1
|
Wang H, Jiang J, Jin T, Wang Y, Li M, Huang S, Xie J, Chen Z, Guo Y, Zheng J, Jiang Y, Mo Z. Associations of circulation levels of cytokines with birthweight, preterm birth, spontaneous miscarriages, and stillbirth: A Mendelian randomization analysis. Front Genet 2023; 14:1113804. [PMID: 36891154 PMCID: PMC9986262 DOI: 10.3389/fgene.2023.1113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Background: The association between immune imbalances and adverse pregnancy outcomes has been extensive investigated by observational studies, but remain unclear. Thus, this study aimed to establish the causality of the circulation levels of cytokines on adverse pregnancy outcomes, such as offspring's birthweight (BW), preterm birth (PTB), spontaneous miscarriage (SM), and stillbirth (SB). Methods: Two-sample Mendelian randomization (MR) analysis was employed to investigate potential causal relations between 41 cytokines and pregnancy outcomes on the basis of previously published GWAS datasets. Multivariable MR (MVMR) analysis was implemented to investigate the effect of the composition of cytokine networks on the pregnancy outcomes. Potential risk factors were further estimated to explore the potential mediators. Results: Genetic correlation analysis based on large GWAS data sources revealed that genetically predicted MIP1b (β = -0.027, S.E. = 0.010, p = 0.009) and MCSF (β = -0.024, S.E. = 0.011, p = 0.029) were associated with reduced offspring's BW, MCP1 (OR: 0.90, 95% CI: 0.83-0.97, p = 0.007) was associated with reduced SM risk, SCF (β = -0.014, S.E. = 0.005, p = 0.012) associated with decreased number of SB in MVMR. The univariable MR showed that GROa (OR: 0.92, 95% CI: 0.87-0.97, p = 0.004) was associated with decreased PTB risk. Except for the MCSF-BW association, all above associations surpassed the Bonferroni corrected threshold. The MVMR results revealed that MIF, SDF1a, MIP1b, MCSF and IP10 composed cytokine networks, associated with offspring's BW. Risk factors analysis indicated that the above causal associations might be mediated by smoking behaviors. Conclusion: These findings suggest the causal associations of several cytokines with adverse pregnancy outcomes, which were potentially mediated by smoking and obesity. Some of the results did not been corrected through multiple tests and larger samples verification is required in further studies.
Collapse
Affiliation(s)
- Honghong Wang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Department of Pharmacy, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China.,Department of Pharmacy, Liuzhou Hospital of Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Jinghang Jiang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,The Reproductive Medicine Center, Jingmen No. 2 People's Hospital, JingChu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Tingwei Jin
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yifu Wang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mingli Li
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Juanjuan Xie
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongyuan Chen
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Guo
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Zheng
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Zolfaghari Emameh R, Barker HR, Turpeinen H, Parkkila S, Hytönen VP. A reverse vaccinology approach on transmembrane carbonic anhydrases from Plasmodium species as vaccine candidates for malaria prevention. Malar J 2022; 21:189. [PMID: 35706028 PMCID: PMC9199335 DOI: 10.1186/s12936-022-04186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a significant parasitic infection, and human infection is mediated by mosquito (Anopheles) biting and subsequent transmission of protozoa (Plasmodium) to the blood. Carbonic anhydrases (CAs) are known to be highly expressed in the midgut and ectoperitrophic space of Anopheles gambiae. Transmembrane CAs (tmCAs) in Plasmodium may be potential vaccine candidates for the control and prevention of malaria. METHODS In this study, two groups of transmembrane CAs, including α-CAs and one group of η-CAs were analysed by immunoinformatics and computational biology methods, such as predictions on transmembrane localization of CAs from Plasmodium spp., affinity and stability of different HLA classes, antigenicity of tmCA peptides, epitope and proteasomal cleavage of Plasmodium tmCAs, accessibility of Plasmodium tmCAs MHC-ligands, allergenicity of Plasmodium tmCAs, disulfide-bond of Plasmodium tmCAs, B cell epitopes of Plasmodium tmCAs, and Cell type-specific expression of Plasmodium CAs. RESULTS Two groups of α-CAs and one group of η-CAs in Plasmodium spp. were identified to contain tmCA sequences, having high affinity towards MHCs, high stability, and strong antigenicity. All putative tmCAs were predicted to contain sequences for proteasomal cleavage in antigen presenting cells (APCs). CONCLUSIONS The predicted results revealed that tmCAs from Plasmodium spp. can be potential targets for vaccination against malaria.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Sánchez KE, Spencer LM. Pregnancy-associated malaria: Effects of cytokine and chemokine expression. Travel Med Infect Dis 2022; 47:102282. [DOI: 10.1016/j.tmaid.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/19/2021] [Accepted: 02/23/2022] [Indexed: 11/15/2022]
|
4
|
Rojas-Pirela M, Medina L, Rojas MV, Liempi AI, Castillo C, Pérez-Pérez E, Guerrero-Muñoz J, Araneda S, Kemmerling U. Congenital Transmission of Apicomplexan Parasites: A Review. Front Microbiol 2021; 12:751648. [PMID: 34659187 PMCID: PMC8519608 DOI: 10.3389/fmicb.2021.751648] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Isabel Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | | | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Alonso S, Vidal M, Ruiz-Olalla G, González R, Jairoce C, Manaca MN, Vázquez-Santiago M, Balcells R, Vala A, Rupérez M, Cisteró P, Fuente-Soro L, Angov E, Coppel RL, Gamain B, Cavanagh D, Beeson JG, Nhacolo A, Sevene E, Aponte JJ, Macete E, Aguilar R, Mayor A, Menéndez C, Dobaño C, Moncunill G. HIV infection and placental malaria reduce maternal transfer of multiple antimalarial antibodies in Mozambican women. J Infect 2021; 82:45-57. [PMID: 33636218 DOI: 10.1016/j.jinf.2021.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Maternal Plasmodium falciparum-specific antibodies may contribute to protect infants against severe malaria. Our main objective was to evaluate the impact of maternal HIV infection and placental malaria on the cord blood levels and efficiency of placental transfer of IgG and IgG subclasses. METHODS In a cohort of 341 delivering HIV-negative and HIV-positive mothers from southern Mozambique, we measured total IgG and IgG subclasses in maternal and cord blood pairs by quantitative suspension array technology against eight P. falciparum antigens: Duffy-binding like domains 3-4 of VAR2CSA from the erythrocyte membrane protein 1, erythrocyte-binding antigen 140, exported protein 1 (EXP1), merozoite surface proteins 1, 2 and 5, and reticulocyte-binding-homologue-4.2 (Rh4.2). We performed univariable and multivariable regression models to assess the association of maternal HIV infection, placental malaria, maternal variables and pregnancy outcomes on cord antibody levels and antibody transplacental transfer. RESULTS Maternal antibody levels were the main determinants of cord antibody levels. HIV infection and placental malaria reduced the transfer and cord levels of IgG and IgG1, and this was antigen-dependent. Low birth weight was associated with an increase of IgG2 in cord against EXP1 and Rh4.2. CONCLUSIONS We found lower maternally transferred antibodies in HIV-exposed infants and those born from mothers with placental malaria, which may underlie increased susceptibility to malaria in these children.
Collapse
Affiliation(s)
- Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Raquel González
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - M Nelia Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Miquel Vázquez-Santiago
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Reyes Balcells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Anifa Vala
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - María Rupérez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique; Present address: London School of Hygiene and Tropical Medicine (LSHTM). Keppel Street, WC1E 7HT, London, UK
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Laura Fuente-Soro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Benoit Gamain
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Laboratoire d'Excellence GR-Ex, Paris, France
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| | | | - Arsenio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Esperança Sevene
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique; Department of Physiologic Science, Clinical Pharmacology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique.
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique.
| |
Collapse
|
6
|
Rezaee D, Bandehpour M, Kazemi B, Salehi M. Role of intrauterine administration of transfected peripheral blood mononuclear cells by GM-CSF on embryo implantation and pregnancy rate in mice. Mol Hum Reprod 2021; 26:101-110. [PMID: 31899496 DOI: 10.1093/molehr/gaz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Indexed: 01/15/2023] Open
Abstract
One of the effective treatments in women with recurrent implantation failure (RIF) is the use of immune cells to facilitate embryo implantation. Previous studies have shown that intrauterine transmission of peripheral blood mononuclear cells (PBMC) increased the embryo implantation rate. In this study using B6D2F1 (C57BL/6 × DBA2) mice, a fragment of the granulocyte macrophage colony-stimulating factor (Gm-csf) gene was cloned into an enhanced green fluorescent protein vector (pEGFP-N1) and then transfected into PBMC. The protein level of GM-CSF was evaluated in the transfected PBMC and untransfected PBMC by ELISA. Attachment of mouse embryos and the mRNA expression levels of leukemia inhibitory factor (Lif), vascular endothelial growth factor (Vegf), matrix metalloproteinase 9 (Mmp9), Gmcsf-receptor (Gmcsf-r) and interleukin 6 (Il6) in vitro were assessed by real-time PCR in endometrial cells. To determine the pregnancy rate and number of implantation sites in vivo, the mouse uterine horns were analyzed on Day 7.5 post coitum. A greater amount of GM-CSF was produced in PBMC transfected with recombinant vector (552 pg/mL) compared with the untransfected PBMC (57 pg/mL) and PBMC transfected with empty vector (34 pg/mL) (P < 0.05). The data showed that the embryo attachment rate and mRNA expression levels (Vegf [1.7-fold], Mmp9 [1.4-fold], Lif [1.5-fold], Gm-csf r [1.6-fold] and Il6 [1.2-fold]) in the in vitro study (P < 0.01), pregnancy rate (P < 0.01) and number of implantation sites (P < 0.01) in the in vivo investigation (P < 0.05) were increased in PBMC transfected with recombinant vector compared with the PBMC group. The study demonstrated that, in mice, endometrium immunotherapy with transfected PBMC that contained recombinant GM-CSF before embryo implantation was effective in improving embryo implantation and endometrial receptivity.
Collapse
Affiliation(s)
- Delsuz Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Omer S, Franco-Jarava C, Noureldien A, Omer M, Abdelrahim M, Molina I, Adam I. Impact of placental malaria on maternal, placental and fetal cord responses and its role in pregnancy outcomes in women from Blue Nile State, Sudan. Malar J 2021; 20:35. [PMID: 33422078 PMCID: PMC7797158 DOI: 10.1186/s12936-021-03580-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background The sequestration of Plasmodium falciparum infected cells in the placenta results in placental malaria (PM). It activates the mother's immune cells and induces secretion of inflammatory cytokines, which might influence pregnancy outcomes. This study aims to investigate the cytokines (levels IL-4, IL-6, IL-10, IL-17A, and INF γ) in maternal peripheral, placental, and umbilical cord blood in response to PM and the extent to which this may influence maternal haemoglobin levels and birth weight. Methods A total of 185 consenting Sudanese women from Blue Nile State were enrolled at delivery time in a cross-sectional study conducted between Jan 2012-Dec 2015. Malaria infection in the collected maternal peripheral, placental, umbilical cord samples was determined microscopically, and ELISA was used to measure the plasma levels IL-4, IL-6, IL-10, IL-17A, and INF γ in the collected positive and negative malaria samples. Results Elevated levels of IL-4 and IL-10 and reduced levels of IL-6 were detected in the malaria positive samples in comparison to the negative ones in the three types of the samples investigated. Maternal, IL-4 and IL-10 were significantly higher in the samples collected from the PM infected group compared to the non-infected control (P < 0.001). While the absence of PM was significantly associated with the IL-6 and maternal IFN-γ levels, maternal IL-17A, placental and umbilical cord IFN-γ levels showed no significant difference (P = 0.214, P = 0.065, P = 0.536, respectively) due to infection. Haemoglobin level and birth weight were increased in the group with high levels of IL-6 and IL-17A, but not in the group with IL-4 and IL-10 levels. While significantly negative correlation was found between IFN-γ levels and birth weight for all three types of samples, only maternal peripheral IFN-γ level was significantly positively correlated with maternal haemoglobin (r = 0.171, P = 0.020). Conclusion These results suggest that PM induces mother’s immune response and impairs her cytokine profile, which might alter maternal haemoglobin levels and the baby's birth weight.
Collapse
Affiliation(s)
- Samia Omer
- Department of Immunology and Biotechnology, Tropical Medicine Research Institute, Khartoum, Sudan.
| | | | - Ali Noureldien
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mona Omer
- Bioscience Research Institute, Ibn Sina University, Khartoum, Sudan
| | - Mutasim Abdelrahim
- Ed-Damazin Hospital, Blue Nile State Ministry of Health, Ed-Damazin, Sudan
| | - Israel Molina
- Infectious Diseases Department, Vall d Hebron University Hospital, Barcelona, Spain
| | - Ishag Adam
- Department of Obstetrics and Gynecology, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Wiebe MC, Yanow SK. Do Antibodies to Malaria Surface Antigens Play a Role in Protecting Mothers From Maternal Anemia? Front Immunol 2020; 11:609957. [PMID: 33391279 PMCID: PMC7775498 DOI: 10.3389/fimmu.2020.609957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Pregnancy-associated malaria (PAM) caused by Plasmodium falciparum can result in detrimental outcomes for both mother and infant, including low infant birth weight, preterm birth, maternal anemia, spontaneous abortion, and maternal and/or infant mortality. Maternal anemia is a particularly complex outcome, as the body must both maintain erythropoiesis and tolerance of the growing fetus, while directing a Th1 response against the parasite. Underlying the pathogenesis of PAM is the expression of variant surface antigens (VSAPAM) on the surface of infected red blood cells (iRBC) that mediate sequestration of the iRBC in the placenta. Naturally acquired antibodies to VSAPAM can block sequestration and activate opsonic phagocytosis, both associated with improved pregnancy outcomes. In this review, we ask whether VSAPAM antibodies can also protect mothers against malarial anemia. Studies were identified where VSAPAM antibody titres and/or function were associated with higher maternal hemoglobin levels, thus supporting additional protective mechanisms for these antibodies against PAM. Yet these associations were not widely observed, and many studies reported no association between protection from maternal anemia and VSAPAM antibodies. We discuss the epidemiological, biological and technical factors that may explain some of the variability among these studies. We appraise the current evidence of these complex interactions between PAM-specific immunity and maternal anemia, propose potential mechanisms, and discuss knowledge gaps.
Collapse
Affiliation(s)
- Madeleine C Wiebe
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Stephanie K Yanow
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Dobaño C, Nhabomba AJ, Manaca MN, Berthoud T, Aguilar R, Quintó L, Barbosa A, Rodríguez MH, Jiménez A, Groves PL, Santano R, Bassat Q, Aponte JJ, Guinovart C, Doolan DL, Alonso PL. A Balanced Proinflammatory and Regulatory Cytokine Signature in Young African Children Is Associated With Lower Risk of Clinical Malaria. Clin Infect Dis 2020; 69:820-828. [PMID: 30380038 DOI: 10.1093/cid/ciy934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The effect of timing of exposure to first Plasmodium falciparum infections during early childhood on the induction of innate and adaptive cytokine responses and their contribution to the development of clinical malaria immunity is not well established. METHODS As part of a double-blind, randomized, placebo-controlled trial in Mozambique using monthly chemoprophylaxis with sulfadoxine-pyrimethamine plus artesunate to selectively control timing of malaria exposure during infancy, peripheral blood mononuclear cells collected from participants at age 2.5, 5.5, 10.5, 15, and 24 months were stimulated ex vivo with parasite schizont and erythrocyte lysates. Cytokine messenger RNA expressed in cell pellets and proteins secreted in supernatants were quantified by reverse-transcription quantitative polymerase chain reaction and multiplex flow cytometry, respectively. Children were followed up for clinical malaria from birth until 4 years of age. RESULTS Higher proinflammatory (interleukin [IL] 1, IL-6, tumor necrosis factor) and regulatory (IL-10) cytokine concentrations during the second year of life were associated with reduced incidence of clinical malaria up to 4 years of age, adjusting by chemoprophylaxis and prior malaria exposure. Significantly lower concentrations of antigen-specific T-helper 1 (IL-2, IL-12, interferon-γ) and T-helper 2 (IL-4, IL-5) cytokines by 2 years of age were measured in children undergoing chemoprophylaxis compared to children receiving placebo (P < .03). CONCLUSIONS Selective chemoprophylaxis altering early natural exposure to malaria blood stage antigens during infancy had a significant effect on T-helper lymphocyte cytokine production >1 year later. Importantly, a balanced proinflammatory and anti-inflammatory cytokine signature, probably by innate cells, around age 2 years was associated with protective clinical immunity during childhood. CLINICAL TRIALS REGISTRATION NCT00231452.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | | | - Maria N Manaca
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Tamara Berthoud
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Llorenç Quintó
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Arnoldo Barbosa
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Mauricio H Rodríguez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Penny L Groves
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - John J Aponte
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Caterina Guinovart
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Denise L Doolan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Pedro L Alonso
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| |
Collapse
|
10
|
Circulating Cytokines Associated with Poor Pregnancy Outcomes in Beninese Exposed to Infection with Plasmodium falciparum. Infect Immun 2020; 88:IAI.00042-20. [PMID: 32513854 DOI: 10.1128/iai.00042-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/29/2020] [Indexed: 01/30/2023] Open
Abstract
Malaria during pregnancy is a major cause of maternal morbidity as well as fetal and neonatal mortality. Previous studies, including our own, suggested that placental and peripheral cytokine and chemokine levels measured at delivery can be used as biomarkers for pregnancy outcomes. However, the timing of malaria infection during pregnancy matters, and these studies do not address the effect of different cytokines in peripheral blood plasma samples taken at early and midpregnancy and at delivery. Here, we aimed to investigate whether peripheral plasma cytokine levels were associated with pregnancy outcomes in a cohort of 400 Beninese pregnant women. Using a high-sensitivity cytometry-based method, we quantified the levels of interleukin-4 (IL-4), IL-5, IL-10, IL-12p70, and gamma interferon (IFN-γ) in peripheral plasma samples taken at two time points during pregnancy and at delivery in various groups of pregnant women identified with Plasmodium falciparum infection, with anemia, with preterm births, or giving birth to babies who are small for their gestational age. We found that, consistently at all time points, elevated levels of IL-10 were strongly and significantly associated with P. falciparum infection, while the levels of IFN-γ at inclusion and delivery were weakly but also significantly associated. Low levels of IL-5 at delivery were associated with a greater risk of both preterm births and small-for-gestational-age babies. The immunosuppressive effects of IL-10 likely affect the overall cytokine equilibrium during pregnancy in women harboring P. falciparum infections. Our findings highlight the peripheral signature of pregnancy outcomes and strengthen the idea of using cytokines as diagnostic or prognostic markers.
Collapse
|
11
|
Ragsdale HB, Kuzawa CW, Borja JB, Avila JL, McDade TW. Regulation of inflammation during gestation and birth outcomes: Inflammatory cytokine balance predicts birth weight and length. Am J Hum Biol 2019; 31:e23245. [PMID: 30980448 DOI: 10.1002/ajhb.23245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/30/2019] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The maternal environment during gestation influences offspring health at birth and throughout the life course. Recent research has demonstrated that endogenous immune processes such as dysregulated inflammation adversely impact birth outcomes, increasing the risk for preterm birth and restricted fetal growth. Prior analyses examining this association suggest a relationship between maternal C-reactive protein (CRP), a summary measure of inflammation, and offspring anthropometric outcomes. This study investigates pro- and anti-inflammatory cytokines, and their ratio, to gain deeper insight into the regulation of inflammation during pregnancy. METHODS IL6, IL10, TNFɑ, and CRP were quantified in dried blood spots collected in the early third trimester (mean = 29.9 weeks) of 407 pregnancies in Metropolitan Cebu, Philippines. Relationships between these immune markers and offspring anthropometrics (birth weight, length, head circumference, and sum of skinfold thicknesses) were evaluated using multivariate regression analyses. Ratios of pro- to anti-inflammatory cytokines were generated. RESULTS Higher maternal IL6 relative to IL10 was associated with reduced offspring weight and length at birth. Individual cytokines did not predict birth outcomes. CONCLUSIONS Consistent with the idea that the relative balance of cytokines with pro- and anti-inflammatory effects is a key regulator of inflammation in pregnancy, the IL6:IL10 ratio, but neither cytokine on its own, predicted offspring birth outcomes. Our findings suggest that prior reports of association between CRP and fetal growth may reflect, in part, the balance between pro- and anti-inflammatory cytokines, and that the gestational environment is significantly shaped by cytokine imbalance.
Collapse
Affiliation(s)
- Haley B Ragsdale
- Department of Anthropology, Northwestern University, Evanston, Illinois
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, Illinois.,Institute for Policy Research, Northwestern University, Evanston, Illinois
| | - Judith B Borja
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines.,Department of Nutrition and Dietetics, University of San Carlos, Cebu City, Philippines
| | - Josephine L Avila
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines.,Department of Architecture, University of San Carlos, Cebu City, Philippines
| | - Thomas W McDade
- Department of Anthropology, Northwestern University, Evanston, Illinois.,Institute for Policy Research, Northwestern University, Evanston, Illinois.,Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Song Y, Aguilar R, Guo J, Manaca MN, Nhabomba A, Berthoud TK, Khoo SK, Wiertsema S, Barbosa A, Quintó L, Laing IA, Mayor A, Guinovart C, Alonso PL, LeSouëf PN, Dobaño C, Zhang GB. Cord Blood IL-12 Confers Protection to Clinical Malaria in Early Childhood Life. Sci Rep 2018; 8:10860. [PMID: 30022038 PMCID: PMC6052074 DOI: 10.1038/s41598-018-29179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
Using a well-designed longitudinal cohort, we aimed to identify cytokines that were protective against malaria and to explore how they were influenced by genetic and immunological factors. 349 Mozambican pregnant women and their newborn babies were recruited and followed up for malaria outcomes until 24 months of age. Six Th1 cytokines in cord blood were screened for correlation with malaria incidence, of which IL-12 was selected for further analyses. We genotyped IL-12 polymorphisms in children/mothers and evaluated the genotype-phenotype associations and genetic effects on IL-12 levels. Maternal IL-12 concentrations were also investigated in relation to Plasmodium infections and cord blood IL-12 levels. Our data showed that high background IL-12 levels were prospectively associated with a low incidence of clinical malaria, while IL-12 production after parasite stimulation had the opposite effect on malaria incidence. IL-12 genotypes (IL-12b rs2288831/rs17860508) and the haplotype CGTTAGAG distribution were related to malaria susceptibility and background IL-12 levels. Maternal genotypes also exhibited an evident impact on host genotype-phenotype associations. Finally, a positive correlation in background IL-12 levels between maternal and cord blood was identified. Thus, cord blood background IL-12 concentrations are important for protecting children from clinical malaria, likely mediated by both genotypes (children&mothers) and maternal immunity.
Collapse
Affiliation(s)
- Yong Song
- School of Public Health, Curtin University, Perth, 6102, Western Australia, Australia.,Centre for Genetic Origins of Health and Disease, The University of Western Australia and Curtin University, Perth, 6009, Western Australia, Australia
| | - Ruth Aguilar
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, CP1929, Mozambique.,ISGlobal, Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Catalonia, 08036, Spain
| | - Jing Guo
- School of Public Health, Curtin University, Perth, 6102, Western Australia, Australia.,Centre for Genetic Origins of Health and Disease, The University of Western Australia and Curtin University, Perth, 6009, Western Australia, Australia
| | - Maria Nelia Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, CP1929, Mozambique
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, CP1929, Mozambique
| | - Tamara Katherine Berthoud
- ISGlobal, Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Catalonia, 08036, Spain
| | - Siew-Kim Khoo
- School of Paediatrics and Child Health, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Selma Wiertsema
- School of Paediatrics and Child Health, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Arnoldo Barbosa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, CP1929, Mozambique
| | - Llorenç Quintó
- ISGlobal, Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Catalonia, 08036, Spain
| | - Ingrid A Laing
- School of Paediatrics and Child Health, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Catalonia, 08036, Spain
| | - Caterina Guinovart
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, CP1929, Mozambique.,ISGlobal, Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Catalonia, 08036, Spain
| | - Pedro L Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, CP1929, Mozambique.,ISGlobal, Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Catalonia, 08036, Spain
| | - Peter N LeSouëf
- School of Paediatrics and Child Health, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Carlota Dobaño
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, CP1929, Mozambique. .,ISGlobal, Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Catalonia, 08036, Spain.
| | - Guicheng Brad Zhang
- School of Public Health, Curtin University, Perth, 6102, Western Australia, Australia. .,Centre for Genetic Origins of Health and Disease, The University of Western Australia and Curtin University, Perth, 6009, Western Australia, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Perth, 6102, Western Australia, Australia.
| |
Collapse
|