1
|
Dortey MD, Abdulai A, Sraku IK, Azumah JD, Anim-Baidoo I, Afrane YA. Exploring the metabolic and cuticular mechanisms of increased pyrethroid resistance in Anopheles gambiae S.l populations from Ghana. Sci Rep 2025; 15:18800. [PMID: 40442265 PMCID: PMC12122726 DOI: 10.1038/s41598-025-03066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 05/19/2025] [Indexed: 06/02/2025] Open
Abstract
Increasing insecticide resistance in malaria vectors threatens the efficacy of current control tools, however knowledge of metabolic and cuticular mechanisms is widely lacking in Ghana. We examined the metabolic and cuticular resistance mechanisms in Anopheles gambiae mosquitoes from coastal and sahel zones of Ghana. WHO susceptibility tests and synergist assays were performed on F0 field collected An. gambiae s.l. Gene expression profiles of eight key metabolic and cuticular genes were determined using qRT-PCR. Moderate to high pyrethroid resistance (< 70%) were observed across all the sites. Piperonyl butoxide significantly increased susceptibility to pyrethroids across all sites and insecticides, implicating P450s. Gene expression analysis revealed overexpression of metabolic and cuticular resistance genes in field An. gambiae populations compared to the susceptible Kisumu strain. CYP6M2 and CYP6P3 were the most overexpressed metabolic genes in pyrethroid-resistant mosquitoes, compared to the pyrethroid susceptible mosquitoes in the coastal (FC: 122.28 and 231.86, p < 0.05) and sahel (FC: 344.955 and 716.37, p < 0.001) zones respectively. CYP4G16 (previously associated with cuticular resistance) was significantly overexpressed in only resistant mosquitoes (FC: 3.32-30.12, p < 0.05). Overexpression of metabolic and cuticular resistance genes in local malaria vectors highlights the need to intensify insecticide resistance management strategies to control malaria in Ghana.
Collapse
Affiliation(s)
- Miriam DedeAma Dortey
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Anisa Abdulai
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Isaac Kwame Sraku
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Judith Dzifa Azumah
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Isaac Anim-Baidoo
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Yaw Asare Afrane
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana.
| |
Collapse
|
2
|
Odjo EM, Akpodji CST, Djènontin A, Salako AS, Padonou GG, Adoha CJ, Yovogan B, Adjottin B, Tokponnon FT, Osse R, Agbangla C, Akogbeto MC. Did the prolonged residual efficacy of clothianidin products lead to a greater reduction in vector populations and subsequent malaria transmission compared to the shorter residual efficacy of pirimiphos-methyl? Malar J 2024; 23:119. [PMID: 38664703 PMCID: PMC11047034 DOI: 10.1186/s12936-024-04949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The residual activity of a clothianidin + deltamethrin mixture and clothianidin alone in IRS covered more than the period of malaria transmission in northern Benin. The aim of this study was to show whether the prolonged residual efficacy of clothianidin-based products resulted in a greater reduction in vector populations and subsequent malaria transmission compared with the shorter residual efficacy of pirimiphos-methyl. METHODS Human bait mosquito collections by local volunteers and pyrethrum spray collections were used in 6 communes under IRS monitoring and evaluation from 2019 to 2021. ELISA/CSP and species PCR tests were performed on Anopheles gambiae sensu lato (s.l.) to determine the infectivity rate and subspecies by commune and year. The decrease in biting rate, entomological inoculation rate, incidence, inhibition of blood feeding, resting density of An. gambiae s.l. were studied and compared between insecticides per commune. RESULTS The An. gambiae complex was the major vector throughout the study area, acounting for 98.71% (19,660/19,917) of all Anopheles mosquitoes collected. Anopheles gambiae s.l. collected was lower inside treated houses (45.19%: 4,630/10,245) than outside (54.73%: 5,607/10,245) after IRS (p < 0.001). A significant decrease (p < 0.001) in the biting rate was observed after IRS in all departments except Donga in 2021 after IRS with clothianidin 50 WG. The impact of insecticides on EIR reduction was most noticeable with pirimiphos-methyl 300 CS, followed by the clothianidin + deltamethrin mixture and finally clothianidin 50 WG. A reduction in new cases of malaria was observed in 2020, the year of mass distribution of LLINs and IRS, as well as individual and collective protection measures linked to COVID-19. Anopheles gambiae s.l. blood-feeding rates and parous were high and similar for all insecticides in treated houses. CONCLUSION To achieve the goal of zero malaria, the optimal choice of vector control tools plays an important role. Compared with pirimiphos-methyl, clothianidin-based insecticides induced a lower reductions in entomological indicators of malaria transmission.
Collapse
Affiliation(s)
- Esdras Mahoutin Odjo
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin.
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin.
| | - Christian S T Akpodji
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Armel Djènontin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | | | - Gil Germain Padonou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Constantin Jésukèdè Adoha
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Boulais Yovogan
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Bruno Adjottin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Filémon T Tokponnon
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Razaki Osse
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Université Nationale d'Agriculture de Porto-Novo, Porto-Novo, Bénin
| | - Clement Agbangla
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Direction Générale de la Recherche Scientifique, Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Cotonou, Bénin
| | | |
Collapse
|
3
|
Syahrani L, Asih PBS, Bowolaksono A, Dwiranti A, Zubaidah S, Rozi IE, Permana DH, Bøgh C, Bangs MJ, Grieco JP, Achee NL, Lobo NF, Syafruddin D. Impact of a spatial repellent intervention on Anopheles kdr insecticide resistance allele in Sumba, Indonesia. Malar J 2024; 23:31. [PMID: 38254131 PMCID: PMC10802001 DOI: 10.1186/s12936-024-04841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The emergence of insecticide resistance and outdoor transmission in malaria-endemic areas underlines the urgent need to develop innovative tools, such as spatial repellents (SR), that may circumvent this residual transmission. With limited options for effective insecticides, regular resistance monitoring is warranted for selecting and using appropriate tools. This study evaluates the pyrethroid knockdown resistance (kdr) allele before and after implementing a transfluthrin-based spatial repellent (SR) intervention in placebo-treated clusters. METHODS This study looks at the frequency distribution of the kdr allele in Sumba Island from June 2015 to August 2018. Insecticide susceptibility tests were carried out on female Anopheles sp. aged 3-5 days against permethrin 21.5 μg/ml, deltamethrin 12.5 μg/ml, and transfluthrin 10 μg/ml using CDC bottle assay. PCR sequencing of representative samples from adult mosquito collections and insecticide tests revealed the presence of kdr mutations (L1014F and L1014S) in the VGSC gene. RESULTS A total of 12 Anopheles species, Anopheles tesselatus, Anopheles. aconitus, Anopheles barbirostris, Anopheles kochi, Anopheles annularis, Anopheles maculatus, Anopheles sundaicus, Anopheles flavirostris, Anopheles balabacensis, Anopheles indefinitus, Anopheles subpictus, and Anopheles vagus were analysed. Anopheles vagus and An. sundaicus predominated in the larval populations. Susceptibility assays for all insecticides identified fully susceptible phenotypes in all species examined. Anopheles increasing frequency of kdr mutant alleles during the 3 year SR deployment was observed in both SR-treated and placebo areas, a statistically significant increase occurred in each arm. However, it is unclear how significant SR is in causing the increase in mutant alleles. The L1014S, knockdown resistance east type (kdr-e) allele was detected for the first time among the mosquito samples in this study. The L1014F, knockdown resistance west type (kdr-w) allele and heteroduplex form (wild-type-mutant) were found in almost all Anopheles species examined, including An. vagus, An. aconitus, An. subpictus, An. tesselatus, An. annularis, An. flavirostris and An. sundaicus. CONCLUSION The presence of fully susceptible phenotypes over time, along with an increase in the frequency distribution of the L1014F/S mutations post-intervention, suggest drivers of resistance external to the study, including pyrethroid use in agriculture and long-lasting insecticidal nets (LLINs). However, this does not negate possible SR impacts that support resistance. More studies that enable the comprehension of possible SR-based drivers of resistance in mosquitoes need to be conducted.
Collapse
Affiliation(s)
- Lepa Syahrani
- Doctoral Program, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Puji B S Asih
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia.
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| | - Astari Dwiranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
| | - Siti Zubaidah
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Ismail E Rozi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
- Doctoral Program, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Dendi H Permana
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
- Doctoral Program of Biomedical Sciences, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Claus Bøgh
- The Sumba Foundation, Public Health and Malaria Control, Sumba, Indonesia
| | - Michael J Bangs
- Public Health and Malaria Control, PT Freeport Indonesia, International SOS, Mimika, Indonesia
| | - John P Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, USA
| | - Nicole L Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, USA
| | - Neil F Lobo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, USA
| | - Din Syafruddin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Hasanuddin University Medical Research Center (HUMRC), Makassar, Indonesia
| |
Collapse
|
4
|
Muleba M, Mbata KJ, Stevenson JC, Norris DE. Spatial-temporal vector abundance and malaria transmission dynamics in Nchelenge and Lake Mweru islands, a region with a high burden of malaria in northern Zambia. Malar J 2023; 22:327. [PMID: 37899457 PMCID: PMC10613358 DOI: 10.1186/s12936-023-04746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/08/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Over a decade of vector control by indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) distribution on the mainland, and only LLINs on islands had a minimal impact on disease burden in Nchelenge district, northern Zambia. Anopheles funestus and Anopheles gambiae are vectors known only from the mainland. Understanding vector bionomics in the district is necessary for planning and targeting effective vector control. This study aimed to provide information on abundance, seasonality, and Plasmodium falciparum sporozoite infectivity of malaria vectors in Nchelenge, including islands. METHODS Mosquitoes were collected in 192 CDC indoor light traps set in 56 households between January 2015 and January 2016. Morphological and molecular species identifications and P. falciparum circumsporoites by ELISA were performed. Mosquito counts and relative abundances from the islands and mainland were compared, and household factors associated with vector counts were determined. RESULTS A total of 5888 anophelines were collected during the study. Of these, 5,704 were female Anopheles funestus sensu lato (s.l.) and 248 female An. gambiae s.l. The highest proportion of An. funestus (n = 4090) was from Chisenga Island and An. gambiae (n = 174) was from Kilwa Island. The highest estimated counts per trap for An. funestus s.l. were from Chisenga island, (89.9, p < 0.001) and from the dry season (78.6, p < 001). For An. gambiae the highest counts per trap were from Kilwa island (3.1, p < 0.001) and the rainy season (2.5, p = 0.007). The highest estimated annual entomological inoculation rate was from Chisenga Island with 91.62 ib/p/y followed by Kilwa Island with 29.77 ib/p/yr, and then Mainland with 19.97 ib/p/yr. CONCLUSIONS There was varied species abundance and malaria transmission risk across sites and seasons. The risk of malaria transmission was perennial and higher on the islands. The minimal impact of vector control efforts on the mainland was evident, but limited overall. Vector control intervention coverage with effective tools needs to be extended to the islands to effectively control malaria transmission in Nchelenge district.
Collapse
Affiliation(s)
| | - Keith J Mbata
- Biological Sciences Department, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | | | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205 MD, USA
| |
Collapse
|
5
|
Abuku VG, Allotey EA, Akonde M. Clinical and laboratory presentation of first-time antenatal care visits of pregnant women in Ghana, a hospital-based study. PLoS One 2023; 18:e0280031. [PMID: 36598908 PMCID: PMC9812315 DOI: 10.1371/journal.pone.0280031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The WHO recommends pregnant women attend antenatal clinic at least three times during pregnancy; during the first, second and third trimesters. During these visits, an array of clinical and laboratory tests is conducted. The information obtained plays an important role not only in the management and care of pregnancy, but also guides policies targeted at addressing pregnancy-induced health challenges. This study therefore presents laboratory and clinical information of pregnant women at their first antenatal visits. METHODS The study was cross-sectional in design which retrospectively reviewed laboratory and clinical data of pregnant women attending their first antenatal clinic (ANC) at the Comboni Hospital, Volta region, Ghana. The data reviewed included information on hemoglobin level, hemoglobin phenotype, malaria diagnostics, Human Immunodeficiency Virus test (HIV), glucose-6-phosphate dehydrogenase (G6PD) deficiency, Hepatitis C Virus (HCV) test, Hepatitis B Virus (HBV) test, Syphilis test, blood pressure, age, urine glucose, and urine protein. The hemoglobin level was assayed with a hemoglobinometer. Qualitative lateral flow chromatographic immunoassay techniques were used to diagnose the HIV, HCV, HBV, syphilis, and malaria status of the pregnant women. Urine dipstick was used assay for the urine protein and urine glucose, whilst the methemoglobin test was used for the G6PD deficiency and alkaline hemoglobin electrophoresis for hemoglobin phenotype. Data on demographic, anthropometric and vital signs such as age, weight and blood pressure were also collected. Descriptive statistics were performed. Frequency and percentages were used to describe the categorical variables and means and standard deviations used to describe the continuous variables. RESULTS Hemoglobin S(Hb S) was found in 12.8% of the women with 73.4% having hemoglobin levels below 11.5g/dl. On G6PD deficiency, 1.6% and 0.8% were partially and fully defective respectively. Also, urine protein (1.2%) and glucose (0.4%) were detected. The prevalence of HBV, HCV and malaria were 4.4%, 3.6% and 2.4%, respectively. CONCLUSION Anemia in pregnancy was high among the study sample. Malaria and hepatitis infections were observed in the study sample. Policies on maternal health should be targeted at providing better nutritional options, that can enhance the hemoglobin level during pregnancy. Pregnant women should benefit from enhanced surveillance for HIV, HBV, HCV, and syphilis.
Collapse
Affiliation(s)
- Vital Glah Abuku
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Emmanuel Alote Allotey
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Maxwell Akonde
- Department of Epidemiology and Biostatistics, University of South Carolina Arnold School of Public Health, Columbia, SC, United States of America
- * E-mail:
| |
Collapse
|
6
|
Guillot C, Bouchard C, Aenishaenslin C, Berthiaume P, Milord F, Leighton PA. Criteria for selecting sentinel unit locations in a surveillance system for vector-borne disease: A decision tool. Front Public Health 2022; 10:1003949. [PMID: 36438246 PMCID: PMC9686450 DOI: 10.3389/fpubh.2022.1003949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Objectives With vector-borne diseases emerging across the globe, precipitated by climate change and other anthropogenic changes, it is critical for public health authorities to have well-designed surveillance strategies in place. Sentinel surveillance has been proposed as a cost-effective approach to surveillance in this context. However, spatial design of sentinel surveillance system has important impacts on surveillance outcomes, and careful selection of sentinel unit locations is therefore an essential component of planning. Methods A review of the available literature, based on the realist approach, was used to identify key decision issues for sentinel surveillance planning. Outcomes of the review were used to develop a decision tool, which was subsequently validated by experts in the field. Results The resulting decision tool provides a list of criteria which can be used to select sentinel unit locations. We illustrate its application using the case example of designing a national sentinel surveillance system for Lyme disease in Canada. Conclusions The decision tool provides researchers and public health authorities with a systematic, evidence-based approach for planning the spatial design of sentinel surveillance systems, taking into account the aims of the surveillance system and disease and/or context-specific considerations.
Collapse
Affiliation(s)
- Camille Guillot
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada,Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'île-de-Montréal (CReSP), Montréal, QC, Canada,*Correspondence: Camille Guillot
| | - Catherine Bouchard
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St. Hyacinthe, QC, Canada
| | - Cécile Aenishaenslin
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Berthiaume
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St. Hyacinthe, QC, Canada
| | - François Milord
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick A. Leighton
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada,Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'île-de-Montréal (CReSP), Montréal, QC, Canada
| |
Collapse
|
7
|
Zewude BT, Debusho LK, Diriba TA. Multilevel logistic regression modelling to quantify variation in malaria prevalence in Ethiopia. PLoS One 2022; 17:e0273147. [PMID: 36174003 PMCID: PMC9521912 DOI: 10.1371/journal.pone.0273147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Ethiopia has low malaria prevalence compared to most other malaria-endemic countries in Africa. However, malaria is still a major public health problem in the country. The binary logistic regression model has been widely used to analyse malaria indicator survey (MIS) data. However, most MIS have a hierarchical structure which may result in dependent data. Since this model assumes that conditional on the covariates the malaria statuses of individuals are independent, it ignores potential intra-cluster correlation among observations within a cluster and may generate biased analysis results and conclusions. Therefore, the aim of this study was to quantify the variation in the prevalence of malaria between sample enumeration areas (SEAs) or clusters, the effects of cluster characteristics on the prevalence of malaria using the intra-class correlation coefficient as well as to identify significant factors that affect the prevalence of malaria using the multilevel logistic regression modelling in three major regions of Ethiopia, namely Amhara, Oromia and Southern Nations, Nationalities and Peoples’ (SNNP).
Methods
Dataset for three regional states extracted from the 2011 Ethiopian National Malaria Indicator Surveys (EMIS) national representative samples was used in this study. It contains 9272 sample individuals selected from these regions. Various multilevel models with random sample SEA effects were applied taking into account the survey design weights. These weights are scaled to address unequal probabilities of selection within clusters. The spatial clustering of malaria prevalence was assessed applying Getis-Ord statistic to best linear unbiased prediction values of model random effects.
Results
About 53.82 and 28.72 per cents of the sampled households in the study regions had no mosquito net and sprayed at least once within the last 12 months, respectively. The results of this study indicate that age, gender, household had mosquito nets, the dwelling has windows, source of drinking water, the two SEA-level variables, i.e. region and median altitude, were significantly related to the prevalence of malaria. After adjusting for these seven variables, about 45% of the residual variation in the prevalence of malaria in the study regions was due to systematic differences between SEAs, while the remaining 55% was due to unmeasured differences between persons or households. The estimated MOR, i.e. the unexplained SEA heterogeneity, was 4.784. This result suggests that there is high variation between SEAs in the prevalence of malaria. In addition, the 80% interval odds ratios (IORs) related to SEA-level variables contain one suggesting that the SEA variability is large in comparison with the effect of each of the variable.
Conclusions
The multilevel logistic regression with random effects model used in this paper identified five individual / household and two SEA-level risk factors of malaria infection. Therefore, the public health policy makers should pay attentions to those significant factors, such as improving the availability of pure drinking water. Further, the findings of spatial clustering provide information to health policymakers to plan geographically targeted interventions to control malaria transmission.
Collapse
Affiliation(s)
- Bereket Tessema Zewude
- Department of Statistics, University of South Africa, Johannesburg, South Africa
- * E-mail:
| | | | - Tadele Akeba Diriba
- Department of Statistics, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
8
|
Forson AO, Hinne IA, Dhikrullahi SB, Sraku IK, Mohammed AR, Attah SK, Afrane YA. The resting behavior of malaria vectors in different ecological zones of Ghana and its implications for vector control. Parasit Vectors 2022; 15:246. [PMID: 35804461 PMCID: PMC9270803 DOI: 10.1186/s13071-022-05355-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND In sub-Saharan Africa there is widespread use of long-lasting insecticidal nets and indoor residual spraying to help control the densities of malaria vectors and decrease the incidence of malaria. This study was carried out to investigate the resting behavior, host preference and infection with Plasmodium falciparum of malaria vectors in Ghana in the context of the increasing insecticide resistance of malaria vectors in sub-Saharan Africa. METHODS Indoor and outdoor resting anopheline mosquitoes were sampled during the dry and rainy seasons in five sites in three ecological zones [Sahel savannah (Kpalsogo, Pagaza, Libga); coastal savannah (Anyakpor); and forest (Konongo)]. Polymerase chain reaction-based molecular diagnostics were used to determine speciation, genotypes for knockdown resistance mutations (L1014S and L1014F) and the G119S ace1 mutation, specific host blood meal origins and sporozoite infection in the field-collected mosquitoes. RESULTS Anopheles gambiae sensu lato (s.l.) predominated (89.95%, n = 1718), followed by Anopheles rufipes (8.48%, n = 162) and Anopheles funestus s.l. (1.57%, n = 30). Sibling species of the Anopheles gambiae s.l. revealed Anopheles coluzzii accounted for 63% (95% confidence interval = 57.10-68.91) and 27% (95% confidence interval = 21.66-32.55) was Anopheles gambiae s. s.. The mean resting density of An. gambiae s.l. was higher outdoors (79.63%; 1368/1718) than indoors (20.37%; 350/1718) (Wilcoxon rank sum test, Z = - 4.815, P < 0.0001). The kdr west L1014F and the ace1 mutation frequencies were higher in indoor resting An. coluzzii and An. gambiae in the Sahel savannah sites than in the forest and coastal savannah sites. Overall, the blood meal analyses revealed that a larger proportion of the malaria vectors preferred feeding on humans (70.2%) than on animals (29.8%) in all of the sites. Sporozoites were only detected in indoor resting An. coluzzii from the Sahel savannah (5.0%) and forest (2.5%) zones. CONCLUSIONS This study reports high outdoor resting densities of An. gambiae and An. coluzzii with high kdr west mutation frequencies, and the presence of malaria vectors indoors despite the use of long-lasting insecticidal nets and indoor residual spraying. Continuous monitoring of changes in the resting behavior of mosquitoes and the implementation of complementary malaria control interventions that target outdoor resting Anopheles mosquitoes are necessary in Ghana.
Collapse
Affiliation(s)
- Akua Obeng Forson
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac A. Hinne
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Shittu B. Dhikrullahi
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac Kwame Sraku
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Simon K. Attah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| |
Collapse
|
9
|
Zoh MG, Tutagata J, Fodjo BK, Mouhamadou CS, Sadia CG, McBeath J, Schmitt F, Horstmann S, David JP, Reynaud S. Exposure of Anopheles gambiae larvae to a sub-lethal dose of an agrochemical mixture induces tolerance to adulticides used in vector control management. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106181. [PMID: 35504174 DOI: 10.1016/j.aquatox.2022.106181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The heavy use of pesticides in agricultural areas often leads to the contamination of nearby mosquito larvae breeding sites. Exposure to complex mixtures of agrochemicals can affect the insecticide sensitivity of mosquito larvae. Our study objective was to determine whether agrochemical residues in Anopheline larval breeding sites can affect the tolerance of adults to commonly used adulticides. We focussed on Fludora® Fusion, a vector control insecticide formulation combining two insecticides (deltamethrin and clothianidin) with different modes of action. An. gambiae larvae were exposed to a sub-lethal dose of a mixture of agrochemical pesticides used in a highly active agricultural area on the Ivory Coast. Comparative bioassays with Fludora Fusion mixture and its two insecticide components (deltamethrin and clothianidin) were carried out between adult mosquitoes exposed or not to the agrochemicals at the larval stage. A transcriptomic analysis using RNA sequencing was then performed on larvae and adults to study the molecular mechanisms underlying the phenotypic changes observed. Bioassays revealed a significantly increased tolerance of adult females to clothianidin (2.5-fold) and Fludora Fusion mixture (2.2-fold) following larval exposure to agrochemicals. Significantly increased tolerance to deltamethrin was not observed suggesting that insecticide exposure affects the adult efficacy of the Fludora Fusion mixture mainly through mechanisms acting on clothianidin. Transcriptomic analysis revealed the potential of agrochemicals to induce various resistance mechanisms including cuticle proteins, detoxification action and altered insecticide sequestration. These results suggest that although the Fludora Fusion mixture is effective for adult vector control, its efficacy may be locally affected by the ecological context. The present study also suggests that, although the complex interactions between the use of agrochemicals and vector control insecticides are difficult to decipher in the field, they still must be considered in the context of insecticide resistance management programmes.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Jordan Tutagata
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Behi K Fodjo
- Centre Suisse de la Recherche Scientifique en Côte d'Ivoire, Côte d'Ivoire
| | | | | | | | | | | | - Jean-Philippe David
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| |
Collapse
|
10
|
Tiedje KE, Oduro AR, Bangre O, Amenga-Etego L, Dadzie SK, Appawu MA, Frempong K, Asoala V, Ruybal-Pésantez S, Narh CA, Deed SL, Argyropoulos DC, Ghansah A, Agyei SA, Segbaya S, Desewu K, Williams I, Simpson JA, Malm K, Pascual M, Koram KA, Day KP. Indoor residual spraying with a non-pyrethroid insecticide reduces the reservoir of Plasmodium falciparum in a high-transmission area in northern Ghana. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000285. [PMID: 35600674 PMCID: PMC9121889 DOI: 10.1371/journal.pgph.0000285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022]
Abstract
High-malaria burden countries in sub-Saharan Africa are shifting from malaria control towards elimination. Hence, there is need to gain a contemporary understanding of how indoor residual spraying (IRS) with non-pyrethroid insecticides when combined with long-lasting insecticidal nets (LLINs) impregnated with pyrethroid insecticides, contribute to the efforts of National Malaria Control Programmes to interrupt transmission and reduce the reservoir of Plasmodium falciparum infections across all ages. Using an interrupted time-series study design, four age-stratified malariometric surveys, each of ~2,000 participants, were undertaken pre- and post-IRS in Bongo District, Ghana. Following the application of three-rounds of IRS, P. falciparum transmission intensity declined, as measured by a >90% reduction in the monthly entomological inoculation rate. This decline was accompanied by reductions in parasitological parameters, with participants of all ages being significantly less likely to harbor P. falciparum infections at the end of the wet season post-IRS (aOR = 0.22 [95% CI: 0.19-0.26], p-value < 0.001). In addition, multiplicity of infection (MOI var ) was measured using a parasite fingerprinting tool, designed to capture within-host genome diversity. At the end of the wet season post-IRS, the prevalence of multi-genome infections declined from 75.6% to 54.1%. This study demonstrates that in areas characterized by high seasonal malaria transmission, IRS in combination with LLINs can significantly reduce the reservoir of P. falciparum infection. Nonetheless despite this success, 41.6% of the population, especially older children and adolescents, still harboured multi-genome infections. Given the persistence of this diverse reservoir across all ages, these data highlight the importance of sustaining vector control in combination with targeted chemotherapy to move high-transmission settings towards pre-elimination. This study also points to the benefits of molecular surveillance to ensure that incremental achievements are not lost and that the goals advocated for in the WHO's High Burden to High Impact strategy are realized.
Collapse
Affiliation(s)
- Kathryn E. Tiedje
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Abraham R. Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Oscar Bangre
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Samuel K. Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Maxwell A. Appawu
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo Frempong
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Victor Asoala
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Shazia Ruybal-Pésantez
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Charles A. Narh
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samantha L. Deed
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Dionne C. Argyropoulos
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Anita Ghansah
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samuel A. Agyei
- AngloGold Ashanti (Ghana) Malaria Control Programme, Obuasi, Ghana
| | | | - Kwame Desewu
- AngloGold Ashanti (Ghana) Malaria Control Programme, Obuasi, Ghana
| | | | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Keziah Malm
- Ghana National Malaria Control Programme, Public Health Division, Ghana Health Service, Accra, Ghana
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States of America
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Karen P. Day
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| |
Collapse
|
11
|
Hamid-Adiamoh M, Nwakanma D, Sraku I, Amambua-Ngwa A, A. Afrane Y. Is outdoor-resting behaviour in malaria vectors consistent? Short report from northern Ghana. AAS Open Res 2022; 4:53. [PMID: 40078892 PMCID: PMC11347917 DOI: 10.12688/aasopenres.13317.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 03/14/2025] Open
Abstract
Background: Recent studies have observed vectors resting predominantly outdoors in settings where anti-vector tools are extensively deployed. This has been attributed to selection pressure from use of control tools. This present study examined if the outdoor resting behaviour in the vector population is random or indicative of a consistent preference of one resting site over the other. Methods: Mark-release-recapture experiments were conducted with outdoor-resting Anopheles gambiae and An. funestus mosquitoes collected from two villages in northern Ghana during rainy and dry seasons. Mosquitoes were marked with fluorescent dyes and released indoors. The experiments were controlled with indoor-resting mosquitoes, which were marked and released outdoors. Twelves release events were conducted for outdoor-resting mosquitoes and two for indoor mosquitoes, with ten replicates in each event. Species of all recaptured mosquitoes were identified and assessed for consistency in their resting behaviour. Results: A total of 4,460 outdoor-resting mosquitoes comprising An. gambiae sensu lato (s.l.) (2,636, 59%) and An. funestus complex (1,824, 41%) were marked and released. Overall, 31 (0.7%) mosquitoes were recaptured mostly from outdoor location comprising 25 (81%) An. gambiae s.l. and 6 (19%) An. funestus complex. Only 3 (10%) of the recaptured mosquitoes were found resting indoors where they were released. The majority of the outdoor-recaptured mosquitoes were An. arabiensis (11, 39%), followed by An. coluzzii (7, 25%); whereas all indoor-recaptured mosquitoes were An. coluzzii. For the control experiment, 324 indoor-resting mosquitoes constituting 313 (97%) An. gambiae s.l. and 11 (3%) An. funestus complex were marked and released. However, none of these was recaptured neither indoors nor outdoors. More mosquitoes were captured and recaptured during rainy season, but this was not statistically significant (Z=0.79, P=0.21). Conclusions: These results suggested the tendency for the mosquitoes to retain their outdoor-resting behaviour. Further investigations are required to ascertain if emerging preference for outdoor resting behaviour in malaria vector populations is consistent or a random occurrence.
Collapse
Affiliation(s)
- Majidah Hamid-Adiamoh
- Disease Control and Elimination, MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular,, University of Ghana, Accra, Ghana
| | - Davis Nwakanma
- Disease Control and Elimination, MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Isaac Sraku
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination, MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular,, University of Ghana, Accra, Ghana
| | - Yaw A. Afrane
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular,, University of Ghana, Accra, Ghana
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
12
|
Hamid-Adiamoh M, Nwakanma D, Sraku I, Amambua-Ngwa A, A. Afrane Y. Is outdoor-resting behaviour in malaria vectors consistent? Short report from northern Ghana. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13317.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Recent studies have observed vectors resting predominantly outdoors in settings where anti-vector tools are extensively deployed, attributed to selection pressure from use of control tools. This present study examined if the outdoor resting behaviour in the vector population is random or indicative of a consistent preference of one resting site over the other. Methods: Mark-release-recapture experiments were conducted with outdoor-resting Anopheles gambiae and An. funestus mosquitoes collected from two villages in northern Ghana during rainy and dry seasons. Mosquitoes were marked with fluorescent dyes and released indoors. The experiments were controlled with indoor-resting mosquitoes, which were marked and released outdoors. Species of all recaptured mosquitoes were identified and assessed for consistency in their resting behaviour. Results: A total of 4,460 outdoor-resting mosquitoes comprising An. gambiae sensu lato (s.l.) (2,636, 59%) and An. funestus complex (1,824, 41%) were marked and released. Overall, 31 (0.7%) mosquitoes were recaptured mostly from outdoor location comprising 25 (81%) An. gambiae s.l. and 6 (19%) An. funestus complex. Only 3 (10%) of the recaptured mosquitoes were found resting indoors where they were released. The majority of the outdoor-recaptured mosquitoes were An. arabiensis (11, 39%), followed by An. coluzzii (7, 25%); whereas all indoor-recaptured mosquitoes were An. coluzzii. For the control experiment, 324 indoor-resting mosquitoes constituting 313 (97%) An. gambiae s.l. and 11 (3%) An. funestus complex were marked and released. However, none of these was recaptured neither indoors nor outdoors. More mosquitoes were captured and recaptured during rainy season, but this was not statistically significant (Z=0.79, P=0.21). Conclusions: These results suggested the tendency for the mosquitoes to retain their outdoor-resting behaviour. Further investigations are required to ascertain if emerging preference for outdoor resting behaviour in malaria vector populations is consistent or a random occurrence.
Collapse
|
13
|
Ngwej LM, Mashat EM, Mukeng CK, Mundongo HT, Malonga FK, Kashala JCK, Bangs MJ. Variable residual activity of K-Othrine® PolyZone and Actellic® 300 CS in semi-field and natural conditions in the Democratic Republic of the Congo. Malar J 2021; 20:358. [PMID: 34461898 PMCID: PMC8406736 DOI: 10.1186/s12936-021-03892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Indoor Residual Spray (IRS) against vector mosquitoes is a primary means for combating malaria transmission. To combat increased patterns of resistance to chemicals against mosquito vectors, alternative candidate insecticide formulations should be screened. With mortality as the primary endpoint, the persistence of residual efficacy of a polymer-enhanced pyrethroid suspension concentrate containing deltamethrin (K-Othrine® PolyZone—KOPZ) applied at 25 mg active ingredient (ai)/m2 was compared with a microencapsulated organophosphate suspension formulation of pirimiphos-methyl (Actellic® 300CS—ACS) applied at 1 g ai/m2. Methods Following standard spray application, periodic contact bioassays were conducted for at least 38 weeks on four types of wall surfaces (unbaked clay, baked clay, cement, and painted cement) sprayed with either KOPZ or ACS in simulated semi-field conditions. Similarly, two types of existing walls in occupied houses (painted cement and baked clay) were sprayed and examined. A colonized strain of female Anopheles arabiensis mosquitoes were exposed to treated or untreated surfaces (controls) for 30 min. For each wall surface test period, 40 treatment mosquitoes (4 cones × 10) in semi-field and 90 (9 cones × 10) in ‘natural’ house conditions were used per wall. 30 mosquitoes (3 cones × 10) on a matching unsprayed surface served as the control. Insecticide, wall material, and sprayed location on wall (in houses) were compared by final mortality at 24 h. Results Insecticide, wall material, and sprayed location on wall surface produced significant difference for mean final mortality over time. In semi-field conditions, KOPZ produced a 72% mean mortality over a 38-week period, while ACS gave 65% (p < 0.001). Painted cement wall performed better than other wall surfaces throughout the study period (73% mean mortality). In the two occupied houses, KOPZ provided a mean mortality of 88%, significantly higher than ACS (p < 0.001). KOPZ provided an effective residual life (≥ 80% mortality) between 7.3 and 14 weeks on experimental walls and between 18.3 and 47.2 weeks in houses, while ACS persisted between 3 and 7.6 weeks under semi-field conditions and between 7.1 and 17.3 weeks in houses. Household painted cement walls provided a longer effective residual activity compared to baked clay for both formulations. Greater mortality was recorded at the top and middle sections of sprayed wall compared to the bottom portion near the floor. Conclusion KOPZ provided longer residual activity on all surfaces compared to ACS. Painted cement walls provided better residual longevity for both insecticides compared to other surfaces. Insecticides also performed better in an occupied house environment compared to semi-field constructed walls. This study illustrates the importance of collecting field-based observations to determine appropriate product active ingredient formulations and timing for recurring IRS cycles.
Collapse
Affiliation(s)
- Leonard M Ngwej
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo. .,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Emmanuel M Mashat
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo
| | - Clarence K Mukeng
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Henri T Mundongo
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Françoise K Malonga
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Jean-Christophe K Kashala
- Faculty of Veterinary Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Michael J Bangs
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo.,Public Health & Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua, 99920, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
14
|
Zemene E, Belay DB, Tiruneh A, Lee MC, Yewhalaw D, Yan G. Malaria vector dynamics and utilization of insecticide-treated nets in low-transmission setting in Southwest Ethiopia: implications for residual transmission. BMC Infect Dis 2021; 21:882. [PMID: 34454443 PMCID: PMC8403392 DOI: 10.1186/s12879-021-06592-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the behaviour of local malaria vectors is essential as effectiveness of the commonly used vector-targeted malaria control tools heavily relies on behaviour of the major malaria vectors. This study was conducted to determine species composition, biting behaviour, host preference and infectivity of anopheline mosquitoes, and assess utilization of insecticide-treated nets (ITNs) in a low transmission setting in Southwest Ethiopia. METHODS Adult anopheline mosquitoes were collected using human landing catches (HLCs), Centers for Disease Control and Prevention (CDC) light traps (LTs) and Pyrethrum Spray Catches (PSCs) from June 2016 to May 2018 in Kishe, Jimma Zone, Southwest Ethiopia. The anopheline mosquitoes were morphologically identified. Moreover, sub-sample of An. gambiae s.l. was identified to species using polymerase chain reaction (PCR). Circum-sporozoite proteins (CSPs) and blood meal sources of the anopheline mosquitoes were tested using enzyme-linked immunosorbent assay (ELISA). In addition, a cross-sectional survey was conducted to assess ITN utilization by the inhabitants. RESULTS A total of 3659 anopheline mosquitoes comprising An. coustani complex (84.4%), An. gambiae s.l. (11.3%), and An. pharoensis and An. squamosus comprising less than 5% were collected. The anopheline mosquitoes showed marked outdoor (67%) and early evening (63%) biting behaviour. An. coustani complex and An. gambiae s.l. were predominantly zoophilic and anthropophilic, respectively. None of the sampled anopheline were CSP-positive. Most of the households (97.8%) owned at least one ITN, with modest usage by the inhabitants (73.4%). ITN usage was significantly higher among under-five children (AOR = 7.9, 95% CI: 4.41-14.03), household heads and spouses (AOR = 4.8, 95% CI: 3.0-7.59), those with sufficient access to ITNs (AOR = 1.8, 95% CI: 1.39-2.35), and who were not utilizing alternative mosquito repellents (AOR = 2.2, 95% CI: 1.58-2.99). CONCLUSION The anopheline mosquito species exhibited predominantly outdoor and early evening biting activity. Household ITN coverage was high with slight gap in usage. Vector control interventions should target outdoor and early biting vectors to further suppress the local mosquito population. Moreover, sensitization of the community on consistent use of ITNs is required.
Collapse
Affiliation(s)
- Endalew Zemene
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Denekew Bitew Belay
- Department of Statistics, College of Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abebaw Tiruneh
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
15
|
He Q, Pilosof S, Tiedje KE, Day KP, Pascual M. Frequency-Dependent Competition Between Strains Imparts Persistence to Perturbations in a Model of Plasmodium falciparum Malaria Transmission. Front Ecol Evol 2021; 9. [PMID: 35433714 PMCID: PMC9012452 DOI: 10.3389/fevo.2021.633263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In high-transmission endemic regions, local populations of Plasmodium falciparum exhibit vast diversity of the var genes encoding its major surface antigen, with each parasite comprising multiple copies from this diverse gene pool. This strategy to evade the immune system through large combinatorial antigenic diversity is common to other hyperdiverse pathogens. It underlies a series of fundamental epidemiological characteristics, including large reservoirs of transmission from high prevalence of asymptomatics and long-lasting infections. Previous theory has shown that negative frequency-dependent selection (NFDS) mediated by the acquisition of specific immunity by hosts structures the diversity of var gene repertoires, or strains, in a pattern of limiting similarity that is both non-random and non-neutral. A combination of stochastic agent-based models and network analyses has enabled the development and testing of theory in these complex adaptive systems, where assembly of local parasite diversity occurs under frequency-dependent selection and large pools of variation. We show here the application of these approaches to theory comparing the response of the malaria transmission system to intervention when strain diversity is assembled under (competition-based) selection vs. a form of neutrality, where immunity depends only on the number but not the genetic identity of previous infections. The transmission system is considerably more persistent under NFDS, exhibiting a lower extinction probability despite comparable prevalence during intervention. We explain this pattern on the basis of the structure of strain diversity, in particular the more pronounced fraction of highly dissimilar parasites. For simulations that survive intervention, prevalence under specific immunity is lower than under neutrality, because the recovery of diversity is considerably slower than that of prevalence and decreased var gene diversity reduces parasite transmission. A Principal Component Analysis of network features describing parasite similarity reveals that despite lower overall diversity, NFDS is quickly restored after intervention constraining strain structure and maintaining patterns of limiting similarity important to parasite persistence. Given the described enhanced persistence under perturbation, intervention efforts will likely require longer times than the usual practice to eliminate P. falciparum populations. We discuss implications of our findings and potential analogies for ecological communities with non-neutral assembly processes involving frequency-dependence.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Shai Pilosof
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Santa Fe Institute, Santa Fe, NM, United States
- Correspondence: Mercedes Pascual,
| |
Collapse
|
16
|
Amoah LE, Abukari Z, Dawson-Amoah ME, Dieng CC, Lo E, Afrane YA. Population structure and diversity of Plasmodium falciparum in children with asymptomatic malaria living in different ecological zones of Ghana. BMC Infect Dis 2021; 21:439. [PMID: 33985447 PMCID: PMC8120845 DOI: 10.1186/s12879-021-06120-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic diversity in Plasmodium falciparum populations can be used to describe the resilience and spatial distribution of the parasite in the midst of intensified intervention efforts. This study used microsatellite analysis to evaluate the genetic diversity and population dynamics of P. falciparum parasites circulating in three ecological zones of Ghana. METHODS A total of 1168 afebrile children aged between 3 to 13 years were recruited from five (5) Primary schools in 3 different ecological zones (Sahel (Tamale and Kumbungu), Forest (Konongo) and Coastal (Ada and Dodowa)) of Ghana. Asymptomatic malaria parasite carriage was determined using microscopy and PCR, whilst fragment analysis of 6 microsatellite loci was used to determine the diversity and population structure of P. falciparum parasites. RESULTS Out of the 1168 samples examined, 16.1 and 39.5% tested positive for P. falciparum by microscopy and nested PCR respectively. The genetic diversity of parasites in the 3 ecological zones was generally high, with an average heterozygosity (He) of 0.804, 0.787 and 0.608 the rainy (peak) season for the Sahel, Forest and Coastal zones respectively. The mean He for the dry (off-peak) season were 0.562, 0.693 and 0.610 for the Sahel, Forest and Coastal zones respectively. Parasites from the Forest zone were more closely related to those from the Sahel than from the Coastal zone, despite the Coastal zone being closer in physical distance to the Forest zone. The fixation indexes among study sites ranged from 0.049 to 0.112 during the rainy season and 0.112 to 0.348 during the dry season. CONCLUSION A large asymptomatic parasite reservoir was found in the school children during both rainy and dry seasons, especially those in the Forest and Sahel savannah zones where parasites were also found to be related compared to those from the Coastal zone. Further studies are recommended to understand why despite the roll out of several malaria interventions in Ghana, high transmission still persist.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Zakaria Abukari
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Maame Esi Dawson-Amoah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Cheikh Cambel Dieng
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
17
|
Hinne IA, Attah SK, Mensah BA, Forson AO, Afrane YA. Larval habitat diversity and Anopheles mosquito species distribution in different ecological zones in Ghana. Parasit Vectors 2021; 14:193. [PMID: 33827667 PMCID: PMC8025514 DOI: 10.1186/s13071-021-04701-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background Understanding the ecology of larval malaria and lymphatic filariasis mosquitoes in a changing environment is important in developing effective control tools or programmes. This study characterized the breeding habitats of Anopheles mosquitoes in rural communities in different ecological zones in Ghana during the dry and rainy seasons. Methods The spatio-temporal distribution, species composition, and abundance of larval Anopheles mosquitoes in breeding habitats were studied in five locations in three ecological zones of Ghana. These were Anyakpor (coastal savannah area), Duase (forest area), and Libga, Pagaza, and Kpalsogu (Sahel savannah area). Larvae were collected using standard dippers and were raised in the insectary for identification. Results Out of a total of 7984 mosquito larvae collected, 2152 (27.26%) were anophelines and were more abundant in the rainy season (70.82%) than in the dry season (29.18%). The anophelines comprised 2128 (98.88%) An. gambiae s.l., 16 (0.74%) An. rufipes, and 8 (0.37%) An. pharoensis. In the coastal savannah and forest zones, dug-out wells were the most productive habitat during the dry (1.59 larvae/dip and 1.47 larvae/dip) and rainy seasons (11.28 larvae/dip and 2.05 larvae/dip). Swamps and furrows were the most productive habitats in the Sahel savannah zone during the dry (0.25 larvae/dip) and rainy (2.14 larvae/dip) seasons, respectively. Anopheles coluzzii was the most abundant sibling species in all the ecological zones. Anopheles melas and An. arabiensis were encountered only in the coastal savannah and the Sahel savannah areas, respectively. Larval habitat types influenced the presence of larvae as well as larval density (p < 0.001). The land-use type affected the presence of Anopheles larvae (p = 0.001), while vegetation cover influenced larval density (p < 0.05). Conclusion The most productive habitats were dug-out wells in the coastal savannah and forest zones, and furrows from irrigated canals in the Sahel savannah zone. Anopheles coluzzii was the predominant vector species in all the ecological zones. The abundance of Anopheles breeding habitats and larvae were influenced by anthropogenic activities. Encouraging people whose activities create the larval habitats to become involved in larval source management such as habitat manipulation to stop mosquito breeding will be important for malaria and lymphatic filariasis control. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04701-w.
Collapse
Affiliation(s)
- Isaac A Hinne
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Simon K Attah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Benedicta A Mensah
- Department of Epidemiology, Noguchi Memorial Institute of Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Akua O Forson
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana.
| |
Collapse
|
18
|
Hamid-Adiamoh M, Amambua-Ngwa A, Nwakanma D, D'Alessandro U, Awandare GA, Afrane YA. Insecticide resistance in indoor and outdoor-resting Anopheles gambiae in Northern Ghana. Malar J 2020; 19:314. [PMID: 32867769 PMCID: PMC7460795 DOI: 10.1186/s12936-020-03388-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Selection pressure from continued exposure to insecticides drives development of insecticide resistance and changes in resting behaviour of malaria vectors. There is need to understand how resistance drives changes in resting behaviour within vector species. The association between insecticide resistance and resting behaviour of Anopheles gambiae sensu lato (s.l.) in Northern Ghana was examined. METHODS F1 progenies from adult mosquitoes collected indoors and outdoors were exposed to DDT, deltamethrin, malathion and bendiocarb using WHO insecticide susceptibility tests. Insecticide resistance markers including voltage-gated sodium channel (Vgsc)-1014F, Vgsc-1014S, Vgsc-1575Y, glutathione-S-transferase epsilon 2 (GSTe2)-114T and acetylcholinesterase (Ace1)-119S, as well as blood meal sources were investigated using PCR methods. Activities of metabolic enzymes, acetylcholine esterase (AChE), non-specific β-esterases, glutathione-S-transferase (GST) and monooxygenases were measured from unexposed F1 progenies using microplate assays. RESULTS Susceptibility of Anopheles coluzzii to deltamethrin 24 h post-exposure was significantly higher in indoor (mortality = 5%) than outdoor (mortality = 2.5%) populations (P = 0.02). Mosquitoes were fully susceptible to malathion (mortality: indoor = 98%, outdoor = 100%). Susceptibility to DDT was significantly higher in outdoor (mortality = 9%) than indoor (mortality = 0%) mosquitoes (P = 0.006). Mosquitoes were also found with suspected resistance to bendiocarb but mortality was not statistically different (mortality: indoor = 90%, outdoor = 95%. P = 0.30). Frequencies of all resistance alleles were higher in F1 outdoor (0.11-0.85) than indoor (0.04-0.65) mosquito populations, while Vgsc-1014F in F0 An. gambiae sensu stricto (s.s) was significantly associated with outdoor-resting behaviour (P = 0.01). Activities of non-specific β-esterase enzymes were significantly higher in outdoor than indoor mosquitoes (Mean enzyme activity: Outdoor = : 1.70/mg protein; Indoor = 1.35/mg protein. P < 0.0001). AChE activity was also more elevated in outdoor (0.62/mg protein) than indoor (0.57/mg protein) mosquitoes but this was not significant (P = 0.08). Human blood index (HBI) was predominantly detected in indoor (18%) than outdoor mosquito populations (3%). CONCLUSIONS The overall results did not establish that there was a significant preference of resistant malaria vectors to solely rest indoors or outdoors, but varied depending on the resistant alleles present. Phenotypic resistance was higher in indoor than outdoor-resting mosquitoes, but genotypic and metabolic resistance levels were higher in outdoor than the indoor populations. Continued monitoring of changes in resting behaviour within An. gambiae s.l. populations is recommended.
Collapse
Affiliation(s)
- Majidah Hamid-Adiamoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Alfred Amambua-Ngwa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Davis Nwakanma
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
| | - Yaw A Afrane
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana.
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
19
|
Gogue C, Wagman J, Tynuv K, Saibu A, Yihdego Y, Malm K, Mohamed W, Akplu W, Tagoe T, Ofosu A, Williams I, Asiedu S, Richardson J, Fornadel C, Slutsker L, Robertson M. An observational analysis of the impact of indoor residual spraying in Northern, Upper East, and Upper West Regions of Ghana: 2014 through 2017. Malar J 2020; 19:242. [PMID: 32652994 PMCID: PMC7353711 DOI: 10.1186/s12936-020-03318-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/04/2020] [Indexed: 01/16/2023] Open
Abstract
Background Ghana has been implementing the indoor residual spraying (IRS) of insecticides since 2006, focusing operations in the north. Insecticide resistance concerns prompted a switch from pyrethroids to organophosphates, beginning gradually in 2011 and switching fully to the micro-encapsulated formulation of pirimiphosmethyl (PM CS), Actellic® 300CS, a third-generation indoor residual spraying (3GIRS) product, by 2014. Entomological surveillance studies have shown IRS to be a highly effective malaria control tool, but epidemiological evidence is needed as well. Countrywide prevalence surveys have shown that malaria parasite prevalence in children under 5 years of age in Northern, Upper East, and Upper West Regions had declined to less than 40% in each region by 2016. Similarly, malaria deaths in children under 5 years of age have also been declining nationally since 2009. Although IRS is suspected to have contributed to this decline, stronger evidence is needed to link the IRS interventions to the epidemiological impact. Methods To assess the epidemiological impact of Ghana’s IRS programmatic activities, a retrospective, observational analysis using routine epidemiological data was conducted to compare malaria incidence rates from IRS and non-IRS districts in Northern, Upper East, and Upper West Regions. Routine epidemiological data consisted of passive malaria case surveillance data reported in the District Health Information System 2 (DHIS2); with cases representing patients with suspected malaria who had sought care in the public health system and had received a confirmatory diagnosis with a positive malaria RDT result. Final routine data were extracted in September 2018. All districts that had received IRS were included in the analysis and compared to all non-IRS districts within the same region. In the Northern Region, only PMI districts were included in the analysis, as they had similar historical data. Results District-level analysis from Northern Region from 2015 to 2017 of the aggregate malaria incidence reported from IRS districts relative to non-IRS comparator districts showed 39%, 26%, and 58% fewer confirmed malaria cases reported from IRS districts in 2015, 2016, and 2017, respectively. This translates to approximately 257,000 fewer cases than expected over the three years. In Upper East Region, the effect on reported malaria cases of withdrawing IRS from the region was striking; after spray operations were suspended in 2015, incidence increased an average of 485% per district (95% confidence interval: 330% to 640%) compared to 2014. Conclusions The current observational analysis results are in line with the entomological studies in demonstrating the positive contribution of IRS with a 3GIRS product to malaria control programmes in northern Ghana and the value of using routine surveillance and implementation data to rapidly assess the impact of vector control interventions in operational settings, even in complex implementation environments.
Collapse
Affiliation(s)
| | | | | | | | - Yemane Yihdego
- Abt Associates Africa Indoor Residual Spraying Program, Accra, Ghana
| | - Keziah Malm
- National Malaria Control Programme, Accra, Ghana
| | | | | | | | | | | | - Samuel Asiedu
- AngloGold Ashanti Malaria Control Limited, Accra, Ghana
| | | | | | | | | |
Collapse
|
20
|
An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra. PLoS One 2020; 15:e0234557. [PMID: 32555660 PMCID: PMC7302571 DOI: 10.1371/journal.pone.0234557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022] Open
Abstract
After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which are currently used to determine the parity status of mosquitoes, are very tedious and limited to few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study, we train an artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania (Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N = 91), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8% (N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively. These results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections.
Collapse
|
21
|
Nankabirwa JI, Briggs J, Rek J, Arinaitwe E, Nayebare P, Katrak S, Staedke SG, Rosenthal PJ, Rodriguez-Barraquer I, Kamya MR, Dorsey G, Greenhouse B. Persistent Parasitemia Despite Dramatic Reduction in Malaria Incidence After 3 Rounds of Indoor Residual Spraying in Tororo, Uganda. J Infect Dis 2020; 219:1104-1111. [PMID: 30383230 DOI: 10.1093/infdis/jiy628] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Indoor residual spraying of insecticide (IRS) has been associated with reductions in the incidence of malaria, but its impact on malaria parasitemia is unclear. METHODS We followed 469 participants from August 2011 to May 2016 in Tororo, Uganda, a historically high malaria transmission setting. Three rounds of IRS with bendiocarb were implemented from December 2014 to December 2015. Symptomatic malaria episodes were identified by passive surveillance. Parasitemia was identified by active surveillance every 1-3 months using microscopy and Plasmodium falciparum-specific loop-mediated isothermal amplification. RESULTS IRS was associated with a significant decline in the incidence of symptomatic malaria irrespective of age (episodes per person per year declined from 3.98 to 0.13 in children aged <5 years, 2.30 to 0.15 in children aged 5-10 years, and 0.41 to 0 in adults; P < .001 for all). IRS significantly reduced the prevalence of parasitemia, but the prevalence remained high (pre-IRS to post-third round: 58.5% to 11.3% in children aged <5 years, 73.3% to 23.7% in children aged 5-10 years, and 52.2% to 15.4% in adults; P < .001 for all). CONCLUSIONS Although IRS was associated with significant reductions in the incidence of malaria and prevalence of parasitemia, a proportion of the population remained parasitemic, providing a potential reservoir for malaria transmission.
Collapse
Affiliation(s)
- Joaniter I Nankabirwa
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jessica Briggs
- Department of Medicine, University of California, San Francisco
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Shereen Katrak
- Department of Medicine, University of California, San Francisco
| | - Sarah G Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, United Kingdom
| | | | | | - Moses R Kamya
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco
| | | |
Collapse
|
22
|
Salako AS, Dagnon F, Sovi A, Padonou GG, Aïkpon R, Ahogni I, Syme T, Govoétchan R, Sagbohan H, Sominahouin AA, Akinro B, Iyikirenga L, Agossa F, Akogbeto MC. Efficacy of Actellic 300 CS-based indoor residual spraying on key entomological indicators of malaria transmission in Alibori and Donga, two regions of northern Benin. Parasit Vectors 2019; 12:612. [PMID: 31888730 PMCID: PMC6937814 DOI: 10.1186/s13071-019-3865-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background The current study shows the results of three years of IRS entomological monitoring (2016, before intervention; 2017 and 2018, after intervention) performed in Alibori and Donga, northern Benin. Methods Mosquito collections were performed on a monthly basis using human landing catches and pyrethrum spray catches in six districts including four treated with Actellic 300 CS (Kandi, Gogounou, Djougou and Copargo) and two untreated (Bembèrèkè and Kouandé) which served as control sites. Key transmission indicators of Anopheles gambiae (s.l.) as well as the residual activity of Actellic 300 CS assessed through WHO cone tests, were determined. Results The residual efficacy duration of Actellic 300 CS after the two IRS campaigns (2017 and 2018) was 4–5 months (May–September). The parity rate and the sporozoite index of An. gambiae (s.l.) were 36.62% and 0.71%, respectively, after the first spray round in treated areas compared to 57.24% and 3.7%, respectively, in the control areas (P < 0.0001). The same trend was observed after the second spray round. After the first spray round, each person received 1.6 infective bites/month (ib/m) in the treated areas against 12.11 ib/m in the control areas, resulting in a reduction rate of 86.78%. Similarly, the entomological inoculation rate was 1.5 ib/m after the second spray round in the treated areas vs 9.75 ib/m in the control areas, corresponding to a reduction of 84.61%. A decrease in the parity rate (46.26%), sporozoite index (85.75%) and EIR (87.27%) was observed for An. gambiae (s.l.) after the first round of IRS (June–October 2017) compared to the pre-intervention period (June–October 2016). The density of An. gambiae (s.l.) ranged between 0.38–0.48 per house in treated areas vs 1.53–1.76 An. gambiae (s.l.) per house respectively after the first and second IRS rounds. Conclusions This study showed the positive impact of IRS in reducing key entomological parameters of malaria transmission in Alibori and Donga. However, the considerable blood-feeding rate of An. gambiae (s.l.) in spray areas, stress the need for the population to sleep under long-lasting insecticidal nets (LLINs) in addition, to prevent from mosquito bites which did not succeed in resting on sprayed walls.
Collapse
Affiliation(s)
- Albert Sourou Salako
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin. .,Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin.
| | - Fortune Dagnon
- USA President's Malaria Initiative, USA Agency for International Development, Cotonou, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin.,Disease Control Department, Faculty of Infectious & Tropical Diseases, The London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Gil Germain Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin
| | - Rock Aïkpon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Abomey, Bénin
| | - Idelphonse Ahogni
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin
| | - Thomas Syme
- Disease Control Department, Faculty of Infectious & Tropical Diseases, The London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Renaud Govoétchan
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin
| | - Herman Sagbohan
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Cotonou, Benin
| | - André Aimé Sominahouin
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,Faculté des Sciences Humaines et Sociales de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | | | - Fiacre Agossa
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.,PMI VectorLink Project, Abt Associates, Kinshasa, Democratic Republic of Congo
| | | |
Collapse
|
23
|
Ahorlu CS, Adongo P, Koenker H, Zigirumugabe S, Sika-Bright S, Koka E, Tabong PTN, Piccinini D, Segbaya S, Olapeju B, Monroe A. Understanding the gap between access and use: a qualitative study on barriers and facilitators to insecticide-treated net use in Ghana. Malar J 2019; 18:417. [PMID: 31831004 PMCID: PMC6909499 DOI: 10.1186/s12936-019-3051-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 12/02/2019] [Indexed: 11/15/2022] Open
Abstract
Background Mass and continuous distribution channels have significantly increased access to insecticide-treated nets (ITNs) in Ghana since 2000. Despite these gains, a large gap remains between ITN access and use. Methods A qualitative research study was carried out to explore the individual and contextual factors influencing ITN use among those with access in three sites in Ghana. Eighteen focus group discussions, and free listing and ranking activities were carried out with 174 participants; seven of those participants were selected for in-depth case study. Focus group discussions and case study interviews were audio-recorded, transcribed verbatim, and analysed thematically. Results ITN use, as described by study participants, was not binary; it varied throughout the night, across seasons, and over time. Heat was the most commonly cited barrier to consistent ITN use and contributed to low reported ITN use during the dry season. Barriers to ITN use throughout the year included skin irritation; lack of airflow in the sleeping space; and, in some cases, a lack of information on the connection between the use of ITNs and malaria prevention. Falling ill or losing a loved one to malaria was the most powerful motivator for consistent ITN use. Participants also discussed developing a habit of ITN use and the economic benefit of prevention over treatment as facilitating factors. Participants reported gender differences in ITN use, noting that men were more likely than women and children to stay outdoors late at night and more likely to sleep outdoors without an ITN. Conclusion The study results suggest the greatest gains in ITN use among those with access could be made by promoting consistent use throughout the year among occasional and seasonal users. Opportunities for improving communication messages, such as increasing the time ITNs are aired before first use, as well as structural approaches to enhance the usability of ITNs in challenging contexts, such as promoting solutions for outdoor ITN use, were identified from this work. The information from this study can be used to inform social and behaviour change messaging and innovative approaches to closing the ITN use gap in Ghana.
Collapse
Affiliation(s)
- Collins Stephen Ahorlu
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Philip Adongo
- Department of Social and Behavioral Science, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Hannah Koenker
- PMI VectorWorks Project, Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - Sixte Zigirumugabe
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Accra, Ghana
| | - Solomon Sika-Bright
- Department of Sociology and Anthropology, University of Cape Coast, Cape Coast, Ghana
| | - Eric Koka
- Department of Sociology and Anthropology, University of Cape Coast, Cape Coast, Ghana
| | - Philip Teg-Nefaah Tabong
- Department of Social and Behavioral Science, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Danielle Piccinini
- PMI VectorWorks Project, Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | | | - Bolanle Olapeju
- PMI VectorWorks Project, Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - April Monroe
- PMI VectorWorks Project, Johns Hopkins Center for Communication Programs, Baltimore, MD, USA. .,Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Sauboin C, Van Vlaenderen I, Van Bellinghen LA, Standaert B. Reducing Malaria Mortality at the Lowest Budget: An Optimization Tool for Selecting Malaria Preventative Interventions Applied to Ghana. MDM Policy Pract 2019; 4:2381468319861346. [PMID: 31384668 PMCID: PMC6659186 DOI: 10.1177/2381468319861346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 04/14/2019] [Indexed: 11/18/2022] Open
Abstract
Background. Preventative malaria interventions include
long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and
seasonal malaria chemoprevention (SMC). The RTS,S vaccine candidate is now also
approved for pilot introduction. This analysis estimates the optimal approach
when combining current interventions with the vaccine to reduce under-five
malaria mortality in Ghana at the lowest cost. Methods. A
vector model was combined with a static human cohort model, using
country-specific unit costs. Current coverage of each intervention was used as
baseline. The base-case vaccine price was US$5/dose, with US$2 or US$10 tested
in sensitivity analysis. Model simulations used a goal for extra mortality
reduction in children aged <5 years, and identified the optimal combination
of interventions to reach that goal at the lowest cost. The time horizon was 5
years. Results. The optimal sequence of investments would be
the following: (1) introduce RTS,S; (2) introduce SMC; (3) increase LLINs and
IRS concurrently. RTS,S introduction was associated with mortality reduction of
16% for a budget increase of US$15.6 million. Adding SMC with a partial coverage
of 4% further reduced mortality by 1% at an additional budget of US$1.4 million.
Subsequently scaling-up IRS, LLINs, and SMC at their maximum achievable coverage
further reduced mortality by 82% (total reduction 98%) at an additional budget
of US$474 million. At an RTS,S price of US$10/dose, SMC was first in the optimal
sequence. A lower RTS,S price maintained the sequence but reduced the budget
need. Conclusions. In Ghana, RTS,S introduction in addition to
the existing measures would be the optimal first step for reducing under-five
malaria mortality at the lowest cost, followed by SMC in relevant areas, and
then further scaling-up of IRS and LLINs.
Collapse
|
25
|
Pilosof S, He Q, Tiedje KE, Ruybal-Pesántez S, Day KP, Pascual M. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in Plasmodium falciparum. PLoS Biol 2019; 17:e3000336. [PMID: 31233490 PMCID: PMC6611651 DOI: 10.1371/journal.pbio.3000336] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 07/05/2019] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
In their competition for hosts, parasites with antigens that are novel to the host immune system will be at a competitive advantage. The resulting frequency-dependent selection can structure parasite populations into strains of limited genetic overlap. For the causative agent of malaria, Plasmodium falciparum, the high recombination rates and associated vast diversity of its highly antigenic and multicopy var genes preclude such clear clustering in endemic regions. This undermines the definition of strains as specific, temporally persisting gene variant combinations. We use temporal multilayer networks to analyze the genetic similarity of parasites in both simulated data and in an extensively and longitudinally sampled population in Ghana. When viewed over time, populations are structured into modules (i.e., groups) of parasite genomes whose var gene combinations are more similar within than between the modules and whose persistence is much longer than that of the individual genomes that compose them. Comparison to neutral models that retain parasite population dynamics but lack competition reveals that the selection imposed by host immunity promotes the persistence of these modules. The modular structure is, in turn, associated with a slower acquisition of immunity by individual hosts. Modules thus represent dynamically generated niches in host immune space, which can be interpreted as strains. Negative frequency-dependent selection therefore shapes the organization of the var diversity into parasite genomes, leaving a persistence signature over ecological time scales. Multilayer networks extend the scope of phylodynamics analyses by allowing quantification of temporal genetic structure in organisms that generate variation via recombination or other non-bifurcating processes. A strain structure similar to the one described here should apply to other pathogens with large antigenic spaces that evolve via recombination. For malaria, the temporal modular structure should enable the formulation of tractable epidemiological models that account for parasite antigenic diversity and its influence on intervention outcomes. A combination of computational modeling and empirical data reveals persistent strain structure despite vast antigenic diversity in the human malaria parasite Plasmodium falciparum, with potential consequences for the acquisition of immunity.
Collapse
Affiliation(s)
- Shai Pilosof
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Qixin He
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
| | | | - Karen P. Day
- School of BioSciences, Bio21 Institute/University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
26
|
Pwalia R, Joannides J, Iddrisu A, Addae C, Acquah-Baidoo D, Obuobi D, Amlalo G, Akporh S, Gbagba S, Dadzie SK, Athinya DK, Hadi MP, Jamet HP, Chabi J. High insecticide resistance intensity of Anopheles gambiae (s.l.) and low efficacy of pyrethroid LLINs in Accra, Ghana. Parasit Vectors 2019; 12:299. [PMID: 31196222 PMCID: PMC6567633 DOI: 10.1186/s13071-019-3556-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 11/10/2022] Open
Abstract
Background Insecticide resistance of Anopheles gambiae (s.l.) against public health insecticides is increasingly reported in Ghana and need to be closely monitored. This study investigated the intensity of insecticide resistance of An. gambiae (s.l.) found in a vegetable growing area in Accra, Ghana, where insecticides, herbicides and fertilizers are massively used for plant protection. The bioefficacy of long-lasting insecticidal nets (LLINs) currently distributed in the country was also assessed to delimitate the impact of the insecticide resistance intensity on the effectiveness of those nets. Methods Three- to five-day-old adult mosquitoes that emerged from collected larvae from Opeibea, Accra (Ghana), were assayed using CDC bottle and WHO tube intensity assays against different insecticides. The Vgsc-L1014F and ace-1 mutations within the population were also characterized using PCR methods. Furthermore, cone bioassays against different types of LLINs were conducted to evaluate the extent and impact of the resistance of An. gambiae (s.l.) from Opeibea. Results Anopheles gambiae (s.l.) from Opeibea were resistant to all the insecticides tested with very low mortality observed against organochlorine, carbamates and pyrethroid insecticides using WHO susceptibility tests at diagnostic doses during three consecutive years of monitoring. The average frequencies of Vgsc-1014F and ace-1 in the An. gambiae (s.l.) population tested were 0.99 and 0.76, respectively. The intensity assays using both CDC bottle and WHO tubes showed high resistance intensity to pyrethroids and carbamates with survivals at 10× the diagnostic doses of the insecticides tested. Only pirimiphos methyl recorded a low resistance intensity with 100% mortality at 5× the diagnostic dose. The bioefficacy of pyrethroid LLINs ranged from 2.2 to 16.2% mortality while the PBO LLIN, PermaNet® 3.0, was 73%. Conclusions WHO susceptibility tests using the diagnostic doses described the susceptibility status of the mosquito colony while CDC bottle and WHO tube intensity assays showed varying degrees of resistance intensity. Although both methods are not directly comparable, the indication of the resistance intensity showed the alarming insecticide resistance intensity in Opeibea and its surroundings, which could have an operational impact on the efficacy of vector control tools and particularly on pyrethroid LLINs. Electronic supplementary material The online version of this article (10.1186/s13071-019-3556-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca Pwalia
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Joannitta Joannides
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Alidu Iddrisu
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Charlotte Addae
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Dominic Acquah-Baidoo
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Dorothy Obuobi
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Godwin Amlalo
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Samuel Akporh
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Sampson Gbagba
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Samuel K Dadzie
- Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Duncan K Athinya
- University of Nairobi, Nairobi, Kenya.,Vestergaard East Africa, Nairobi, Kenya
| | | | | | - Joseph Chabi
- Vestergaard-NMIMR Vector Labs, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana. .,Department of parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
27
|
Anto F, Agongo IH, Asoala V, Awini E, Oduro AR. Intermittent Preventive Treatment of Malaria in Pregnancy: Assessment of the Sulfadoxine-Pyrimethamine Three-Dose Policy on Birth Outcomes in Rural Northern Ghana. J Trop Med 2019; 2019:6712685. [PMID: 31275401 PMCID: PMC6582795 DOI: 10.1155/2019/6712685] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 05/19/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) decreases placental parasitaemia and improves birth outcomes. Currently, WHO recommends three or more doses of SP given during antenatal care (ANC), spaced one month apart after 16 weeks of gestation till delivery. This study determined the level of uptake of SP and its association with birth outcomes in rural northern Ghana. METHODS A survey was carried out at the War Memorial Hospital in Navrongo, Ghana, among mothers who had delivered within ten weeks and were seeking postnatal care. Data on time of first ANC, number of visits, receipt of IPTp-SP, and birth outcomes were extracted from the antenatal records of 254 mothers. Mothers were interviewed on their background characteristics and obstetric history. Chi-square tests and logistic regression were carried out to determine association between antenatal indicators, uptake of IPTp-SP, and birth outcomes using Stata version 13. RESULTS Uptake of three-five doses of SP was IPT3 =76.4%, IPT4 =37.3%, and IPT5 = 16.0%. Receipt of first dose of SP at 16, 17-24, and 25-36 weeks of gestation was 16.9%, 56.7%, and 26.4%, respectively. Taking the first dose of SP during the second trimester allowed for taking ≥3 doses of SP compared to taking the first dose during the third trimester (χ2 = 60.1, p<0.001). Women who made ≥4 visits were more likely to receive ≥3 doses of SP compared to those who made <4 visits (χ2 = 87.6, p<0.001). Women who received ≥ 3 doses of SP were more likely (OR = 3.3; 95% CI: 1.69-6.33) to give birth at term and also have normal weight babies (OR =4.0; 95% CI: 1.98-8.06). CONCLUSION Uptake of three or more doses of SP contributed to improved pregnancy outcomes. Increased efforts towards improving early ANC attendance could increase uptake of SP and improve pregnancy outcomes.
Collapse
Affiliation(s)
- Francis Anto
- School of Public Health, University of Ghana, Legon, P.O. Box LG 13, Accra, Ghana
| | - Ibrahim Haruna Agongo
- School of Public Health, University of Ghana, Legon, P.O. Box LG 13, Accra, Ghana
- Navrongo War Memorial Hospital, Navrongo, P.O. Box 34, UE/R, Ghana
| | - Victor Asoala
- Navrongo Health Research Centre, Navrongo, P.O. Box 114, UE/R, Ghana
| | - Elizabeth Awini
- Dodowa Health Research Centre, P.O. Box DD 1, Dodowa, GA/R, Ghana
| | - Abraham Rexford Oduro
- School of Public Health, University of Ghana, Legon, P.O. Box LG 13, Accra, Ghana
- Navrongo Health Research Centre, Navrongo, P.O. Box 114, UE/R, Ghana
| |
Collapse
|
28
|
Amratia P, Psychas P, Abuaku B, Ahorlu C, Millar J, Oppong S, Koram K, Valle D. Characterizing local-scale heterogeneity of malaria risk: a case study in Bunkpurugu-Yunyoo district in northern Ghana. Malar J 2019; 18:81. [PMID: 30876413 PMCID: PMC6420752 DOI: 10.1186/s12936-019-2703-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/02/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bayesian methods have been used to generate country-level and global maps of malaria prevalence. With increasing availability of detailed malaria surveillance data, these methodologies can also be used to identify fine-scale heterogeneity of malaria parasitaemia for operational prevention and control of malaria. METHODS In this article, a Bayesian geostatistical model was applied to six malaria parasitaemia surveys conducted during rainy and dry seasons between November 2010 and 2013 to characterize the micro-scale spatial heterogeneity of malaria risk in northern Ghana. RESULTS The geostatistical model showed substantial spatial heterogeneity, with malaria parasite prevalence varying between 19 and 90%, and revealing a northeast to southwest gradient of predicted risk. The spatial distribution of prevalence was heavily influenced by two modest urban centres, with a substantially lower prevalence in urban centres compared to rural areas. Although strong seasonal variations were observed, spatial malaria prevalence patterns did not change substantially from year to year. Furthermore, independent surveillance data suggested that the model had a relatively good predictive performance when extrapolated to a neighbouring district. CONCLUSIONS This high variability in malaria prevalence is striking, given that this small area (approximately 30 km × 40 km) was purportedly homogeneous based on country-level spatial analysis, suggesting that fine-scale parasitaemia data might be critical to guide district-level programmatic efforts to prevent and control malaria. Extrapolations results suggest that fine-scale parasitaemia data can be useful for spatial predictions in neighbouring unsampled districts and does not have to be collected every year to aid district-level operations, helping to alleviate concerns regarding the cost of fine-scale data collection.
Collapse
Affiliation(s)
- Punam Amratia
- School of Forest Resources and Conservation, University of Florida, Gainesville, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, USA.
| | - Paul Psychas
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
| | - Benjamin Abuaku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Collins Ahorlu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Justin Millar
- School of Forest Resources and Conservation, University of Florida, Gainesville, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, USA
| | | | - Kwadwo Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Denis Valle
- School of Forest Resources and Conservation, University of Florida, Gainesville, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, USA
| |
Collapse
|
29
|
Geostatistical analysis and mapping of malaria risk in children under 5 using point-referenced prevalence data in Ghana. Malar J 2019; 18:67. [PMID: 30871551 PMCID: PMC6419518 DOI: 10.1186/s12936-019-2709-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains a major challenge in sub-Saharan Africa and Ghana is not an exception. Effective malaria transmission control requires evidence-based targeting and utilization of resources. Disease risk mapping provides an effective and efficient tool for monitoring transmission and control efforts. The aim of this study is to analyse and map malaria risk in children under 5 years old, with the ultimate goal of identifying areas where control efforts can be targeted. METHODS Data collected from the 2016 Ghana demographic and health survey was analyzed. Binomial logistic regression was applied to examine the determinants of malaria risk among children. Model-based geostatistical methods were applied to analyze, predict and map malaria prevalence. RESULTS There is a significant association of malaria prevalence with area of residence (rural/urban), age, indoor residual spray use, social economic status and mother's education level. Overall, parasitaemia prevalence among children under 5 years old for the year 2016 is low albeit characterized by "hotspots" in specific areas. CONCLUSION The risk maps indicate the spatial heterogeneity of malaria prevalence. The high resolution maps can serve as an effective tool in the identification of locations that require targeted interventions by programme implementers; this is key and relevant for reducing malaria burden in Ghana.
Collapse
|
30
|
Detecting local risk factors for residual malaria in northern Ghana using Bayesian model averaging. Malar J 2018; 17:343. [PMID: 30268127 PMCID: PMC6162921 DOI: 10.1186/s12936-018-2491-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background There is a need for comprehensive evaluations of the underlying local factors that contribute to residual malaria in sub-Saharan Africa. However, it is difficult to compare the wide array of demographic, socio-economic, and environmental variables associated with malaria transmission using standard statistical approaches while accounting for seasonal differences and nonlinear relationships. This article uses a Bayesian model averaging (BMA) approach for identifying and comparing potential risk and protective factors associated with residual malaria. Results The relative influence of a comprehensive set of demographic, socio-economic, environmental, and malaria intervention variables on malaria prevalence were modelled using BMA for variable selection. Data were collected in Bunkpurugu-Yunyoo, a rural district in northeast Ghana that experiences holoendemic seasonal malaria transmission, over six biannual surveys from 2010 to 2013. A total of 10,022 children between the ages 6 to 59 months were used in the analysis. Multiple models were developed to identify important risk and protective factors, accounting for seasonal patterns and nonlinear relationships. These models revealed pronounced nonlinear associations between malaria risk and distance from the nearest urban centre and health facility. Furthermore, the association between malaria risk and age and some ethnic groups was significantly different in the rainy and dry seasons. BMA outperformed other commonly used regression approaches in out-of-sample predictive ability using a season-to-season validation approach. Conclusions This modelling framework offers an alternative approach to disease risk factor analysis that generates interpretable models, can reveal complex, nonlinear relationships, incorporates uncertainty in model selection, and produces accurate predictions. Certain modelling applications, such as designing targeted local interventions, require more sophisticated statistical methods which are capable of handling a wide range of relevant data while maintaining interpretability and predictive performance, and directly characterize uncertainty. To this end, BMA represents a valuable tool for constructing more informative models for understanding risk factors for malaria, as well as other vector-borne and environmentally mediated diseases. Electronic supplementary material The online version of this article (10.1186/s12936-018-2491-2) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Weetman D, Djogbenou LS, Lucas E. Copy number variation (CNV) and insecticide resistance in mosquitoes: evolving knowledge or an evolving problem? CURRENT OPINION IN INSECT SCIENCE 2018; 27:82-88. [PMID: 30025639 PMCID: PMC6056009 DOI: 10.1016/j.cois.2018.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/21/2018] [Accepted: 04/09/2018] [Indexed: 05/10/2023]
Abstract
Copy number variation (CNV) in insect genomes is a rich source of potentially adaptive polymorphism which may help overcome the constraints of purifying selection on conserved genes and/or permit elevated transcription. Classic studies of amplified esterases and acetylcholinesterase duplication in Culex pipiens quantified evolutionary dynamics of CNV driven by insecticidal selection. A more complex and potentially medically impactful form of CNV is found in Anopheles gambiae, with both heterogeneous duplications and homogeneous amplifications strongly linked with insecticide resistance. Metabolic gene amplification, revealed by shotgun sequencing, appears common in Aedes aegypti, but poorly understood in other mosquito species. Many methodologies have been used to detect CNV in mosquitoes, but relatively few can detect both duplications and amplifications, and contrasting methods should be combined. Genome scans for CNV have been rare to date in mosquitoes, but offer immense potential to determine the overall role of CNV as a component of resistance mechanisms.
Collapse
Affiliation(s)
- David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Luc S Djogbenou
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Institut Régional de Santé Publique/Université d'Abomey-Calavi, Ouidah, Benin
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|