containing infections were detected by malaria rapid diagnostic test. While the gametocyte prevalence remained constant in untreated children, treatment with artemether-lumefantrine reduced the gametocyte prevalence (p < 0.0001) from 51.8 to 9.7% and geometric mean gametocyte density (p = 0.008) from 0.52 to 0.05 gametocytes/microliter. In community surveys, 46% of all gametocyte-containing infections were in school-age children, who comprised only 35% of the population. Based on these estimates six weeks after the intervention, the gametocyte burden in the community could be reduced by 25-55% depending on the season and the measure used to characterize gametocyte carriage. Thus, school-based interventions to treat asymptomatic infections may be a high-yield approach to not only improve the health of schoolchildren, but also decrease malaria transmission.
Collapse
Affiliation(s)
- Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Clarissa Valim
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Jenna E Coalson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Andrew Nyambalo
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Moses Chilombe
- Malaria Alert Center, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andrew Ngwira
- Malaria Alert Center, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andy Bauleni
- Malaria Alert Center, University of Malawi College of Medicine, Blantyre, Malawi
| | - Karl B Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Mark L Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Terrie E Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Don P Mathanga
- Malaria Alert Center, University of Malawi College of Medicine, Blantyre, Malawi
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
20
|
Desai MR, Samuels AM, Odongo W, Williamson J, Odero NA, Otieno K, Shi YP, Kachur SP, Hamel MJ, Kariuki S, Lindblade KA. Impact of Intermittent Mass Testing and Treatment on Incidence of Malaria Infection in a High Transmission Area of Western Kenya. Am J Trop Med Hyg 2020; 103:369-377. [PMID: 32342846 PMCID: PMC7356446 DOI: 10.4269/ajtmh.19-0735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
Progress with malaria control in western Kenya has stagnated since 2007. Additional interventions to reduce the high burden of malaria in this region are urgently needed. We conducted a two-arm, community-based, cluster-randomized, controlled trial of active case detection and treatment of malaria infections in all residents mass testing and treatment (MTaT) of 10 village clusters (intervention clusters) for two consecutive years to measure differences in the incidence of clinical malaria disease and malaria infections compared with 20 control clusters where MTaT was not implemented. All residents of intervention clusters, irrespective of history of fever or other malaria-related symptoms, were tested three times per year before the peak malaria season using malaria rapid diagnostic tests. All positive cases were treated with dihydroartemisinin-piperaquine. The incidence of clinical malaria was measured through passive surveillance, whereas the cumulative incidence of malaria infection was measured using active surveillance in a cohort comprising randomly selected residents. The incidence of clinical malaria was 0.19 cases/person-year (p-y, 95% CI: 0.13-0.28) in the intervention arm and 0.24 cases/p-y (95% CI: 0.15-0.39) in the control arm (incidence rate ratio [IRR] 0.79, 95% CI: 0.61-1.02). The cumulative incidence of malaria infections was similar between the intervention (2.08 infections/p-y, 95% CI: 1.93-2.26) and control arms (2.19 infections/p-y, 95% CI: 2.02-2.37) with a crude IRR of 0.95 (95% CI: 0.87-1.04). Six rounds of MTaT over 2 years did not have a significant impact on the incidence of clinical malaria or the cumulative incidence of malaria infection in this area of high malaria transmission.
Collapse
Affiliation(s)
- Meghna R. Desai
- Division of Parasitic Diseases and Malaria, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Aaron M. Samuels
- Division of Parasitic Diseases and Malaria, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Wycliffe Odongo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Williamson
- Division of Parasitic Diseases and Malaria, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Nobert Awino Odero
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kephas Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ya Ping Shi
- Division of Parasitic Diseases and Malaria, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephen Patrick Kachur
- Division of Parasitic Diseases and Malaria, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary J. Hamel
- Division of Parasitic Diseases and Malaria, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Simon Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kim A. Lindblade
- Division of Parasitic Diseases and Malaria, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
21
|
Umunnakwe FA, Idowu ET, Ajibaye O, Etoketim B, Akindele S, Shokunbi AO, Otubanjo OA, Awandare GA, Amambua-Ngwa A, Oyebola KM. High cases of submicroscopic Plasmodium falciparum infections in a suburban population of Lagos, Nigeria. Malar J 2019; 18:433. [PMID: 31856852 PMCID: PMC6924037 DOI: 10.1186/s12936-019-3073-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asymptomatic malaria parasites are significant sources of infections for onward malaria transmission. Conventional tools for malaria diagnosis such as microscopy and rapid diagnostic test kits (RDT) have relatively low sensitivity, hence the need for alternative tools for active screening of such low-density infections. METHODS This study tested var acidic terminal sequence-based (varATS) quantitative polymerase chain reaction (qPCR) for screening asymptomatic Plasmodium falciparum infections among dwellers of a sub-urban community in Lagos, Nigeria. Clinically healthy participants were screened for malaria using microscopy, RDT and varATS qPCR techniques. Participants were stratified into three age groups: 1-5, 6-14 and > 14 years old. RESULTS Of the 316 participants screened for asymptomatic malaria infection, 78 (24.68%) were positive by microscopy, 99 (31.33%) were positive by RDT and 112 (35.44%) by varATS qPCR. Participants aged 6-14 years had the highest prevalence of asymptomatic malaria, with geometric means of ~ 116 parasites/µL and ~ 6689 parasites/µL as detected by microscopy and varATS, respectively. CONCLUSION This study has revealed high prevalence of asymptomatic malaria in the study population, with varATS detecting additional sub-microscopic infections. The highest concentration of asymptomatic malaria was observed among school-age children between 6 and 14 years old. A large-scale screening to identify other potential hotspots of asymptomatic parasites in the country is recommended.
Collapse
Affiliation(s)
- Florence A Umunnakwe
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Emmanuel T Idowu
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Olusola Ajibaye
- Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Blessed Etoketim
- Medical Research Council at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Samuel Akindele
- Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Aminat O Shokunbi
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Olubunmi A Otubanjo
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Alfred Amambua-Ngwa
- Medical Research Council at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Kolapo M Oyebola
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria. .,Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria. .,Medical Research Council at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia. .,West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
22
|
Galatas B, Martí-Soler H, Nhamussua L, Cisteró P, Aide P, Saute F, Menéndez C, Rabinovich NR, Alonso PL, Bassat Q, Mayor A. Dynamics of Afebrile Plasmodium falciparum Infections in Mozambican Men. Clin Infect Dis 2019; 67:1045-1052. [PMID: 29546346 PMCID: PMC6137111 DOI: 10.1093/cid/ciy219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
Background Afebrile Plasmodium falciparum infections usually remain undetected and untreated in the community and could potentially contribute to sustaining local malaria transmission in areas aiming for malaria elimination. Methods Thirty-two men with afebrile P. falciparum infections detected with rapid diagnostic test (RDTs) were followed for 28 days. Kaplan-Meier estimates were computed to estimate probability of parasite positivity and of reducing parasitemia by half of its initial level by day 28. Trends of parasite densities quantified by microscopy and real-time quantitative polymerase chain reaction (qPCR) were assessed using Poisson regression models, and the microscopy-to-qPCR positivity ratio was calculated at each time point. Three survival distributions (Gompertz, Weibull, and gamma) were used to evaluate their strength of fit to the data and to predict the median lifetime of infection. Results The cumulative probability of parasite qPCR positivity by day 28 was 81% (95% confidence interval [CI], 60.2–91.6). Geometric mean parasitemia at recruitment was 516.1 parasites/μL and fell to <100 parasites/μL by day 3, reaching 56.7 parasites/μL on day 28 (P < .001). The ratio of P. falciparum–positive samples by microscopy to qPCR decreased from 0.9 to 0.52 from recruitment to day 28. The best model fit to the data was obtained assuming a Gompertz distribution. Conclusions Afebrile P. falciparum infections detectable by RDT in semi-immune adults fall and stabilize at low-density levels during the first 4 days after detection, suggesting a rapid decline of potential transmissibility in this hidden parasite reservoir. Clincial trials registration NCT02698748
Collapse
Affiliation(s)
- Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| | - Helena Martí-Soler
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Clara Menéndez
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| | - N Regina Rabinovich
- ISGlobal, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain.,Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Pedro L Alonso
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain
| |
Collapse
|
23
|
Peprah S, Tenge C, Genga IO, Mumia M, Were PA, Kuremu RT, Wekesa WN, Sumba PO, Kinyera T, Otim I, Legason ID, Biddle J, Reynolds SJ, Talisuna AO, Biggar RJ, Bhatia K, Goedert JJ, Pfeiffer RM, Mbulaiteye SM. A Cross-Sectional Population Study of Geographic, Age-Specific, and Household Risk Factors for Asymptomatic Plasmodium falciparum Malaria Infection in Western Kenya. Am J Trop Med Hyg 2019; 100:54-65. [PMID: 30457091 DOI: 10.4269/ajtmh.18-0481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The burden of Plasmodium falciparum (Pf) malaria in Kenya is decreasing; however, it is still one of the top 10 causes of morbidity, particularly in regions of western Kenya. Between April 2015 and June 2016, we enrolled 965 apparently healthy children aged 0-15 years in former Nyanza and Western Provinces in Kenya to characterize the demographic, geographic, and household risk factors of asymptomatic malaria as part of an epidemiologic study to investigate the risk factors for endemic Burkitt lymphoma. The children were sampled using a stratified, multistage cluster sampling survey design. Malaria was assessed by rapid diagnostic test (RDT) and thick-film microscopy (TFM). Primary analyses of Pf malaria prevalence (pfPR) are based on RDT. Associations between weighted pfPR and potential risk factors were evaluated using logistic regression, accounting for the survey design. Plasmodium falciparum malaria prevalence was 36.0% (27.5%, 44.5%) by RDT and 22.3% (16.0%, 28.6%) by TFM. Plasmodium falciparum malaria prevalence was positively associated with living in the lake-endemic area (adjusted odds ratio [aOR] 3.46; 95% confidence interval [95% CI] 1.63, 7.37), paternal occupation as peasant farmer (aOR 1.87; 1.08, 3.26) or manual laborer (aOR 1.83; 1.00, 3.37), and keeping dogs (aOR 1.62; 0.98-2.69) or cows (aOR 1.52; 0.96-2.40) inside or near the household. Plasmodium falciparum malaria prevalence was inversely associated with indoor residual insecticide spraying (IRS) (aOR 0.44; 0.19, 1.01), having a household connected to electricity (aOR 0.47; 0.22, 0.98), and a household with two (aOR 0.45; 0.22, 0.93) or ≥ three rooms (aOR 0.41; 0.18, 0.93). We report high but geographically heterogeneous pfPR in children in western Kenya and significant associations with IRS and household-level socioeconomic factors.
Collapse
Affiliation(s)
- Sally Peprah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | | | - Isaiah O Genga
- EMBLEM Study, Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - Mediatrix Mumia
- EMBLEM Study, Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - Pamela A Were
- EMBLEM Study, Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | | | | | | | - Tobias Kinyera
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Joshua Biddle
- Stanford Hospitals and Clinics, University of Stanford, Pao Alto, California
| | - Steven J Reynolds
- National Institutes of Health/Uganda Project Entebbe, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Ambrose O Talisuna
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Robert J Biggar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
24
|
Rehman AM, Maiteki-Sebuguzi C, Gonahasa S, Okiring J, Kigozi SP, Chandler CIR, Drakeley C, Dorsey G, Kamya MR, Staedke SG. Intermittent preventive treatment of malaria delivered to primary schoolchildren provided effective individual protection in Jinja, Uganda: secondary outcomes of a cluster-randomized trial (START-IPT). Malar J 2019; 18:318. [PMID: 31533845 PMCID: PMC6751800 DOI: 10.1186/s12936-019-2954-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment (IPT) of malaria is recommended as policy for certain high-risk populations, but not currently for schoolchildren. A cluster-randomized trial was conducted to evaluate the effect of IPT with dihydroartemisinin-piperaquine (DP) on primary schoolchildren in Jinja, Uganda. Results of the impact of IPT of schoolchildren on community-level transmission have been reported previously. Here, secondary outcomes from a school-based survey are presented. METHODS Eighty-four clusters (one primary school plus 100 households) were randomized to intervention and control (1:1 ratio). Participants from intervention schools received monthly IPT with DP for up to 6 rounds (June-December 2014). At endline (November-December 2014), randomly selected children from all 84 schools were surveyed (13 per school) and thick blood smears were done. Those with fever or history of fever were tested with rapid diagnostic tests (RDTs) for malaria. Haemoglobin was measured in every fifth participant. Outcome measures included prevalence of asexual parasites and gametocytes (by microscopy), and prevalence of anaemia. Prevalence outcomes were analysed using generalized linear Poisson models with log link function, incorporating a cluster-level random intercept and quantified using prevalence risk ratios. RESULTS Among 23,280 students listed on the 42 intervention school registers, 10,079 (43.3%) aged 5-20 years were enrolled into the IPT intervention and received at least one dose of DP; of these, 9286 (92.1%) received at least one full (3-day) course. In total, 1092 children were enrolled into the final school survey (546 per arm) and had a thick blood smear done; of these, 255 had haemoglobin measured (129 intervention, 126 control). Children in the intervention arm were less likely to have asexual parasites (9.2% intervention vs 44.1% control, adjusted risk ratio [aRR] 0.22 [95% CI 0.16-0.30] p < 0.001), gametocytes (3.1% intervention vs 9.5% control, aRR 0.34 [95% CI 0.20-0.56] p < 0.001), fever (20.2% intervention vs 56.2% control, aRR 0.35 [95% CI 0.25-0.50] p < 0.001), or symptomatic malaria (5.1% intervention vs 35.7% control, aRR 0.14 [95% CI 0.08-0.26] p < 0.001). Prevalence of anaemia and mean haemoglobin were similar in both study arms. CONCLUSIONS School-aged children are a major reservoir of malaria parasites. Delivering IPT to schoolchildren would benefit individual children and may reduce transmission. School-based IPT could help to intensify malaria control toward elimination, and should be considered for policies and programmes. Trial registration Clinicaltrials.gov (NCT02009215), Registered 11 December 2013. https://clinicaltrials.gov/ct2/show/NCT02009215.
Collapse
Affiliation(s)
- Andrea M Rehman
- Department of Infectious Disease Epidemiology, LSHTM, London, UK
| | | | - Samuel Gonahasa
- Infectious Diseases Research Collaboration, PO Box 7475, Kampala, Uganda
| | - Jaffer Okiring
- Infectious Diseases Research Collaboration, PO Box 7475, Kampala, Uganda
| | - Simon P Kigozi
- Infectious Diseases Research Collaboration, PO Box 7475, Kampala, Uganda
| | - Clare I R Chandler
- Department of Global Health & Development, Department of Clinical Research, LSHTM, London, UK
| | | | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | - Moses R Kamya
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sarah G Staedke
- Infectious Diseases Research Collaboration, PO Box 7475, Kampala, Uganda.
- Department of Clinical Research, London School of Hygiene & Tropical Medicine (LSHTM), London, UK.
| |
Collapse
|
25
|
Khagayi S, Desai M, Amek N, Were V, Onyango ED, Odero C, Otieno K, Bigogo G, Munga S, Odhiambo F, Hamel MJ, Kariuki S, Samuels AM, Slutsker L, Gimnig J, Vounatsou P. Modelling the relationship between malaria prevalence as a measure of transmission and mortality across age groups. Malar J 2019; 18:247. [PMID: 31337411 PMCID: PMC6651924 DOI: 10.1186/s12936-019-2869-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022] Open
Abstract
Background Parasite prevalence has been used widely as a measure of malaria transmission, especially in malaria endemic areas. However, its contribution and relationship to malaria mortality across different age groups has not been well investigated. Previous studies in a health and demographic surveillance systems (HDSS) platform in western Kenya quantified the contribution of incidence and entomological inoculation rates (EIR) to mortality. The study assessed the relationship between outcomes of malaria parasitaemia surveys and mortality across age groups. Methods Parasitological data from annual cross-sectional surveys from the Kisumu HDSS between 2007 and 2015 were used to determine malaria parasite prevalence (PP) and clinical malaria (parasites plus reported fever within 24 h or temperature above 37.5 °C). Household surveys and verbal autopsy (VA) were used to obtain data on all-cause and malaria-specific mortality. Bayesian negative binomial geo-statistical regression models were used to investigate the association of PP/clinical malaria with mortality across different age groups. Estimates based on yearly data were compared with those from aggregated data over 4 to 5-year periods, which is the typical period that mortality data are available from national demographic and health surveys. Results Using 5-year aggregated data, associations were established between parasite prevalence and malaria-specific mortality in the whole population (RRmalaria = 1.66; 95% Bayesian Credible Intervals: 1.07–2.54) and children 1–4 years (RRmalaria = 2.29; 1.17–4.29). While clinical malaria was associated with both all-cause and malaria-specific mortality in combined ages (RRall-cause = 1.32; 1.01–1.74); (RRmalaria = 2.50; 1.27–4.81), children 1–4 years (RRall-cause = 1.89; 1.00–3.51); (RRmalaria = 3.37; 1.23–8.93) and in older children 5–14 years (RRall-cause = 3.94; 1.34–11.10); (RRmalaria = 7.56; 1.20–39.54), no association was found among neonates, adults (15–59 years) and the elderly (60+ years). Distance to health facilities, socioeconomic status, elevation and survey year were important factors for all-cause and malaria-specific mortality. Conclusion Malaria parasitaemia from cross-sectional surveys was associated with mortality across age groups over 4 to 5 year periods with clinical malaria more strongly associated with mortality than parasite prevalence. This effect was stronger in children 5–14 years compared to other age-groups. Further analyses of data from other HDSS sites or similar platforms would be useful in investigating the relationship between malaria and mortality across different endemicity levels. Electronic supplementary material The online version of this article (10.1186/s12936-019-2869-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sammy Khagayi
- Kenya Medical Research Institute-Center for Global Health Research, Kisumu, Kenya.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Meghna Desai
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Nyaguara Amek
- Kenya Medical Research Institute-Center for Global Health Research, Kisumu, Kenya
| | - Vincent Were
- Kenya Medical Research Institute-Center for Global Health Research, Kisumu, Kenya
| | - Eric Donald Onyango
- Kenya Medical Research Institute-Center for Global Health Research, Kisumu, Kenya
| | - Christopher Odero
- Kenya Medical Research Institute-Center for Global Health Research, Kisumu, Kenya
| | - Kephas Otieno
- Kenya Medical Research Institute-Center for Global Health Research, Kisumu, Kenya
| | - Godfrey Bigogo
- Kenya Medical Research Institute-Center for Global Health Research, Kisumu, Kenya
| | - Stephen Munga
- Kenya Medical Research Institute-Center for Global Health Research, Kisumu, Kenya
| | - Frank Odhiambo
- Kenya Medical Research Institute-Center for Global Health Research, Kisumu, Kenya
| | - Mary J Hamel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute-Center for Global Health Research, Kisumu, Kenya
| | - Aaron M Samuels
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Laurence Slutsker
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Centers for Disease Control and Prevention, Kisumu, Kenya
| | - John Gimnig
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Penelope Vounatsou
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Woldearegai TG, Lalremruata A, Nguyen TT, Gmeiner M, Veletzky L, Tazemda-Kuitsouc GB, Matsiegui PB, Mordmüller B, Held J. Characterization of Plasmodium infections among inhabitants of rural areas in Gabon. Sci Rep 2019; 9:9784. [PMID: 31278305 PMCID: PMC6611864 DOI: 10.1038/s41598-019-46194-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Plasmodium infections in endemic areas are often asymptomatic, can be caused by different species and contribute significantly to transmission. We performed a cross-sectional study in February/March 2016 including 840 individuals ≥ 1 year living in rural Gabon (Ngounié and Moyen-Ogooué). Plasmodium parasitemia was measured by high-sensitive, real-time quantitative PCR. In a randomly chosen subset of P. falciparum infections, gametocyte carriage and prevalence of chloroquine-resistant genotypes were analysed. 618/834 (74%) individuals were positive for Plasmodium 18S-rRNA gene amplification, of these 553 (66.3%) carried P. falciparum, 193 (23%) P. malariae, 74 (8.9%) P. ovale curtisi and 38 (4.6%) P.ovale wallikeri. Non-falciparum infections mostly presented as mixed infections. P. malariae monoinfected individuals were significantly older (median age: 60 years) than coinfected (20 years) or P. falciparum monoinfected individuals (23 years). P. falciparum gametocyte carriage was confirmed in 109/223 (48.9%) individuals, prevalence of chloroquine-resistant genotypes was high (298/336, 89%), including four infections with a new SVMNK genotype. In rural Gabon, Plasmodium infections with all endemic species are frequent, emphasizing that malaria control efforts shall cover asymptomatic infections also including non-falciparum infections when aiming for eradication.
Collapse
Affiliation(s)
- Tamirat Gebru Woldearegai
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Albert Lalremruata
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - The Trong Nguyen
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Vietnamese - German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Markus Gmeiner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Luzia Veletzky
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Dep. of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Pierre Blaise Matsiegui
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Centre de Recherches Médicales de la Ngounié, Fougamou, Gabon
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany. .,German Centre for Infection Research, partner site Tübingen, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.
| |
Collapse
|
27
|
LLIN Evaluation in Uganda Project (LLINEUP): factors associated with childhood parasitaemia and anaemia 3 years after a national long-lasting insecticidal net distribution campaign: a cross-sectional survey. Malar J 2019; 18:207. [PMID: 31234882 PMCID: PMC6591906 DOI: 10.1186/s12936-019-2838-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Background Recent reductions in malaria burden have been attributed largely to long-lasting insecticidal nets (LLINs). In March–June 2017, approximately 3 years after a national LLIN distribution campaign, a cross-sectional community survey was conducted to investigate factors associated with malaria parasitaemia and anaemia, in advance of Uganda’s 2017–2018 LLIN campaign. Methods Households from 104 clusters in 48 districts were randomly selected using two-staged cluster sampling; 50 households were enrolled per cluster. Eligible children aged 2–10 years had blood obtained for a thick blood smear and those aged 2–4 years had haemoglobin measured. Associations between outcomes and variables of interest were assessed using log-binomial regression with generalized estimating equations to adjust for household clustering. Results In total, 5196 households, 8834 children with blood smear results, and 3753 with haemoglobin results were included. Only 16% of children lived in households with adequate LLIN coverage. Overall, parasite prevalence was 26.0%, ranging from 8.0% in the South West to 53.1% in East Central. Limiting data to children 2–4 years of age, parasite prevalence was 21.4%, up from 16.9% in 2014–2015 following the national LLIN campaign. In a multivariate analysis, factors associated with parasitaemia included region (East-Central vs South-Western; adjusted prevalence ratio [aPR] 6.45, 95% CI 5.55–7.50; p < 0.001), older age (8–10 vs 2–3 years; aPR 1.57, 95% CI 1.43–1.72; p < 0.001), living in a poorer household (poorest vs least poor tercile; aPR 2.32, 95% CI 2.05–2.63; p < 0.001), one constructed of traditional materials (aPR 1.13, 95% CI 1.03–1.24; p = 0.008), or without adequate LLIN coverage (aPR 1.30, 95% CI 1.14–1.48; p < 0.001). Overall, the prevalence of anaemia (haemoglobin < 10 g/dL) was 15.1% and varied geographically. In a multivariate analysis, factors associated with anaemia included region, younger age, living in a traditional house, and parasitaemia, which was the strongest predictor (aPR 2.50, 95% CI 2.12–2.95; p < 0.001). Conclusions Three years after a national LLIN campaign, LLIN coverage was low and parasite prevalence had increased. Parasite prevalence varied widely across Uganda; older children, those living in poorer households, and those with inadequate LLIN coverage, were at highest risk of parasitaemia. LLINs may need to be distributed more frequently through mass campaigns or continuously through sustainable mechanisms. Targeting interventions to geographic areas and populations at highest risk should also be considered.
Collapse
|
28
|
Muthui MK, Mogeni P, Mwai K, Nyundo C, Macharia A, Williams TN, Nyangweso G, Wambua J, Mwanga D, Marsh K, Bejon P, Kapulu MC. Gametocyte carriage in an era of changing malaria epidemiology: A 19-year analysis of a malaria longitudinal cohort. Wellcome Open Res 2019; 4:66. [PMID: 31223663 PMCID: PMC6557001 DOI: 10.12688/wellcomeopenres.15186.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Interventions to block malaria transmission from humans to mosquitoes are currently in development. To be successfully implemented, key populations need to be identified where the use of these transmission-blocking and/or reducing strategies will have greatest impact. Methods: We used data from a longitudinally monitored cohort of children from Kilifi county located along the Kenyan coast collected between 1998-2016 to describe the distribution and prevalence of gametocytaemia in relation to transmission intensity, time and age. Data from 2,223 children accounting for 9,134 person-years of follow-up assessed during cross-sectional surveys for asexual parasites and gametocytes were used in logistic regression models to identify factors predictive of gametocyte carriage in this cohort. Results: Our analysis showed that children 1-5 years of age were more likely to carry microscopically detectable gametocytes than their older counterparts. Carrying asexual parasites and recent episodes of clinical malaria were also strong predictors of gametocyte carriage. The prevalence of asexual parasites and of gametocyte carriage declined over time, and after 2006, when artemisinin combination therapy (ACT) was introduced, recent episodes of clinical malaria ceased to be a predictor of gametocyte carriage. Conclusions: Gametocyte carriage in children in Kilifi has fallen over time. Previous episodes of clinical malaria may contribute to the development of carriage, but this appears to be mitigated by the use of ACTs highlighting the impact that gametocidal antimalarials can have in reducing the overall prevalence of gametocytaemia when targeted on acute febrile illness.
Collapse
Affiliation(s)
- Michelle K Muthui
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Polycarp Mogeni
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,African Health Research Institute, Durban, Congella, 4013, Private bag X7, South Africa
| | - Kennedy Mwai
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, Parktown, 2193, 27 St Andrews Road, South Africa
| | - Christopher Nyundo
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Alex Macharia
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Thomas N Williams
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Department of Medicine, Imperial College London, St Mary's Campus, London, W21NY, UK
| | - George Nyangweso
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Juliana Wambua
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Daniel Mwanga
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Kevin Marsh
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Philip Bejon
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Melissa C Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
29
|
Muthui MK, Mogeni P, Mwai K, Nyundo C, Macharia A, Williams TN, Nyangweso G, Wambua J, Mwanga D, Marsh K, Bejon P, Kapulu MC. Gametocyte carriage in an era of changing malaria epidemiology: A 19-year analysis of a malaria longitudinal cohort. Wellcome Open Res 2019; 4:66. [PMID: 31223663 PMCID: PMC6557001 DOI: 10.12688/wellcomeopenres.15186.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 10/25/2023] Open
Abstract
Background: Interventions to block malaria transmission from humans to mosquitoes are currently in development. To be successfully implemented, key populations need to be identified where the use of these transmission-blocking and/or reducing strategies will have greatest impact. Methods: We used data from a longitudinally monitored cohort of children from Kilifi county located along the Kenyan coast collected between 1998-2016 to describe the distribution and prevalence of gametocytaemia in relation to transmission intensity, time and age. Data from 2,223 children accounting for 9,134 person-years of follow-up assessed during cross-sectional surveys for asexual parasites and gametocytes were used in logistic regression models to identify factors predictive of gametocyte carriage in this cohort. Results: Our analysis showed that children 1-5 years of age were more likely to carry microscopically detectable gametocytes than their older counterparts. Carrying asexual parasites and recent episodes of clinical malaria were also strong predictors of gametocyte carriage. The prevalence of asexual parasites and of gametocyte carriage declined over time, and after 2006, when artemisinin combination therapy (ACT) was introduced, recent episodes of clinical malaria ceased to be a predictor of gametocyte carriage. Conclusions: Gametocyte carriage in children in Kilifi has fallen over time. Previous episodes of clinical malaria may contribute to the development of carriage, but this appears to be mitigated by the use of ACTs highlighting the impact that gametocidal antimalarials can have in reducing the overall prevalence of gametocytaemia when targeted on acute febrile illness.
Collapse
Affiliation(s)
- Michelle K. Muthui
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Polycarp Mogeni
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- African Health Research Institute, Durban, Congella, 4013, Private bag X7, South Africa
| | - Kennedy Mwai
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, Parktown, 2193, 27 St Andrews Road, South Africa
| | - Christopher Nyundo
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Alex Macharia
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Thomas N. Williams
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Department of Medicine, Imperial College London, St Mary's Campus, London, W21NY, UK
| | - George Nyangweso
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Juliana Wambua
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Daniel Mwanga
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Kevin Marsh
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Philip Bejon
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Melissa C. Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
30
|
Peprah S, Dhudha H, Ally H, Masalu N, Kawira E, Chao CN, Genga IO, Mumia M, Were PA, Kinyera T, Otim I, Legason ID, Biggar RJ, Bhatia K, Goedert JJ, Pfeiffer RM, Mbulaiteye SM. A population-based study of the prevalence and risk factors of low-grade Plasmodium falciparum malaria infection in children aged 0-15 years old in northern Tanzania. Trop Med Int Health 2019; 24:571-585. [PMID: 30843638 PMCID: PMC6499672 DOI: 10.1111/tmi.13225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Northern Tanzania experiences significant malaria-related morbidity and mortality, but accurate data are scarce. We update the data on patterns of low-grade Plasmodium falciparum malaria infection among children in northern Tanzania. METHODS Plasmodium falciparum malaria prevalence (pfPR) was assessed in a representative sample of 819 children enrolled in 94 villages in northern Tanzania between October 2015 and August 2016, using a complex survey design. Individual- and household-level risk factors for pfPR were elicited using structured questionnaires. pfPR was assessed using rapid diagnostic tests (RDTs) and thick film microscopy (TFM). Associations with pfPR, based on RDT, were assessed using adjusted odds ratios (aOR) and confidence intervals (CI) from weighted survey logistic regression models. RESULTS Plasmodium falciparum malaria prevalence (pfPR) was 39.5% (95% CI: 31.5, 47.5) by RDT and 33.4% (26.0, 40.6) by TFM. pfPR by RDT was inversely associated with higher-education parents, especially mothers (5-7 years of education: aOR 0.55; 95% CI: 0.31, 0.96, senior secondary education: aOR 0.10; 95% CI: 0.02, 0.55), living in a house near the main road (aOR 0.34; 95% CI: 0.15, 0.76), in a larger household (two rooms: aOR 0.40; 95% CI: 0.21, 0.79, more than two rooms OR 0.35; 95% CI: 0.20, 0.62). Keeping a dog near or inside the house was positively associated with pfPR (aOR 2.01; 95% CI: 1.26, 3.21). pfPR was not associated with bed-net use or indoor residual spraying. CONCLUSIONS Nearly 40% of children in northern Tanzania had low-grade malaria antigenaemia. Higher parental education and household metrics but not mosquito bed-net use were inversely associated with pfPR.
Collapse
Affiliation(s)
- Sally Peprah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Herry Dhudha
- EpideMiology of Burkitt Lymphoma in East African Children and Minors (EMBLEM) Study, Bugando Medical Center, Mwanza, Tanzania
| | - Hillary Ally
- EpideMiology of Burkitt Lymphoma in East African Children and Minors (EMBLEM) Study, Bugando Medical Center, Mwanza, Tanzania
| | - Nestory Masalu
- EpideMiology of Burkitt Lymphoma in East African Children and Minors (EMBLEM) Study, Bugando Medical Center, Mwanza, Tanzania
| | - Esther Kawira
- EMBLEM Study, Shirati Health and Educational Foundation, Shirati, Tanzania
| | - Colin N Chao
- EpideMiology of Burkitt Lymphoma in East African Children and Minors (EMBLEM) Study, Bugando Medical Center, Mwanza, Tanzania
| | - Isaiah O. Genga
- EMBLEM Study, Academic Model Providing Access to Healthcare, Eldoret, Kenya
| | - Mediatrix Mumia
- EMBLEM Study, Academic Model Providing Access to Healthcare, Eldoret, Kenya
| | - Pamela A. Were
- EMBLEM Study, Academic Model Providing Access to Healthcare, Eldoret, Kenya
| | - Tobias Kinyera
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | | | - Robert J. Biggar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
31
|
Nderu D, Kimani F, Karanja E, Thiong'o K, Akinyi M, Too E, Chege W, Nambati E, Wangai LN, Meyer CG, Velavan TP. Genetic diversity and population structure of Plasmodium falciparum in Kenyan-Ugandan border areas. Trop Med Int Health 2019; 24:647-656. [PMID: 30816614 DOI: 10.1111/tmi.13223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kenya has, in the last decade, made tremendous progress in the fight against malaria. Nevertheless, continued surveillance of the genetic diversity and population structure of Plasmodium falciparum is required to refine malaria control and to adapt and improve elimination strategies. Twelve neutral microsatellite loci were genotyped in 201 P. falciparum isolates obtained from the Kenyan-Ugandan border (Busia) and from two inland malaria-endemic sites situated in western (Nyando) and coastal (Msambweni) Kenya. Analyses were done to assess the genetic diversity (allelic richness and expected heterozygosity, [He ]), multilocus linkage disequilibrium ( I S A ) and population structure. A similarly high degree of genetic diversity was observed among the three parasite populations surveyed (mean He = 0.76; P > 0.05). Except in Msambweni, random association of microsatellite loci was observed, indicating high parasite out-breeding. Low to moderate genetic structure (FST = 0.022-0.076; P < 0.0001) was observed with only 5% variance in allele frequencies observed among the populations. This study shows that the genetic diversity of P. falciparum populations at the Kenyan-Ugandan border is comparable to the parasite populations from inland Kenya. In addition, high genetic diversity, panmixia and weak population structure in this study highlight the fitness of Kenyan P. falciparum populations to successfully withstand malaria control interventions.
Collapse
Affiliation(s)
- David Nderu
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,School of Health Sciences, Kirinyaga University, Kerugoya, Kenya
| | - Francis Kimani
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Evaline Karanja
- Department of Biochemistry and Biotechnology, School of Biological and Life Sciences, Technical University of Kenya, Nairobi, Kenya
| | - Kelvin Thiong'o
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Maureen Akinyi
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edwin Too
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - William Chege
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Eva Nambati
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Laura N Wangai
- School of Health Sciences, Kirinyaga University, Kerugoya, Kenya
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Centre for Medical Research, Hanoi, Vietnam.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Centre for Medical Research, Hanoi, Vietnam.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.,Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
| |
Collapse
|
32
|
Abstract
Malaria is the major cause of mortality and morbidity in tropical countries. The causative agent, Plasmodium sp., has a complex life cycle and is armed with various mechanisms which ensure its continuous transmission. Gametocytes represent the sexual stage of the parasite and are indispensable for the transmission of the parasite from the human host to the mosquito. Despite its vital role in the parasite's success, it is the least understood stage in the parasite's life cycle. The presence of gametocytes in asymptomatic populations and induction of gametocytogenesis by most antimalarial drugs warrants further investigation into its biology. With a renewed focus on malaria elimination and advent of modern technology available to biologists today, the field of gametocyte biology has developed swiftly, providing crucial insights into the molecular mechanisms driving sexual commitment. This review will summarise key current findings in the field of gametocyte biology and address the associated challenges faced in malaria detection, control and elimination.
Collapse
|
33
|
Cohee L, Laufer M. Tackling malaria transmission in sub-Saharan Africa. Lancet Glob Health 2018; 6:e598-e599. [PMID: 29661636 PMCID: PMC6375073 DOI: 10.1016/s2214-109x(18)30197-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Lauren Cohee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Division of Malaria, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Miriam Laufer
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Division of Malaria, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
34
|
Koepfli C, Yan G. Plasmodium Gametocytes in Field Studies: Do We Measure Commitment to Transmission or Detectability? Trends Parasitol 2018; 34:378-387. [PMID: 29544966 DOI: 10.1016/j.pt.2018.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The proportion of Plasmodium spp. infections carrying gametocytes, and gametocyte densities, are often reported as surrogate markers for transmission potential. It remains unclear whether parasites under natural conditions adjust commitment to transmission depending on external factors. Population-based surveys comprising mostly asymptomatic low-density infections are always impacted by the sensitivity of the assays used to diagnose infections and detect gametocytes. Asexual parasite density is an important predictor for the probability of detecting gametocytes, and in many cases it can explain patterns in gametocyte carriage without the need for an adjustment of the gametocyte conversion rate. When reporting gametocyte data, quantification of blood-stage parasitemia and its inclusion as a confounder in multivariable analyses is essential.
Collapse
Affiliation(s)
- Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
35
|
Loy DE, Rubel MA, Avitto AN, Liu W, Li Y, Learn GH, Ranciaro A, Mbunwe E, Fokunang C, Njamnshi AK, Sharp PM, Tishkoff SA, Hahn BH. Investigating zoonotic infection barriers to ape Plasmodium parasites using faecal DNA analysis. Int J Parasitol 2018; 48:531-542. [PMID: 29476866 DOI: 10.1016/j.ijpara.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 01/17/2023]
Abstract
African apes are endemically infected with numerous Plasmodium spp. including close relatives of human Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae. Although these ape parasites are not believed to pose a zoonotic threat, their ability to colonise humans has not been fully explored. In particular, it remains unknown whether ape parasites are able to initiate exo-erythrocytic replication in human hepatocytes following the bite of an infective mosquito. Since animal studies have shown that liver stage infection can result in the excretion of parasite nucleic acids into the bile, we screened faecal samples from 504 rural Cameroonians for Plasmodium DNA. Using pan-Laverania as well as P. malariae- and P. vivax-specific primer sets, we amplified human P. falciparum (n = 14), P. malariae (n = 1), and P. ovale wallikeri (n = 1) mitochondrial sequences from faecal DNA of 15 individuals. However, despite using an intensified PCR screening approach we failed to detect ape Laverania, ape P. vivax or ape P. malariae parasites in these same subjects. One faecal sample from a hunter-gatherer contained a sequence closely related to the porcupine parasite Plasmodium atheruri. Since this same faecal sample also contained porcupine mitochondrial DNA, but a matching blood sample was Plasmodium-negative, it is likely that this hunter-gatherer consumed Plasmodium-infected bushmeat. Faecal Plasmodium detection was not secondary to intestinal bleeding and/or infection with gastrointestinal parasites, but indicative of blood parasitaemia. Quantitative PCR identified 26-fold more parasite DNA in the blood of faecal Plasmodium-positive than faecal Plasmodium-negative individuals (P = 0.01). However, among blood-positive individuals only 10% - 20% had detectable Plasmodium sequences in their stool. Thus, faecal screening of rural Cameroonians failed to uncover abortive ape Plasmodium infections, but detected infection with human parasites, albeit with reduced sensitivity compared with blood analysis.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meagan A Rubel
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexa N Avitto
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessia Ranciaro
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Mbunwe
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Alfred K Njamnshi
- Department of Neurology, Faculty of Medicine and Biomedical Sciences, Central Hospital Yaoundé, University of Yaoundé I, Yaoundé, Cameroon
| | - Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Galinski MR, Lapp SA, Peterson MS, Ay F, Joyner CJ, LE Roch KG, Fonseca LL, Voit EO. Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology 2018; 145:85-100. [PMID: 28712361 PMCID: PMC5798396 DOI: 10.1017/s0031182017001135] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023]
Abstract
Antigenic variation in malaria was discovered in Plasmodium knowlesi studies involving longitudinal infections of rhesus macaques (M. mulatta). The variant proteins, known as the P. knowlesi Schizont Infected Cell Agglutination (SICA) antigens and the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) antigens, expressed by the SICAvar and var multigene families, respectively, have been studied for over 30 years. Expression of the SICA antigens in P. knowlesi requires a splenic component, and specific antibodies are necessary for variant antigen switch events in vivo. Outstanding questions revolve around the role of the spleen and the mechanisms by which the expression of these variant antigen families are regulated. Importantly, the longitudinal dynamics and molecular mechanisms that govern variant antigen expression can be studied with P. knowlesi infection of its mammalian and vector hosts. Synchronous infections can be initiated with established clones and studied at multi-omic levels, with the benefit of computational tools from systems biology that permit the integration of datasets and the design of explanatory, predictive mathematical models. Here we provide an historical account of this topic, while highlighting the potential for maximizing the use of P. knowlesi - macaque model systems and summarizing exciting new progress in this area of research.
Collapse
Affiliation(s)
- M R Galinski
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - S A Lapp
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - M S Peterson
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - F Ay
- La Jolla Institute for Allergy and Immunology,La Jolla,CA 92037,USA
| | - C J Joyner
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - K G LE Roch
- Department of Cell Biology & Neuroscience,Center for Disease and Vector Research,Institute for Integrative Genome Biology,University of California Riverside,CA 92521,USA
| | - L L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering,Georgia Institute of Technology and Emory University,Atlanta,Georgia,30332-2000,USA
| | - E O Voit
- The Wallace H. Coulter Department of Biomedical Engineering,Georgia Institute of Technology and Emory University,Atlanta,Georgia,30332-2000,USA
| |
Collapse
|
37
|
Adomako-Ankomah Y, Chenoweth MS, Tocker AM, Doumbia S, Konate D, Doumbouya M, Keita AS, Anderson JM, Fairhurst RM, Diakite M, Miura K, Long CA. Host age and Plasmodium falciparum multiclonality are associated with gametocyte prevalence: a 1-year prospective cohort study. Malar J 2017; 16:473. [PMID: 29162100 PMCID: PMC5696713 DOI: 10.1186/s12936-017-2123-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
Background Since Plasmodium falciparum transmission relies exclusively on sexual-stage parasites, several malaria control strategies aim to disrupt this step of the life cycle. Thus, a better understanding of which individuals constitute the primary gametocyte reservoir within an endemic population, and the temporal dynamics of gametocyte carriage, especially in seasonal transmission settings, will not only support the effective implementation of current transmission control programmes, but also inform the design of more targeted strategies. Methods A 1-year prospective cohort study was initiated in June 2013 with the goal of assessing the longitudinal dynamics of P. falciparum gametocyte carriage in a village in Mali with intense seasonal malaria transmission. A cohort of 500 individuals aged 1–65 years was recruited for this study. Gametocyte prevalence was measured monthly using Pfs25-specific RT-PCR, and analysed for the effects of host age and gender, seasonality, and multiclonality of P. falciparum infection over 1 year. Results Most P. falciparum infections (51–89%) in this population were accompanied by gametocytaemia throughout the 1-year period. Gametocyte prevalence among P. falciparum-positive individuals (proportion of gametocyte positive infections) was associated with age (p = 0.003) but not with seasonality (wet vs. dry) or gender. The proportion of gametocyte positive infections were similarly high in children aged 1–17 years (74–82% on median among 5 age groups), while older individuals had relatively lower proportion, and those aged > 35 years (median of 43%) had significantly lower than those aged 1–17 years (p < 0.05). Plasmodium falciparum-positive individuals with gametocytaemia were found to have significantly higher P. falciparum multiclonality than those without gametocytaemia (p < 0.033 in two different analyses). Conclusions Taken together, these results suggest that a substantial proportion of Pf-positive individuals carries gametocytes throughout the year, and that age is a significant determinant of gametocyte prevalence among these P. falciparum-positive individuals. Furthermore, the presence of multiple P. falciparum genotypes in an infection, a common feature of P. falciparum infections in high transmission areas, is associated with gametocyte prevalence. Electronic supplementary material The online version of this article (10.1186/s12936-017-2123-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yaw Adomako-Ankomah
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthew S Chenoweth
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Aaron M Tocker
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Saibou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Drissa Konate
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Mory Doumbouya
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Abdoul S Keita
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Jennifer M Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
38
|
malERA: An updated research agenda for characterising the reservoir and measuring transmission in malaria elimination and eradication. PLoS Med 2017; 14:e1002452. [PMID: 29190279 PMCID: PMC5708619 DOI: 10.1371/journal.pmed.1002452] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This paper summarises key advances in defining the infectious reservoir for malaria and the measurement of transmission for research and programmatic use since the Malaria Eradication Research Agenda (malERA) publication in 2011. Rapid and effective progress towards elimination requires an improved understanding of the sources of transmission as well as those at risk of infection. Characterising the transmission reservoir in different settings will enable the most appropriate choice, delivery, and evaluation of interventions. Since 2011, progress has been made in a number of areas. The extent of submicroscopic and asymptomatic infections is better understood, as are the biological parameters governing transmission of sexual stage parasites. Limitations of existing transmission measures have been documented, and proof-of-concept has been established for new innovative serological and molecular methods to better characterise transmission. Finally, there now exists a concerted effort towards the use of ensemble datasets across the spectrum of metrics, from passive and active sources, to develop more accurate risk maps of transmission. These can be used to better target interventions and effectively monitor progress toward elimination. The success of interventions depends not only on the level of endemicity but also on how rapidly or recently an area has undergone changes in transmission. Improved understanding of the biology of mosquito-human and human-mosquito transmission is needed particularly in low-endemic settings, where heterogeneity of infection is pronounced and local vector ecology is variable. New and improved measures of transmission need to be operationally feasible for the malaria programmes. Outputs from these research priorities should allow the development of a set of approaches (applicable to both research and control programmes) that address the unique challenges of measuring and monitoring transmission in near-elimination settings and defining the absence of transmission.
Collapse
|
39
|
Rovira-Vallbona E, Contreras-Mancilla JJ, Ramirez R, Guzmán-Guzmán M, Carrasco-Escobar G, Llanos-Cuentas A, Vinetz JM, Gamboa D, Rosanas-Urgell A. Predominance of asymptomatic and sub-microscopic infections characterizes the Plasmodium gametocyte reservoir in the Peruvian Amazon. PLoS Negl Trop Dis 2017; 11:e0005674. [PMID: 28671944 PMCID: PMC5510906 DOI: 10.1371/journal.pntd.0005674] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/14/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022] Open
Abstract
Malaria transmission requires that Anopheles mosquitoes ingest Plasmodium gametocyte stages circulating in the human bloodstream. In the context of malaria elimination, understanding the epidemiology of gametocytes relative to all Plasmodium infections and the contribution of asymptomatic and sub-microscopic parasite carriers to the gametocyte reservoir is necessary, especially in low endemic settings with predominance of P.vivax. A 13-month longitudinal study was conducted in two communities (n = 1935 individuals) of Loreto Department, Peru, with five active screenings for Plasmodium infections and gametocyte stages by quantitative real-time PCR (qPCR) and reverse transcription (RT)-qPCR, respectively. Parasite prevalence by qPCR was 7.2% for P.vivax (n = 520/7235; range by survey 6.0%-8.1%) and 3.2% for P.falciparum (n = 235/7235; range by survey 0.4%-7.7%). Sub-microscopic infections accounted for 73.5% of P.vivax (range by survey 60%-89%) and almost the totality of P.falciparum cases. Gametocytes were found in 28.4% P.vivax infections (range by survey 18.7%-34.1%), with a peak of 61.5% in one community at the start of the transmission season. About 59.8% of all P.vivax gametocyte carriers were asymptomatic and 31.9% were sub-microscopic. Age patterns for gametocyte prevalence paralleled asexual stage infections and peaked among >15–25 year old individuals. Asexual parasite density was found to be the strongest predictor for P.vivax gametocyte presence in longitudinal multivariate analysis (odds ratio 2.33 [95% confidence interval 1.96, 2.78]; P<0.001). Despite significant differences in seasonality patterns and P.vivax prevalence found at the local scale, sub-microscopic and asymptomatic infections predominate and contribute significantly to the gametocyte reservoir in different communities of the Peruvian Amazon. Control and elimination campaigns need sensitive tools to detect all infections that escape routine malaria surveillance, which may contribute to maintain transmission in the region. Malaria elimination, i.e. the complete interruption of parasite transmission in a region, is in the agenda of health authorities in countries that achieved substantial reduction of the disease burden in the past decade. However, our understanding of transmission epidemiology for low transmission areas where Plasmodium vivax is endemic, like the Amazon basin, is still limited. In this study, we describe the prevalence and risk factors for carrying the parasite stages that are transmitted to the mosquito vectors, named gametocytes, in 1935 individuals from two communities of the Peruvian Amazon that were regularly screened during 1 year. We report that malaria infections with no clinical symptoms and those with parasite levels below microscopy detection threshold, account for two thirds of all P.vivax infections with gametocytes, and that the highest infection rate is found among young adults. In addition, almost the totality of P.falciparum infections detected was sub-microscopic. Because all these infections escape current malaria surveillance systems -based on passive case detection and/or microscopy diagnosis-, new approaches are necessary to target all infections in order to eliminate the malaria transmission reservoir in Peru.
Collapse
Affiliation(s)
- Eduard Rovira-Vallbona
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| | | | - Roberson Ramirez
- Laboratorio Satelite Iquitos UPCH-UCSD, Universidad Peruana Cayetano Heredia, Loreto, Peru
| | - Mitchel Guzmán-Guzmán
- Laboratorio Satelite Iquitos UPCH-UCSD, Universidad Peruana Cayetano Heredia, Loreto, Peru
| | - Gabriel Carrasco-Escobar
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|