1
|
Nguyen M, Paloque L, Manaranche J, Chabbert M, Hamouy A, Laurent M, Augereau JM, Claparols C, Robert A, Benoit-Vical F. Reductive Activation of Artefenomel (OZ439) by Fe(II)-Heme, Related to Its Antimalarial Activity. ACS Infect Dis 2024. [PMID: 39681556 DOI: 10.1021/acsinfecdis.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The 1,2,4-trioxolane antimalarial drug, OZ439 (artefenomel), exhibits cross-resistance to artemisinins in vitro with similar survival rates of artemisinin-resistant parasites after dihydroartemisinin or OZ439 exposure, suggesting that this drug shares some mechanisms of action with artemisinins. In this way, we investigated the in vitro reductive activation of OZ439 by heme in the presence of dithionite, demonstrating the formation of covalent heme-drug adducts. However, in the presence of the biologically abundant reductant glutathione instead of dithionite, heme-drug adducts were not detected, contrary to artemisinin that efficiently alkylates heme regardless of the reductant used. Conversely, the C-centered radical of OZ439 resulting from heme-mediated activation of the drug reacts with the thiol function of glutathione, thus confirming the ability of this drug to alkylate proteins or other biological targets. So, the difference in the mechanism of action between artemisinin and OZ439 in vivo may rely on the different proportions between heme alkylation and protein alkylation.
Collapse
Affiliation(s)
- Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex, France
| | - Lucie Paloque
- Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex, France
| | - Jeanne Manaranche
- Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex, France
| | - Mickaël Chabbert
- Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex, France
| | - Alexandre Hamouy
- Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Marion Laurent
- Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex, France
| | - Jean-Michel Augereau
- Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex, France
| | - Catherine Claparols
- Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut de Chimie de Toulouse (UAR2599), Université de Toulouse, 118, Route de Narbonne, 31062 Toulouse Cedex, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Françoise Benoit-Vical
- Laboratoire de Chimie de Coordination du CNRS, LCC-CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Inserm ERL 1289 MAAP, Université de Toulouse, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex, France
| |
Collapse
|
2
|
Rosenthal MR, Vijayrajratnam S, Firestone TM, Ng CL. Enhanced cell stress response and protein degradation capacity underlie artemisinin resistance in Plasmodium falciparum. mSphere 2024; 9:e0037124. [PMID: 39436072 PMCID: PMC11580438 DOI: 10.1128/msphere.00371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Malaria remains a global health burden, killing over half a million people each year. Decreased therapeutic efficacy to artemisinin, the most efficacious antimalarial, has been detected in sub-Saharan Africa, a worrying fact given that over 90% of deaths occur on this continent. Mutations in Kelch13 are the most well-established molecular marker for artemisinin resistance, but these do not explain all artemisinin-resistant isolates. Understanding the biological underpinnings of drug resistance is key to curbing the emergence and spread of artemisinin resistance. Artemisinin-mediated non-specific alkylation leads to the accumulation of misfolded and damaged proteins and activation of the parasite unfolded protein response (UPR). In addition, the parasite proteasome is vital to artemisinin resistance, as we have previously shown that chemical inhibition of the proteasome or mutations in the β2 proteasome subunit increase parasite susceptibility to dihydroartemisinin (DHA), the active metabolite of artemisinins. Here, we investigate parasites with mutations at the Kelch13 and/or 19S and 20S proteasome subunits with regard to UPR regulation and proteasome activity in the context of artemisinin resistance. Our data show that perturbing parasite proteostasis kills parasites, early parasite UPR signaling dictates DHA survival outcomes, and DHA susceptibility correlates with impairment of proteasome-mediated protein degradation. Importantly, we show that functional proteasomes are required for artemisinin resistance in a Kelch13-independent manner, and compound-selective proteasome inhibition demonstrates why artemisinin-resistant Kelch13 mutants remain susceptible to the related antimalarial peroxide OZ439. These data provide further evidence for targeting the parasite proteasome and UPR to overcome existing artemisinin resistance.IMPORTANCEDecreased therapeutic efficacy represents a major barrier to malaria treatment control strategies. The malaria proteasome and accompanying unfolded protein response are crucial to artemisinin resistance, revealing novel antimalarial therapeutic strategies.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukhithasri Vijayrajratnam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tessa M. Firestone
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Caroline L. Ng
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biology, University of Omaha, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Hussain M, Thakur RK, Khazir J, Ahmed S, Khan MI, Rahi P, Peer LA, Shanmugam PV, Kaur S, Raina SN, Reshi ZA, Sehgal D, Rajpal VR, Mir BA. Traditional uses, Phytochemistry, Pharmacology, and Toxicology of the Genus Artemisia L. (Asteraceae): A High-value Medicinal Plant. Curr Top Med Chem 2024; 24:301-342. [PMID: 37711006 DOI: 10.2174/1568026623666230914104141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.
Collapse
Affiliation(s)
- Manzoor Hussain
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, U.P, 201313, India
| | - Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Srinagar, J&K, India
| | - Sajad Ahmed
- Department of Plant Biotechnology, Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | | | - Praveen Rahi
- Biological Resources Center, Institut Pasteur, University de Paris, Paris, 75015, France
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | | | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, U.P, 201313, India
| | - Zafar Ahmad Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Deepmala Sehgal
- Syngenta, Jeolett's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Vijay Rani Rajpal
- Department of Botany, HansRaj College, University of Delhi, Delhi, 110007, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| |
Collapse
|
4
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
5
|
Abstract
The continued emergence and spread of resistance to artemisinins, the cornerstone of first line antimalarials, threatens significant gains made toward malaria elimination. Mutations in Kelch13 have been proposed to mediate artemisinin resistance by either reducing artemisinin activation via reduced parasite hemoglobin digestion or by enhancing the parasite stress response. Here, we explored the involvement of the parasite unfolded protein response (UPR) and ubiquitin proteasome system (UPS), vital to maintaining parasite proteostasis, in the context of artemisinin resistance. Our data show that perturbing parasite proteostasis kills parasites, early parasite UPR signaling dictate DHA survival outcomes, and DHA susceptibility correlates with impairment of proteasome-mediated protein degradation. These data provide compelling evidence toward targeting the UPR and UPS to overcome existing artemisinin resistance.
Collapse
|
6
|
Blank B, Gut J, Rosenthal PJ, Renslo AR. Artefenomel Regioisomer RLA-3107 Is a Promising Lead for the Discovery of Next-Generation Endoperoxide Antimalarials. ACS Med Chem Lett 2023; 14:493-498. [PMID: 37077383 PMCID: PMC10108391 DOI: 10.1021/acsmedchemlett.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
Clinical development of the antimalarial artefenomel was recently halted due to formulation challenges stemming from the drug's lipophilicity and low aqueous solubility. The symmetry of organic molecules is known to influence crystal packing energies and by extension solubility and dissolution rates. Here we evaluate RLA-3107, a desymmetrized, regioisomeric form of artefenomel in vitro and in vivo, finding that the regioisomer retains potent antiplasmodial activity while offering improved human microsome stability and aqueous solubility as compared to artefenomel. We also report in vivo efficacy data for artefenomel and its regioisomer across 12 different dosing regimens.
Collapse
Affiliation(s)
- Brian
R. Blank
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Jiri Gut
- Department
of Medicine, San Francisco General Hospital,
University of California, San Francisco, San Francisco, California 94143, United States
| | - Philip J. Rosenthal
- Department
of Medicine, San Francisco General Hospital,
University of California, San Francisco, San Francisco, California 94143, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States
| |
Collapse
|
7
|
Duffy S, Avery VM. Naturally Acquired Kelch13 Mutations in Plasmodium falciparum Strains Modulate In Vitro Ring-Stage Artemisinin-Based Drug Tolerance and Parasite Survival in Response to Hyperoxia. Microbiol Spectr 2022; 10:e0128221. [PMID: 36094220 PMCID: PMC9602862 DOI: 10.1128/spectrum.01282-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022] Open
Abstract
The ring-stage survival assay was utilized to assess the impact of physiological hyperoxic stress on dihydroartemisinin (DHA) tolerance for a panel of Plasmodium falciparum strains with and without Kelch13 mutations. Strains without naturally acquired Kelch13 mutations or the postulated genetic background associated with delayed parasite clearance time demonstrated reduced proliferation under hyperoxic conditions in the subsequent proliferation cycle. Dihydroartemisinin tolerance in three isolates with naturally acquired Kelch13 mutations but not two genetically manipulated laboratory strains was modulated by in vitro hyperoxic stress exposure of early-ring-stage parasites in the cycle before drug exposure. Reduced parasite tolerance to additional derivatives, including artemisinin, artesunate, and OZ277, was observed within the second proliferation cycle. OZ439 and epoxomicin completely prevented parasite survival under both hyperoxia and normoxic in vitro culture conditions, highlighting the unique relationship between DHA tolerance and Kelch13 mutation-associated genetic background. IMPORTANCE Artemisinin-based combination therapy (ACT) for treating malaria is under intense scrutiny following treatment failures in the Greater Mekong subregion of Asia. This is further compounded by the potential for extensive loss of life if treatment failures extend to the African continent. Although Plasmodium falciparum has become resistant to all antimalarial drugs, artemisinin "resistance" does not present in the same way as resistance to other antimalarial drugs. Instead, a partial resistance or tolerance is demonstrated, associated with the parasite's genetic profile and linked to a molecular marker referred to as K13. It is suggested that parasites may have adapted to drug treatment, as well as the presence of underlying population health issues such as hemoglobinopathies, and/or environmental pressures, resulting in parasite tolerance to ACT. Understanding parasite evolution and control of artemisinin tolerance will provide innovative approaches to mitigate the development of artemisinin tolerance and thereby artemisinin-based drug treatment failure and loss of life globally to malaria infections.
Collapse
Affiliation(s)
- Sandra Duffy
- Discovery Biology, Griffith University, Nathan, Queensland, Australia
| | - Vicky M. Avery
- Discovery Biology, Griffith University, Nathan, Queensland, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
8
|
Yang J, Wang Y, Guan W, Su W, Li G, Zhang S, Yao H. Spiral molecules with antimalarial activities: A review. Eur J Med Chem 2022; 237:114361. [DOI: 10.1016/j.ejmech.2022.114361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
9
|
Siddiqui G, Giannangelo C, De Paoli A, Schuh AK, Heimsch KC, Anderson D, Brown TG, MacRaild CA, Wu J, Wang X, Dong Y, Vennerstrom JL, Becker K, Creek DJ. Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells. ACS Infect Dis 2022; 8:210-226. [PMID: 34985858 PMCID: PMC8762662 DOI: 10.1021/acsinfecdis.1c00550] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Plasmodium
falciparum causes the
most lethal form of malaria. Peroxide antimalarials based on artemisinin
underpin the frontline treatments for malaria, but artemisinin resistance
is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides,
are in clinical development and offer a potential alternative. Here,
we used chemoproteomics to investigate the protein alkylation targets
of artemisinin and ozonide probes, including an analogue of the ozonide
clinical candidate, artefenomel. We greatly expanded the list of proteins
alkylated by peroxide antimalarials and identified significant enrichment
of redox-related proteins for both artemisinins and ozonides. Disrupted
redox homeostasis was confirmed by dynamic live imaging of the glutathione
redox potential using a genetically encoded redox-sensitive fluorescence-based
biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based
thiol metabolomics also confirmed changes in cellular thiol levels.
This work shows that peroxide antimalarials disproportionately alkylate
proteins involved in redox homeostasis and that disrupted redox processes
are involved in the mechanism of action of these important antimalarials.
Collapse
Affiliation(s)
- Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Amanda De Paoli
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Timothy G. Brown
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Christopher A. MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
10
|
Patel OPS, Beteck RM, Legoabe LJ. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur J Med Chem 2021; 213:113193. [PMID: 33508479 DOI: 10.1016/j.ejmech.2021.113193] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Malaria is a life-threatening infectious disease caused by protozoal parasites belonging to the genus Plasmodium. It caused an estimated 405,000 deaths and 228 million malaria cases globally in 2018 as per the World Malaria Report released by World Health Organization (WHO) in 2019. Artemisinin (ART), a "Nobel medicine" and its derivatives have proven potential application in antimalarial drug discovery programs. In this review, antimalarial activity of the most active artemisinin derivatives modified at C-10/C-11/C-16/C-6 positions and synthetic peroxides (endoperoxides, 1,2,4-trioxolanes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes) are systematically summarized. The developmental trend of ART derivatives, and cyclic peroxides along with their antimalarial activity and how the activity is affected by structural variations on different sites of the compounds are discussed. This compilation would be very useful towards scaffold hopping aimed at avoiding the unnecessary complexity in cyclic peroxides, and ultimately act as a handy resource for the development of potential chemotherapeutics against Plasmodium species.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
11
|
Blank BR, Gonciarz RL, Talukder P, Gut J, Legac J, Rosenthal PJ, Renslo AR. Antimalarial Trioxolanes with Superior Drug-Like Properties and In Vivo Efficacy. ACS Infect Dis 2020; 6:1827-1835. [PMID: 32369341 DOI: 10.1021/acsinfecdis.0c00064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The emergence of artemisinin resistance, combined with certain suboptimal properties of ozonide agents arterolane and artefenomel, has necessitated the search for new drug candidates in the endoperoxide class. Our group has focused on trioxolane analogues with substitution patterns not previously explored. Here, we describe the enantioselective synthesis of analogues bearing a trans-3″ carbamate side chain and find these to be superior, both in vitro and in vivo, to the previously reported amides. We identified multiple analogues that surpass the oral efficacy of arterolane in the Plasmodium berghei model while exhibiting drug-like properties (logD, solubility, metabolic stability) similar or superior to next-generation clinical candidates like E209 and OZ609. While the preclinical assessment of new analogues is still underway, current data suggest the potential of this chemotype as a likely source of future drug candidates from the endoperoxide class.
Collapse
Affiliation(s)
- Brian R. Blank
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Poulami Talukder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94143, United States
| | - Jennifer Legac
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94143, United States
| | - Philip J. Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94143, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
12
|
Rosenthal MR, Ng CL. Plasmodium falciparum Artemisinin Resistance: The Effect of Heme, Protein Damage, and Parasite Cell Stress Response. ACS Infect Dis 2020; 6:1599-1614. [PMID: 32324369 DOI: 10.1021/acsinfecdis.9b00527] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite a significant decline in morbidity and mortality over the last two decades, in 2018 there were 228 million reported cases of malaria and 405000 malaria-related deaths. Artemisinin, the cornerstone of artemisinin-based combination therapies, is the most potent drug in the antimalarial armamentarium against falciparum malaria. Heme-mediated activation of artemisinin and its derivatives results in widespread parasite protein alkylation, which is thought to lead to parasite death. Alarmingly, cases of decreased artemisinin efficacy have been widely detected across Cambodia and in neighboring countries, and a few cases have been reported in the Guiana Shield, India, and Africa. The grim prospect of widespread artemisinin resistance propelled a concerted effort to understand the mechanisms of artemisinin action and resistance. The identification of genetic markers and the knowledge of molecular mechanisms underpinning artemisinin resistance allow prospective surveillance and inform future drug development strategies, respectively. Here, we highlight recent advances in our understanding of how parasite vesicle trafficking, hemoglobin digestion, and cell stress responses contribute to artemisinin resistance.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Caroline L. Ng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
13
|
Giannangelo C, Siddiqui G, De Paoli A, Anderson BM, Edgington-Mitchell LE, Charman SA, Creek DJ. System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion. PLoS Pathog 2020; 16:e1008485. [PMID: 32589689 PMCID: PMC7347234 DOI: 10.1371/journal.ppat.1008485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/09/2020] [Accepted: 05/13/2020] [Indexed: 01/23/2023] Open
Abstract
Ozonide antimalarials, OZ277 (arterolane) and OZ439 (artefenomel), are synthetic peroxide-based antimalarials with potent activity against the deadliest malaria parasite, Plasmodium falciparum. Here we used a "multi-omics" workflow, in combination with activity-based protein profiling (ABPP), to demonstrate that peroxide antimalarials initially target the haemoglobin (Hb) digestion pathway to kill malaria parasites. Time-dependent metabolomic profiling of ozonide-treated P. falciparum infected red blood cells revealed a rapid depletion of short Hb-derived peptides followed by subsequent alterations in lipid and nucleotide metabolism, while untargeted peptidomics showed accumulation of longer Hb-derived peptides. Quantitative proteomics and ABPP assays demonstrated that Hb-digesting proteases were increased in abundance and activity following treatment, respectively. Ozonide-induced depletion of short Hb-derived peptides was less extensive in a drug-treated K13-mutant artemisinin resistant parasite line (Cam3.IIR539T) than in the drug-treated isogenic sensitive strain (Cam3.IIrev), further confirming the association between ozonide activity and Hb catabolism. To demonstrate that compromised Hb catabolism may be a primary mechanism involved in ozonide antimalarial activity, we showed that parasites forced to rely solely on Hb digestion for amino acids became hypersensitive to short ozonide exposures. Quantitative proteomics analysis also revealed parasite proteins involved in translation and the ubiquitin-proteasome system were enriched following drug treatment, suggestive of the parasite engaging a stress response to mitigate ozonide-induced damage. Taken together, these data point to a mechanism of action involving initial impairment of Hb catabolism, and indicate that the parasite regulates protein turnover to manage ozonide-induced damage.
Collapse
Affiliation(s)
- Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Amanda De Paoli
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Bethany M. Anderson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura E. Edgington-Mitchell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Maxillofacial Surgery, College of Dentistry, New York University, New York, New York, United States of America
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Walz A, Leroy D, Andenmatten N, Mäser P, Wittlin S. Anti-malarial ozonides OZ439 and OZ609 tested at clinically relevant compound exposure parameters in a novel ring-stage survival assay. Malar J 2019; 18:427. [PMID: 31849323 PMCID: PMC6918666 DOI: 10.1186/s12936-019-3056-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/07/2019] [Indexed: 11/20/2022] Open
Abstract
Background Drug efficacy against kelch 13 mutant malaria parasites can be determined in vitro with the ring-stage survival assay (RSA). The conventional assay protocol reflects the exposure profile of dihydroartemisinin. Methods Taking into account that other anti-malarial peroxides, such as the synthetic ozonides OZ439 (artefenomel) and OZ609, have different pharmacokinetics, the RSA was adjusted to the concentration–time profile of these ozonides in humans and a novel, semi-automated readout was introduced. Results When tested at clinically relevant parameters, it was shown that OZ439 and OZ609 are active against the Plasmodium falciparum clinical isolate Cam3.IR539T. Conclusion If the in vitro RSA does indeed predict the potency of compounds against parasites with increased tolerance to artemisinin and its derivatives, then the herein presented data suggest that following drug-pulses of at least 48 h, OZ439 and OZ609 will be highly potent against kelch 13 mutant isolates, such as P. falciparum Cam3.IR539T.
Collapse
Affiliation(s)
- Annabelle Walz
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Didier Leroy
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Nicole Andenmatten
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| |
Collapse
|
15
|
Ashton TD, Devine SM, Möhrle JJ, Laleu B, Burrows JN, Charman SA, Creek DJ, Sleebs BE. The Development Process for Discovery and Clinical Advancement of Modern Antimalarials. J Med Chem 2019; 62:10526-10562. [DOI: 10.1021/acs.jmedchem.9b00761] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Trent D. Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shane M. Devine
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jörg J. Möhrle
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Susan A. Charman
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
16
|
Tiwari MK, Yadav DK, Chaudhary S. Recent Developments in Natural Product Inspired Synthetic 1,2,4- Trioxolanes (Ozonides): An Unusual Entry into Antimalarial Chemotherapy. Curr Top Med Chem 2019; 19:831-846. [DOI: 10.2174/1568026619666190412104042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/22/2022]
Abstract
According to WHO “World health statistics 2018”, malaria alongside acute respiratory infections
and diarrhoea, is one of the major infectious disease causing children’s death in between the
age of 1-5 years. Similarly, according to another report (2016) malaria accounts for approximately
3.14% of the total disease burden worldwide. Although malaria has been widely eradicated in many
parts of the world, the global number of cases continues to rise due to the rapid spread of malaria parasites
that are resistant to antimalarial drugs. Artemisinin (8), a major breakthrough in the antimalarial
chemotherapy was isolated from the plant Artemisia annua in 1972. Its semi-synthetic derivatives such
as artemether (9), arteether (10), and artesunic acid (11) are quite effective against multi-drug resistant
malaria strains and are currently the drug of choice for the treatment of malaria. Inspite of exhibiting
excellent antimalarial activity by artemisinin (8) and its derivatives, parallel programmes for the discovery
of novel natural and synthetic peroxides were also the area of investigation of medicinal chemists
all over the world. In these continuous efforts of extensive research, natural ozonide (1,2,4-
trioxolane) was isolated from Adiantum monochlamys (Pteridaceae) and Oleandra wallichii (Davalliaceae)
in 1976. These naturally occurring stable ozonides inspired chemists to investigate this novel
class for antimalarial chemotherapy. The first identification of unusually stable synthetic antimalarial
1,2,4-trioxolanes was reported in 1992. Thus, an unusual entry of ozonides in the field of antimalarial
chemotherapy had occurred in the early nineties. This review highlights the recent advancements and
historical developments observed during the past 42 years (1976-2018) focusing mainly on important
ventures of the antimalarial 1,2,4-trioxolanes (ozonides).
Collapse
Affiliation(s)
- Mohit K. Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur-302017, India
| | - Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon city, 406-799, Korea
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur-302017, India
| |
Collapse
|
17
|
Artemisinin and its derivatives; ancient tradition inspiring the latest therapeutic approaches against malaria. Future Med Chem 2019; 11:1443-1459. [PMID: 31298579 DOI: 10.4155/fmc-2018-0337] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Artemisinin (ART) is an endoperoxide sesquiterpene lactone, commonly used in the treatment of malaria. Although it was isolated from Artemisia annua L., a plant widely applied in Chinese Traditional Medicine, its mechanism of action remains uncertain and its clinical use is still limited due to its low solubility, its poor bioavailability and short in vivo half-life. Over time, several studies have been aimed towards the discovery of potent ART derivatives that could overcome clinical drawbacks. In this review, we focus on the multifaced aspects of ART and on the efforts spent to improve its pharmacological profile that so far culminated in the discovery of more effective drugs. Lastly, we outline the new perspectives in the ART-derivatives scenario.
Collapse
|
18
|
Ozonide Antimalarial Activity in the Context of Artemisinin-Resistant Malaria. Trends Parasitol 2019; 35:529-543. [PMID: 31176584 DOI: 10.1016/j.pt.2019.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
The ozonides are one of the most advanced drug classes in the antimalarial development pipeline and were designed to improve on limitations associated with current front-line artemisinin-based therapies. Like the artemisinins, the pharmacophoric peroxide bond of ozonides is essential for activity, and it appears that these antimalarials share a similar mode of action, raising the possibility of cross-resistance. Resistance to artemisinins is associated with Plasmodium falciparum mutations that allow resistant parasites to escape short-term artemisinin-mediated damage (elimination half-life ~1 h). Importantly, some ozonides (e.g., OZ439) have a sustained in vivo drug exposure profile, providing a major pharmacokinetic advantage over the artemisinin derivatives. Here, we describe recent progress made towards understanding ozonide antimalarial activity and discuss ozonide utility within the context of artemisinin resistance.
Collapse
|
19
|
Hooft van Huijsduijnen R, Wells T, Tanner M, Wittlin S. Two successful decades of Swiss collaborations to develop new anti-malarials. Malar J 2019; 18:94. [PMID: 30902051 PMCID: PMC6431002 DOI: 10.1186/s12936-019-2728-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/14/2019] [Indexed: 04/24/2023] Open
Abstract
Over the last two decades there has been a renaissance in the pipeline of new drugs targeting malaria, with the launch of new products that help save the lives of children throughout the world. In addition, there is a wealth of new molecules both entering and progressing through clinical development. These bring hope for a new generation of simpler and more effective cures that could overcome the emerging threat of drug resistance. In addition, there is hope that some of these medicines will have prophylactic activity and can be used to protect vulnerable populations, given the absence of a highly effective vaccine. Switzerland has played a key role in the development of these medicines. First, the country has a long history of understanding the biology of parasites and the pharmacology of drug responses through the leadership of the Swiss Tropical and Public Health Institute in Basel. Second, the highly successful Swiss pharmaceutical industry brings, beyond excellence, a strong interest in neglected diseases, building on work at Hoffmann-La Roche in the last century and with more recent products from Novartis and other Swiss companies. Third, the emergence of product-development-partnerships, in this case led by the Medicines for Malaria Venture, based in Geneva, has helped to catalyze the development of new medicines and bring the community together within Switzerland and beyond. Finally, this progress would not have been possible without the engagement of the Swiss people and the support of the federal government through the Swiss Agency for Development and Cooperation (SDC), the State Secretariat of Education, Research and Innovation (SERI) and the Swiss Republic and Canton of Geneva.
Collapse
Affiliation(s)
| | - Timothy Wells
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland.
| | - Marcel Tanner
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Mathews ES, Odom John AR. Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination. F1000Res 2018; 7. [PMID: 30135714 PMCID: PMC6073090 DOI: 10.12688/f1000research.14874.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Malaria remains a significant contributor to global human mortality, and roughly half the world’s population is at risk for infection with
Plasmodium spp. parasites. Aggressive control measures have reduced the global prevalence of malaria significantly over the past decade. However, resistance to available antimalarials continues to spread, including resistance to the widely used artemisinin-based combination therapies. Novel antimalarial compounds and therapeutic targets are greatly needed. This review will briefly discuss several promising current antimalarial development projects, including artefenomel, ferroquine, cipargamin, SJ733, KAF156, MMV048, and tafenoquine. In addition, we describe recent large-scale genetic and resistance screens that have been instrumental in target discovery. Finally, we highlight new antimalarial targets, which include essential transporters and proteases. These emerging antimalarial compounds and therapeutic targets have the potential to overcome multi-drug resistance in ongoing efforts toward malaria elimination.
Collapse
Affiliation(s)
- Emily S Mathews
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Abstract
It is rare to come across an Aesop’s fable in respectable journals. It might catch scientists outside the malaria field by surprise to learn that the famous story of “The Boy Who Cried Wolf” has been repeatedly compared to the threat from artemisinin-resistant malaria parasites, including the two latest reports on the rise of a specific haplotype in Cambodia and Thailand, sensationally dubbed “Super Malaria” by the media [1, 2]. The comparison to a children’s tale should not negate the fact that malaria drug resistance is one of the most pressing threats to the global public health community. Here, the findings leading to this contentious discourse will be delineated in order to provide a perspective. Possible solutions will be presented to stimulate further research and discussion to solve one of the greatest public health challenges of our lifetime.
Collapse
Affiliation(s)
- Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit (GEM), Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
22
|
Parasite-Mediated Degradation of Synthetic Ozonide Antimalarials Impacts In Vitro Antimalarial Activity. Antimicrob Agents Chemother 2018; 62:AAC.01566-17. [PMID: 29263074 DOI: 10.1128/aac.01566-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/16/2017] [Indexed: 01/05/2023] Open
Abstract
The peroxide bond of the artemisinins inspired the development of a class of fully synthetic 1,2,4-trioxolane-based antimalarials, collectively known as the ozonides. Similar to the artemisinins, heme-mediated degradation of the ozonides generates highly reactive radical species that are thought to mediate parasite killing by damaging critical parasite biomolecules. We examined the relationship between parasite dependent degradation and antimalarial activity for two ozonides, OZ277 (arterolane) and OZ439 (artefenomel), using a combination of in vitro drug stability and pulsed-exposure activity assays. Our results showed that drug degradation is parasite stage dependent and positively correlates with parasite load. Increasing trophozoite-stage parasitemia leads to substantially higher rates of degradation for both OZ277 and OZ439, and this is associated with a reduction in in vitro antimalarial activity. Under conditions of very high parasitemia (∼90%), OZ277 and OZ439 were rapidly degraded and completely devoid of activity in trophozoite-stage parasite cultures exposed to a 3-h drug pulse. This study highlights the impact of increasing parasite load on ozonide stability and in vitro antimalarial activity and should be considered when investigating the antimalarial mode of action of the ozonide antimalarials under conditions of high parasitemia.
Collapse
|
23
|
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 2017; 23:917-928. [PMID: 28777791 DOI: 10.1038/nm.4381] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023]
Abstract
The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria.
Collapse
Affiliation(s)
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
24
|
Blank BR, Gut J, Rosenthal PJ, Renslo AR. Enantioselective Synthesis and in Vivo Evaluation of Regioisomeric Analogues of the Antimalarial Arterolane. J Med Chem 2017; 60:6400-6407. [PMID: 28692297 PMCID: PMC5535261 DOI: 10.1021/acs.jmedchem.7b00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
We describe the first
systematic study of antimalarial 1,2,4-trioxolanes
bearing a substitution pattern regioisomeric to that of arterolane.
Conformational analysis suggested that trans-3″-substituted
trioxolanes would exhibit Fe(II) reactivity and antiparasitic activity
similar to that achieved with canonical cis-4″
substitution. The chiral 3″ analogues were prepared as single
stereoisomers and evaluated alongside their 4″ congeners against
cultured malaria parasites and in a murine malaria model. As predicted,
the trans-3″ analogues exhibited in vitro
antiplasmodial activity remarkably similar to that of their cis-4″ comparators. In contrast, efficacy in the Plasmodium berghei mouse model differed dramatically for
some of the congeneric pairs. The best of the novel 3″ analogues
(e.g., 12i) outperformed arterolane itself, producing
cures in mice after a single oral exposure. Overall, this study suggests
new avenues for modulating Fe(II) reactivity and the pharmacokinetic
and pharmacodynamic properties of 1,2,4-trioxolane antimalarials.
Collapse
Affiliation(s)
- Brian R Blank
- Department of Pharmaceutical Chemistry and ‡Department of Medicine, University of California San Francisco , 1700 Fourth Street, San Francisco, California 94158, United States
| | - Jiri Gut
- Department of Pharmaceutical Chemistry and ‡Department of Medicine, University of California San Francisco , 1700 Fourth Street, San Francisco, California 94158, United States
| | - Philip J Rosenthal
- Department of Pharmaceutical Chemistry and ‡Department of Medicine, University of California San Francisco , 1700 Fourth Street, San Francisco, California 94158, United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and ‡Department of Medicine, University of California San Francisco , 1700 Fourth Street, San Francisco, California 94158, United States
| |
Collapse
|
25
|
Plasmodium falciparum K13 Mutations Differentially Impact Ozonide Susceptibility and Parasite Fitness In Vitro. mBio 2017; 8:mBio.00172-17. [PMID: 28400526 PMCID: PMC5388803 DOI: 10.1128/mbio.00172-17] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The emergence and spread in Southeast Asia of Plasmodium falciparum resistance to artemisinin (ART) derivatives, the cornerstone of first-line artemisinin-based combination therapies (ACTs), underscore the urgent need to identify suitable replacement drugs. Discovery and development efforts have identified a series of ozonides with attractive chemical and pharmacological properties that are being touted as suitable replacements. Partial resistance to ART, defined as delayed parasite clearance in malaria patients treated with an ART derivative or an ACT, has been associated with mutations in the P. falciparum K13 gene. In light of reports showing that ART derivatives and ozonides share similar modes of action, we have investigated whether parasites expressing mutant K13 are cross-resistant to the ozonides OZ439 (artefenomel) and OZ227 (arterolane). This work used a panel of culture-adapted clinical isolates from Cambodia that were genetically edited to express variant forms of K13. Phenotypic analyses employed ring-stage survival assays (ring-stage survival assay from 0 to 3 h [RSA0–3h]), whose results have earlier been shown to correlate with parasite clearance rates in patients. Our results document cross-resistance between OZ277 and dihydroartemisinin (DHA), a semisynthetic derivative of ART, in parasites carrying the K13 mutations C580Y, R539T, and I543T. For OZ439, we observed cross-resistance only for parasites that carried the rare K13 I543T mutation, with no evidence of cross-resistance afforded by the prevalent C580Y mutation. Mixed-culture competition experiments with isogenic lines carrying modified K13 revealed variable growth deficits depending on the K13 mutation and parasite strain and provide a rationale for the broad dissemination of the fitness-neutral K13 C580Y mutation throughout strains currently circulating in Southeast Asia. ACTs have helped halve the malaria disease burden in recent years; however, emerging resistance to ART derivatives threatens to reverse this substantial progress. Resistance is driven primarily by mutations in the P. falciparum K13 gene. These mutations pose a threat to ozonides, touted as promising alternatives to ARTs that share a similar mode of action. We report that DHA was considerably more potent than OZ439 and OZ277 against ART-sensitive asexual blood-stage parasites cultured in vitro. We also document that mutant K13 significantly compromised the activity of the registered drug OZ277. In contrast, OZ439 remained effective against most parasite lines expressing mutant K13, with the exception of I543T that merits further monitoring in field-based OZ439 efficacy studies. K13 mutations differed considerably in their impact on parasite growth rates, in a strain-dependent context, with the most prevalent C580Y mutation being fitness neutral in recently culture-adapted strains from Cambodia, the epicenter of emerging ART resistance.
Collapse
|