1
|
Guimarães LFF, Rodrigues BA, Dias MHF, Barcelos MG, Nascimento MFA, Moreira-Nascimento SL, Afonso SL, Abreu BGS, Middeldorp JM, Ntumngia FB, Adams JH, Fabbri C, Lopes S, Fernandes CJF, Kano FS, Carvalho LH. Antibody response to Plasmodium vivax in the context of Epstein-Barr virus (EBV) co-infection: A 14-year follow-up study in the Amazon rainforest. PLoS One 2025; 20:e0311704. [PMID: 39879169 PMCID: PMC11778755 DOI: 10.1371/journal.pone.0311704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND To develop an effective vaccine against Plasmodium vivax, the most widely dispersed human malaria parasite, it is critical to understand how coinfections with other pathogens could impact malaria-specific immune response. A recent conceptual study proposed that Epstein-Barr virus (EBV), a highly prevalent human herpesvirus that establishes lifelong persistent infection, may influence P. vivax antibody responses. Here, it was investigated whether EBV could impact the longevity of humoral immune response to P. vivax. METHODOLOGY/PRINCIPAL FINDINGS A 14-year follow-up study was carried out among long-term P. vivax-exposed Amazonian individuals (272, median age 35 years), and included 9 cross-sectional surveys at periods of high and low malaria transmission. The experimental approach focused on monitoring antibodies to the major blood-stage P. vivax vaccine candidate, the Duffy binding protein region II (DBPII-Sal1), including a novel engineered DBPII-based vaccine targeting conserved epitopes (DEKnull-2). In parallel, the status of EBV infection was determined over time by the detection of circulating EBV DNA (EBV-DNAemia) and EBV-specific antibodies to lytic (VCAp18) or latent (EBNA1) antigens. Regardless of the malaria transmission period, the results demonstrated that one or multiple episodes of EBV-DNAemia did not influence the longevity of DBPII immune responses to both strain-specific (Sal-1) or strain-transcending (DEKnull-2) antibodies. Also, the average time in which DBPII-responders lost their antibodies was unrelated to the EBV serostatus. Considering all malaria cases detected during the study, there was a predominance of P. vivax mono-infection (76%), with a positive correlation between malaria infection and EBV-DNAemia. CONCLUSIONS/SIGNIFICANCE In an immunocompetent P. vivax-exposed adult population neither sporadic episodes of EBV-DNAemia nor antibody responses to lytic/latent EBV antigens influence the longevity of both strain-specific and strain-transcending DBPII immune responses. Further studies should investigate the role of acute P. vivax infection in the activation of EBV replication cycle.
Collapse
Affiliation(s)
- Luiz F. F. Guimarães
- Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil
| | - Bárbara A. Rodrigues
- Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil
| | - Michelle H. F. Dias
- Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil
| | - Matheus G. Barcelos
- Departamento de Microbiologia, Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Maria F. A. Nascimento
- Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil
| | | | - Sofia L. Afonso
- Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil
| | - Barbara G. S. Abreu
- Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil
| | - Jaap M. Middeldorp
- Department of Pathology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Francis B. Ntumngia
- Center for Global Health and Interdisciplinary Disease Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Interdisciplinary Disease Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Camila Fabbri
- Instituto Leônidas & Maria Deane, Fiocruz Amazônia, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Unidade de Pesquisa Clínica Carlos Borborema, Manaus, Amazonas, Brazil
| | - Stefanie Lopes
- Instituto Leônidas & Maria Deane, Fiocruz Amazônia, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Unidade de Pesquisa Clínica Carlos Borborema, Manaus, Amazonas, Brazil
| | - Cor J. F. Fernandes
- Hospital Universitário Julio Müller, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Flora S. Kano
- Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil
| | - Luzia H. Carvalho
- Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Soares da Veiga GT, Donassolo RA, Forcellini S, Ferraboli JW, Kujbida Junior MA, Nisimura LM, Bassai LW, Kessler RL, Serpeloni M, Bittencourt NC, Salazar YEAR, Guimarães LFF, Louzada J, Barros DKADS, Lopes SCP, Carvalho LH, Nóbrega de Sousa T, Kano FS, Costa FTM, Fanini Wowk P, Albrecht L. Exploring the naturally acquired response to Pvs47 gametocyte antigen. Front Immunol 2024; 15:1455454. [PMID: 39450180 PMCID: PMC11499161 DOI: 10.3389/fimmu.2024.1455454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Malaria represents a challenging global public health task, with Plasmodium vivax being the predominant parasite in Brazil and the most widely distributed species throughout the world. Developing a vaccine against P. vivax malaria demands innovative strategies, and targeting gametocyte antigens shows promise for blocking transmission prevention. Among these antigens, Pvs47, expressed in gametocytes, has shown remarkable efficacy in transmission blocking. However, remains underexplored in vaccine formulations. This study employed in silico methods to comprehensively characterize the physicochemical properties, structural attributes, epitope presence, and conservation profile of Pvs47. Additionally, we assessed its antigenicity in individuals exposed to malaria in endemic Brazilian regions. Recombinant protein expression occurred in a eukaryotic system, and antigenicity was evaluated using immunoenzymatic assays. The responses of naturally acquired IgM, total IgG, and IgG subclasses were analyzed in three groups of samples from Amazon region. Notably, all samples exhibited anti-Pvs47 IgM and IgG antibodies, with IgG3 predominating. Asymptomatic patients demonstrated stronger IgG responses and more diverse subclass responses. Anti-Pvs47 IgM and IgG responses in symptomatic individuals decrease over time. Furthermore, we observed a negative correlation between anti-Pvs47 IgM response and gametocytemia in samples of symptomatic patients, indicating a gametocyte-specific response. Additionally, negative correlation was observed among anti-Pvs47 antibody response and hematocrit levels. Furthermore, comparative analysis with widely characterized blood antigens, PvAMA1 and PvMSP119, revealed that Pvs47 was equally or more recognized than both proteins. In addition, there is positive correlation between P. vivax blood asexual and sexual stage immune responses. In summary, our study unveils a significant prevalence of anti-Pvs47 antibodies in diverse Amazonian samples and the importance of IgM response for gametocytes depuration. These findings regarding the in silico characterization and antigenicity of Pvs47 provide crucial insights for potential integration into P. vivax vaccine formulations.
Collapse
Affiliation(s)
| | - Rafael Amaral Donassolo
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Sofia Forcellini
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Julia Weber Ferraboli
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Mario Antonio Kujbida Junior
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Líndice Mitie Nisimura
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | | | | | | | - Najara Carneiro Bittencourt
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Yanka Evellyn Alves R. Salazar
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Luiz Felipe Ferreira Guimarães
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Jaime Louzada
- Laboratório de Parasitologia e Monitoramento de Artrópodes Vetores na Amazônia, Centro de Ciências da Saúde, Universidade Federal de Roraima (UFRR), Boa Vista, Brazil
| | | | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz (Fiocruz), Manaus, Brazil
| | - Luzia Helena Carvalho
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Tais Nóbrega de Sousa
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Flora Satiko Kano
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Pryscilla Fanini Wowk
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| |
Collapse
|
3
|
Yalley AK, Ocran J, Cobbinah JE, Obodai E, Yankson IK, Kafintu-Kwashie AA, Amegatcher G, Anim-Baidoo I, Nii-Trebi NI, Prah DA. Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review. Trop Med Infect Dis 2024; 9:190. [PMID: 39330879 PMCID: PMC11435979 DOI: 10.3390/tropicalmed9090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Malaria continues to pose a health challenge globally, and its elimination has remained a major topic of public health discussions. A key factor in eliminating malaria is the early and accurate detection of the parasite, especially in asymptomatic individuals, and so the importance of enhanced diagnostic methods cannot be overemphasized. This paper reviewed the advances in malaria diagnostic tools and detection methods over recent years. The use of these advanced diagnostics in lower and lower-middle-income countries as compared to advanced economies has been highlighted. Scientific databases such as Google Scholar, PUBMED, and Multidisciplinary Digital Publishing Institute (MDPI), among others, were reviewed. The findings suggest important advancements in malaria detection, ranging from the use of rapid diagnostic tests (RDTs) and molecular-based technologies to advanced non-invasive detection methods and computerized technologies. Molecular tests, RDTs, and computerized tests were also seen to be in use in resource-limited settings. In all, only twenty-one out of a total of eighty (26%) low and lower-middle-income countries showed evidence of the use of modern malaria diagnostic methods. It is imperative for governments and other agencies to direct efforts toward malaria research to upscale progress towards malaria elimination globally, especially in endemic regions, which usually happen to be resource-limited regions.
Collapse
Affiliation(s)
- Akua K. Yalley
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Joyous Ocran
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana; (J.O.); (J.E.C.)
| | - Jacob E. Cobbinah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana; (J.O.); (J.E.C.)
| | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana;
| | - Isaac K. Yankson
- CSIR-Building and Road Research Institute, Kumasi P.O. Box UP40, Kumasi, Ghana;
| | - Anna A. Kafintu-Kwashie
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Gloria Amegatcher
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Isaac Anim-Baidoo
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Nicholas I. Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Diana A. Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- Department of Science Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Barnes Road, Accra P.O. Box GP 561, Ghana
| |
Collapse
|
4
|
Salazar YEAR, Louzada J, Puça MCSDB, Guimarães LFF, Vieira JLF, de Siqueira AM, Gil JP, de Brito CFA, de Sousa TN. Delayed gametocyte clearance in Plasmodium vivax malaria is associated with polymorphisms in the cytochrome P450 reductase (CPR). Antimicrob Agents Chemother 2024; 68:e0120423. [PMID: 38411047 PMCID: PMC10989009 DOI: 10.1128/aac.01204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.
Collapse
Affiliation(s)
- Yanka Evellyn Alves Rodrigues Salazar
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Jaime Louzada
- Universidade Federal de Roraima, Boa Vista, Roraima, Brazil
| | - Maria Carolina Silva de Barros Puça
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Felipe Ferreira Guimarães
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | | | - André Machado de Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Tais Nobrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
5
|
Srisutham S, Rattanakoch P, Kijprasong K, Sugaram R, Kantaratanakul N, Srinulgray T, Dondorp AM, Imwong M. A novel sensitive hexaplex high-resolution melt assay for identification of five human Plasmodium species plus internal control. Acta Trop 2023; 248:107020. [PMID: 37739253 PMCID: PMC10641754 DOI: 10.1016/j.actatropica.2023.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND The diagnosis of malaria infection in humans remains challenging, further complicated by mixed Plasmodium species infections, potentially altering disease severity and morbidity. To facilitate appropriate control measures and treatment, rapid, sensitive, and specific detection assays, including those for the second minor species, would be required. This study aimed to develop a multiplex high-resolution melting (hexaplex PCR-HRM) assay with seven distinct peaks corresponding to five Plasmodium species of the Plasmodium genus, and an internal control to limit false negatives providing quality assurance testing results. METHODS Five species-specific primers for human malaria species were designed targeting on the Plasmodium 18 small subunit ribosomal RNA (18S rRNA) and mitochondrial genes. The hexaplex PCR-HRM was developed for the simultaneous and rapid detection and differentiation of five human Plasmodium spp. The limit of detection (LoD), sensitivity, and specificity of the assay were evaluated. Artificial mixing was used to assess the ability to determine the second minor species. Furthermore, a hexaplex PCR-HRM assay was used to identify 120 Plasmodium-infected clinical isolates from Kanchanaburi, Western Thailand, where malaria is endemic. RESULTS The hexaplex PCR-HRM assay detected the targeted genome of five Plasmodium species at levels as low as 2.354-3.316 copies/uL with 91.76 % sensitivity and 98.04 % specificity. In artificial mixing, the assay could detect minority parasite species at 0.001 % of the predominant parasite population. Plasmodium vivax infections (99 %) accounted for the majority of malaria cases in Kanchanaburi, Thailand. CONCLUSIONS The developed hexaplex PCR-HRM assay we present in this study is a novel approach for multiplexing the Plasmodium genus and detecting five Plasmodium species with the advantage of detecting second minority parasite species. The developed one-step assay without any nesting protocols would reduce the risks of cross-contamination. Moreover, it also provides a simple, sensitive, specific, and low-cost approach for optional molecular detection of malaria.
Collapse
Affiliation(s)
- Suttipat Srisutham
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Paweesuda Rattanakoch
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Rungniran Sugaram
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, Northern Ireland UK
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Cruz Camacho A, Kiper E, Oren S, Zaharoni N, Nir N, Soffer N, Noy Y, Ben David B, Rivkin A, Rotkopf R, Michael D, Carvalho TG, Regev-Rudzki N. High-throughput analysis of the transcriptional patterns of sexual genes in malaria. Parasit Vectors 2023; 16:14. [PMID: 36639683 PMCID: PMC9838061 DOI: 10.1186/s13071-022-05624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism. METHODS We developed a high-throughput quantitative Reverse-Transcription PCR (RT-qPCR) platform to robustly monitor Pf transcriptional patterns, in particular, systematically profiling the transcriptional pattern of a large panel of gametocyte-related genes (GRG). Initially, we evaluated the technical performance of the systematic RT-qPCR platform to ensure it complies with the accepted quality standards for: (i) RNA extraction, (ii) cDNA synthesis and (iii) evaluation of gene expression through RT-qPCR. We then used this approach to monitor alterations in gene expression of a panel of GRG upon treatment with gametocytogenesis regulators. RESULTS We thoroughly elucidated GRG expression profiles under treatment with the antimalarial drug dihydroartemisinin (DHA) or the metabolite choline over the course of a Pf blood cycle (48 h). We demonstrate that both significantly alter the expression pattern of PfAP2-G, the gametocytogenesis master regulator. However, they also markedly modify the developmental rate of the parasites and thus might bias the mRNA expression. Additionally, we screened the effect of the metabolites lactate and kynurenic acid, abundant in severe malaria, as potential regulators of gametocytogenesis. CONCLUSIONS Our data demonstrate that the high-throughput RT-qPCR method enables studying the immediate transcriptional response initiating gametocytogenesis of the parasites from a very low volume of malaria-infected RBC samples. The obtained data expand the current knowledge of the initial alterations in mRNA profiles of GRG upon treatment with reported regulators. In addition, using this method emphasizes that asexual parasite stage composition is a crucial element that must be considered when interpreting changes in GRG expression by RT-qPCR, specifically when screening for novel compounds that could regulate Pf sexual differentiation.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Edo Kiper
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sonia Oren
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nir Zaharoni
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Netta Nir
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Noam Soffer
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yael Noy
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Bar Ben David
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Anna Rivkin
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ron Rotkopf
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dan Michael
- grid.13992.300000 0004 0604 7563Feinberg Graduate School, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Teresa G. Carvalho
- grid.1018.80000 0001 2342 0938Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086 Australia
| | - Neta Regev-Rudzki
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
7
|
Tashi T, Upadhye A, Kundu P, Wu C, Menant S, Soares RR, Ferreira MU, Longley RJ, Mueller I, Hoang QQ, Tham WH, Rayner JC, Scopel KKG, Lima-Junior JC, Tran TM. Longitudinal IgG antibody responses to Plasmodium vivax blood-stage antigens during and after acute vivax malaria in individuals living in the Brazilian Amazon. PLoS Negl Trop Dis 2022; 16:e0010773. [PMID: 36417454 PMCID: PMC9728838 DOI: 10.1371/journal.pntd.0010773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To make progress towards malaria elimination, a highly effective vaccine targeting Plasmodium vivax is urgently needed. Evaluating the kinetics of natural antibody responses to vaccine candidate antigens after acute vivax malaria can inform the design of serological markers of exposure and vaccines. METHODOLOGY/PRINCIPAL FINDINGS The responses of IgG antibodies to 9 P. vivax vaccine candidate antigens were evaluated in longitudinal serum samples from Brazilian individuals collected at the time of acute vivax malaria and 30, 60, and 180 days afterwards. Antigen-specific IgG correlations, seroprevalence, and half-lives were determined for each antigen using the longitudinal data. Antibody reactivities against Pv41 and PVX_081550 strongly correlated with each other at each of the four time points. The analysis identified robust responses in terms of magnitude and seroprevalence against Pv41 and PvGAMA at 30 and 60 days. Among the 8 P. vivax antigens demonstrating >50% seropositivity across all individuals, antibodies specific to PVX_081550 had the longest half-life (100 days; 95% CI, 83-130 days), followed by PvRBP2b (91 days; 95% CI, 76-110 days) and Pv12 (82 days; 95% CI, 64-110 days). CONCLUSION/SIGNIFICANCE This study provides an in-depth assessment of the kinetics of antibody responses to key vaccine candidate antigens in Brazilians with acute vivax malaria. Follow-up studies are needed to determine whether the longer-lived antibody responses induced by natural infection are effective in controlling blood-stage infection and mediating clinical protection.
Collapse
Affiliation(s)
- Tenzin Tashi
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Prasun Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Chunxiang Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sébastien Menant
- Infectious Diseases and Immune Defence Division, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Roberta Reis Soares
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Rhea J. Longley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Quyen Q. Hoang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defence Division, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kézia KG Scopel
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Josué C. Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tuan M. Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Dias MHF, Guimarães LFF, Barcelos MG, Moreira EUM, do Nascimento MFA, de Souza TN, Pires CV, Monteiro TAF, Middeldorp JM, Soares IS, Fontes CJF, Ntumngia FB, Adams JH, Kano FS, Carvalho LH. Impact of Epstein-Barr virus co-infection on natural acquired Plasmodium vivax antibody response. PLoS Negl Trop Dis 2022; 16:e0010305. [PMID: 35921373 PMCID: PMC9377613 DOI: 10.1371/journal.pntd.0010305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/15/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background
The simultaneous infection of Plasmodium falciparum and Epstein-Barr virus (EBV) could promote the development of the aggressive endemic Burkitt’s Lymphoma (eBL) in children living in P. falciparum holoendemic areas. While it is well-established that eBL is not related to other human malaria parasites, the impact of EBV infection on the generation of human malaria immunity remains largely unexplored. Considering that this highly prevalent herpesvirus establishes a lifelong persistent infection on B-cells with possible influence on malaria immunity, we hypothesized that EBV co-infection could have impact on the naturally acquired antibody responses to P. vivax, the most widespread human malaria parasite.
Methodology/Principal findings
The study design involved three cross-sectional surveys at six-month intervals (baseline, 6 and 12 months) among long-term P. vivax exposed individuals living in the Amazon rainforest. The approach focused on a group of malaria-exposed individuals whose EBV-DNA (amplification of balf-5 gene) was persistently detected in the peripheral blood (PersVDNA, n = 27), and an age-matched malaria-exposed group whose EBV-DNA could never be detected during the follow-up (NegVDNA, n = 29). During the follow-up period, the serological detection of EBV antibodies to lytic/ latent viral antigens showed that IgG antibodies to viral capsid antigen (VCA-p18) were significantly different between groups (PersVDNA > NegVDNA). A panel of blood-stage P. vivax antigens covering a wide range of immunogenicity confirmed that in general PersVDNA group showed low levels of antibodies as compared with NegVDNA. Interestingly, more significant differences were observed to a novel DBPII immunogen, named DEKnull-2, which has been associated with long-term neutralizing antibody response. Differences between groups were less pronounced with blood-stage antigens (such as MSP1-19) whose levels can fluctuate according to malaria transmission.
Conclusions/Significance
In a proof-of-concept study we provide evidence that a persistent detection of EBV-DNA in peripheral blood of adults in a P. vivax semi-immune population may impact the long-term immune response to major malaria vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | | | - Taís N. de Souza
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Camilla V. Pires
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Talita A. F. Monteiro
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde (IEC/SVS/MS), Belém, Pará, Brazil
| | - Jaap M. Middeldorp
- Department of Pathology, Free University Medical Center, Amsterdam, The Netherlands
| | - Irene S. Soares
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Cor J. F. Fontes
- Julio Müller School Hospital, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Flora S. Kano
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Luzia H. Carvalho
- Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
9
|
Costa GL, Alvarenga DAM, Aguiar ACC, Louzada J, Pereira DB, de Oliveira TF, Fonseca Júnior AA, Carvalho LH, Ferreira Alves de Brito C, Nóbrega de Sousa T. Improving the Molecular Diagnosis of Malaria: Droplet Digital PCR-Based Method Using Saliva as a DNA Source. Front Microbiol 2022; 13:882530. [PMID: 35633683 PMCID: PMC9136408 DOI: 10.3389/fmicb.2022.882530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022] Open
Abstract
Malaria is an acute febrile disease caused by a protozoan of the genus Plasmodium. Light microscopy (LM) is the gold standard for the diagnosis of malaria. Despite this method being rapid and inexpensive, it has a low limit of detection, which hampers the identification of low parasitemia infections. By using multicopy targets and highly sensitive molecular techniques, it is possible to change this scenario. In this study, we evaluated the performance of droplet digital PCR (ddPCR) to detect Plasmodium DNA obtained from saliva samples (whole saliva and buccal swab) of 157 individuals exposed to malaria transmission from the Brazilian Amazon region. We used the highly sensitive ddPCR method with non-ribosomal multicopy targets for Plasmodium vivax (Pvr47) and Plasmodium falciparum (Pfr364). There was good concordance between the quantitative real-time PCR (qPCR) results from the saliva and blood, except for mixed-species infections. The sensitivity of qPCR was 93% for blood, 77% for saliva, and 47% for swabs. Parasite DNA was not detected in saliva samples in low-density infections compared with the detection in blood samples. ddPCR showed increased sensitivity for detecting Plasmodium in the blood and swabs (99% in blood, 73% in saliva, and 59% in swabs). Notably, ddPCR detected more mixed infections in the blood (15%), saliva (9%), and swabs (18%) than qPCR. Our data showed that the differences between ddPCR and qPCR were the result of a higher number of P. falciparum infections detected by ddPCR. Overall, there was a moderate correlation between parasite densities estimated by the different methods in the blood. Our findings highlight the possibility of using non-invasive sample collection methods for malaria diagnosis by targeting multicopy sequences combined with highly sensitive molecular methods.
Collapse
Affiliation(s)
- Gabriel Luíz Costa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Denise Anete Madureira Alvarenga
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Jaime Louzada
- Health Sciences Center, Federal University of Roraima, Boa Vista, Brazil
| | | | | | | | - Luzia Helena Carvalho
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
- *Correspondence: Taís Nóbrega de Sousa
| |
Collapse
|
10
|
Mpina M, Stabler TC, Schindler T, Raso J, Deal A, Acuche Pupu L, Nyakarungu E, Del Carmen Ovono Davis M, Urbano V, Mtoro A, Hamad A, Lopez MSA, Pasialo B, Eyang MAO, Rivas MR, Falla CC, García GA, Momo JC, Chuquiyauri R, Saverino E, Preston Church LW, Kim Lee Sim B, Manguire B, Tanner M, Maas C, Abdulla S, Billingsley PF, Hoffman SL, Jongo S, Richie TL, Daubenberger CA. Diagnostic performance and comparison of ultrasensitive and conventional rapid diagnostic test, thick blood smear and quantitative PCR for detection of low-density Plasmodium falciparum infections during a controlled human malaria infection study in Equatorial Guinea. Malar J 2022; 21:99. [PMID: 35331251 PMCID: PMC8943516 DOI: 10.1186/s12936-022-04103-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background Progress towards malaria elimination has stagnated, partly because infections persisting at low parasite densities comprise a large reservoir contributing to ongoing malaria transmission and are difficult to detect. This study compared the performance of an ultrasensitive rapid diagnostic test (uRDT) designed to detect low density infections to a conventional RDT (cRDT), expert microscopy using Giemsa-stained thick blood smears (TBS), and quantitative polymerase chain reaction (qPCR) during a controlled human malaria infection (CHMI) study conducted in malaria exposed adults (NCT03590340). Methods Blood samples were collected from healthy Equatoguineans aged 18–35 years beginning on day 8 after CHMI with 3.2 × 103 cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ Challenge, strain NF54) administered by direct venous inoculation. qPCR (18s ribosomal DNA), uRDT (Alere™ Malaria Ag P.f.), cRDT [Carestart Malaria Pf/PAN (PfHRP2/pLDH)], and TBS were performed daily until the volunteer became TBS positive and treatment was administered. qPCR was the reference for the presence of Plasmodium falciparum parasites. Results 279 samples were collected from 24 participants; 123 were positive by qPCR. TBS detected 24/123 (19.5% sensitivity [95% CI 13.1–27.8%]), uRDT 21/123 (17.1% sensitivity [95% CI 11.1–25.1%]), cRDT 10/123 (8.1% sensitivity [95% CI 4.2–14.8%]); all were 100% specific and did not detect any positive samples not detected by qPCR. TBS and uRDT were more sensitive than cRDT (TBS vs. cRDT p = 0.015; uRDT vs. cRDT p = 0.053), detecting parasitaemias as low as 3.7 parasites/µL (p/µL) (TBS and uRDT) compared to 5.6 p/µL (cRDT) based on TBS density measurements. TBS, uRDT and cRDT did not detect any of the 70/123 samples positive by qPCR below 5.86 p/µL, the qPCR density corresponding to 3.7 p/µL by TBS. The median prepatent periods in days (ranges) were 14.5 (10–20), 18.0 (15–28), 18.0 (15–20) and 18.0 (16–24) for qPCR, TBS, uRDT and cRDT, respectively; qPCR detected parasitaemia significantly earlier (3.5 days) than the other tests. Conclusions TBS and uRDT had similar sensitivities, both were more sensitive than cRDT, and neither matched qPCR for detecting low density parasitaemia. uRDT could be considered an alternative to TBS in selected applications, such as CHMI or field diagnosis, where qualitative, dichotomous results for malaria infection might be sufficient. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04103-y.
Collapse
Affiliation(s)
- Maxmillian Mpina
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland. .,Ifakara Health Institute, Ifakara, Tanzania.
| | - Thomas C Stabler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jose Raso
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Anna Deal
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Elizabeth Nyakarungu
- Ifakara Health Institute, Ifakara, Tanzania.,Medical Care Development International, Malabo, Equatorial Guinea
| | | | - Vicente Urbano
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Ali Mtoro
- Ifakara Health Institute, Ifakara, Tanzania.,Medical Care Development International, Malabo, Equatorial Guinea
| | - Ali Hamad
- Ifakara Health Institute, Ifakara, Tanzania.,Medical Care Development International, Malabo, Equatorial Guinea
| | - Maria Silvia A Lopez
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Beltran Pasialo
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Marta Alene Owono Eyang
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Matilde Riloha Rivas
- Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | | | | | - Juan Carlos Momo
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Raul Chuquiyauri
- Medical Care Development International, Malabo, Equatorial Guinea.,Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | | | | | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | | | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Carl Maas
- Marathon EG production Ltd., Houston, USA
| | | | | | | | - Said Jongo
- Ifakara Health Institute, Ifakara, Tanzania.,Medical Care Development International, Malabo, Equatorial Guinea
| | - Thomas L Richie
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Claudia A Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Farinas MDLRN, Aschar M, Costa-Nascimento MDJ, Di Santi SM. An algorithm based on molecular protocols to improve the detection of Plasmodium in autochthonous malarial areas in the Atlantic Forest biome. Rev Inst Med Trop Sao Paulo 2022; 64:e18. [PMID: 35239862 PMCID: PMC8901118 DOI: 10.1590/s1678-9946202264018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria is the most important vector-borne disease in the world and a challenge for control programs. In Brazil, 99% of cases occur in the Amazon region. In the extra-Amazonian region, a non-endemic area, epidemiological surveillance focuses on imported malaria and on autochthonous outbreaks, including cases with mild symptoms and low parasitemia acquired in the Atlantic Forest biome. In this scenario, cases are likely to be underreported, since submicroscopic parasitemias are not detected by thick blood smear, considered the reference test. Molecular tests are more sensitive, detecting asymptomatic individuals and mixed infections. The aim of this study was to propose a more efficient alternative to detect asymptomatic individuals living in areas of low malaria endemicity, as they are reservoirs of Plasmodium that maintain transmission locally. In total, 955 blood samples from residents of 16 municipalities with autochthonous malaria outbreaks in the Sao Paulo State were analyzed; 371 samples were collected in EDTA tubes and 584 in filter paper. All samples were initially screened by a genus-specific qPCR targeting ssrRNA genes (limit of detection of 1 parasite/µL). Then, positive samples were subjected to a nested PCR targeting ssrRNA and dihydrofolate reductase-thymidylate synthase genes (limit of detection of 10 parasites/µL) to determine Plasmodium species. The results showed a statistically significant difference (K = 0.049; p < 0.0001) between microscopy positivity (6.9%) and qPCR (22.9%) for EDTA-blood samples. Conversely, for samples collected in filter paper, no statistical difference was observed, with 2.6% positivity by thick blood smear and 3.1% for qPCR (K = 0.036; p = 0.7). Samples positive by qPCR were assayed by a species-specific nested PCR that was in turn positive in 26% of samples (16 P. vivax and 4 P. malariae ). The results showed that molecular protocols applied to blood samples from residents in areas with autochthonous transmission of malaria were useful to detect asymptomatic patients who act as a source of transmission. The results showed that the genus-specific qPCR was useful for screening positives, with the subsequent identification of species by nested PCR. Additional improvements, such as standardization of blood plotting on filter paper and a more sensitive protocol for species determination, are essential. The qPCR-based algorithm for screening positives followed by nested PCR will contribute to more efficient control of malaria transmission, offering faster and more sensitive tools to detect asymptomatic Plasmodium reservoirs.
Collapse
Affiliation(s)
| | | | | | - Silvia Maria Di Santi
- Universidade de São Paulo, Brazil; Secretaria da Saúde de São Paulo, Brazil; Universidade de São Paulo, Brazil
| |
Collapse
|
12
|
Brilhante-da-Silva N, do Nascimento Martinez L, de Oliveira Sousa RM, dos Santos Pereira S, Teles CBG. Innovations in Plasmodium spp . diagnosis on diverse detection platforms. 3 Biotech 2021; 11:505. [PMID: 34881167 DOI: 10.1007/s13205-021-03054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
In 2019, 229 million cases of malaria were recorded worldwide. For epidemiologic surveillance and proper treatment of persons infected with Plasmodium spp., rapid detection of infections by Plasmodium spp. is critical. Thus, Plasmodium spp. diagnosis is one of the indispensable measures for malaria control. Although microscopy is the gold standard for diagnosis, it has restrictions related mainly to the lack of qualified human resources, which is a problem in many regions. Thus, this review presents major innovations in diagnostic methods as alternatives to or complementary to microscopy. Detection platforms in lateral flow systems, electrochemical immunosensors, molecular biology and, more recently, those integrated with smartphones, are highlighted, among others. The advanced improvement of these tests aims to provide techniques that are sensitive and specific, but also quick, easy to handle and free from the laboratory environment. In this way, the tracking of malaria cases can become increasingly effective and contribute to controlling the disease.
Collapse
|
13
|
Asymptomatic Plasmodium vivax malaria in the Brazilian Amazon: Submicroscopic parasitemic blood infects Nyssorhynchus darlingi. PLoS Negl Trop Dis 2021; 15:e0009077. [PMID: 34714821 PMCID: PMC8555776 DOI: 10.1371/journal.pntd.0009077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Individuals with asymptomatic infection due to Plasmodium vivax are posited to be important reservoirs of malaria transmission in endemic regions. Here we studied a cohort of P. vivax malaria patients in a suburban area in the Brazilian Amazon. Overall 1,120 individuals were screened for P. vivax infection and 108 (9.6%) had parasitemia detected by qPCR but not by microscopy. Asymptomatic individuals had higher levels of antibodies against P. vivax and similar hematological and biochemical parameters compared to uninfected controls. Blood from asymptomatic individuals with very low parasitemia transmitted P. vivax to the main local vector, Nyssorhynchus darlingi. Lower mosquito infectivity rates were observed when blood from asymptomatic individuals was used in the membrane feeding assay. While blood from symptomatic patients infected 43.4% (199/458) of the mosquitoes, blood from asymptomatic infected 2.5% (43/1,719). However, several asymptomatic individuals maintained parasitemia for several weeks indicating their potential role as an infectious reservoir. These results suggest that asymptomatic individuals are an important source of malaria parasites and Science and Technology for Vaccines granted by Conselho Nacional de may contribute to the transmission of P. vivax in low-endemicity areas of malaria.
Collapse
|
14
|
Costa GL, Mascarenhas MEP, Martin TOG, Fortini LG, Louzada J, Pereira DB, Aguiar ACC, Carvalho LH, de Brito CFA, Fontes CJF, de Sousa TN. A Comprehensive Analysis of the Genetic Diversity of Plasmodium falciparum Histidine-Rich Protein 2 (PfHRP2) in the Brazilian Amazon. Front Cell Infect Microbiol 2021; 11:742681. [PMID: 34621693 PMCID: PMC8491578 DOI: 10.3389/fcimb.2021.742681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Early diagnosis and treatment are fundamental to the control and elimination of malaria. In many endemic areas, routine diagnosis is primarily performed microscopically, although rapid diagnostic tests (RDTs) provide a useful point-of-care tool. Most of the commercially available RDTs detect histidine-rich protein 2 (HRP2) of Plasmodium falciparum in the blood of infected individuals. Nonetheless, parasite isolates lacking the pfhrp2 gene are relatively frequent in some endemic regions, thereby hampering the diagnosis of malaria using HRP2-based RDTs. To track the efficacy of RDTs in areas of the Brazilian Amazon, we assessed pfhrp2 deletions in 132 P. falciparum samples collected from four malaria-endemic states in Brazil. Our findings show low to moderate levels of pfhrp2 deletion in different regions of the Brazilian Amazon. Overall, during the period covered by this study (2002-2020), we found that 10% of the P. falciparum isolates were characterized by a pfhrp2 deletion. Notably, however, the presence of pfhrp2-negative isolates has not been translated into a reduction in RDT efficacy, which in part may be explained by the presence of polyclonal infections. A further important finding was the discrepancy in the proportion of pfhrp2 deletions detected using two assessed protocols (conventional PCR versus nested PCR), which reinforces the need to perform a carefully planned laboratory workflow to assess gene deletion. This is the first study to perform a comprehensive analysis of PfHRP2 sequence diversity in Brazilian isolates of P. falciparum. We identified 10 PfHRP2 sequence patterns, which were found to be exclusive of each of the assessed regions. Despite the small number of PfHRP2 sequences available from South America, we found that the PfHRP2 sequences identified in Brazil and neighboring French Guiana show similar sequence patterns. Our findings highlight the importance of continuously monitoring the occurrence and spread of parasites with pfrhp2 deletions, while also taking into account the limitations of PCR-based testing methods associated with accuracy and the complexity of infections.
Collapse
Affiliation(s)
- Gabriel Luíz Costa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Maria Eduarda Pereira Mascarenhas
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Laura Guimarães Fortini
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | | | | | | | - Luzia Helena Carvalho
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Tais Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
15
|
Gimenez AM, Marques RF, Regiart M, Bargieri DY. Diagnostic Methods for Non-Falciparum Malaria. Front Cell Infect Microbiol 2021; 11:681063. [PMID: 34222049 PMCID: PMC8248680 DOI: 10.3389/fcimb.2021.681063] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium-infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matías Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Nolasco O, Montoya J, Rosales Rosas AL, Barrientos S, Rosanas-Urgell A, Gamboa D. Multicopy targets for Plasmodium vivax and Plasmodium falciparum detection by colorimetric LAMP. Malar J 2021; 20:225. [PMID: 34011373 PMCID: PMC8135177 DOI: 10.1186/s12936-021-03753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Loop-mediated isothermal amplification (LAMP) for malaria diagnosis at the point of care (POC) depends on the detection capacity of synthesized nucleic acids and the specificity of the amplification target. To improve malaria diagnosis, new colorimetric LAMP tests were developed using multicopy targets for Plasmodium vivax and Plasmodium falciparum detection. METHODS The cytochrome oxidase I (COX1) mitochondrial gene and the non-coding sequence Pvr47 for P. vivax, and the sub-telomeric sequence of erythrocyte membrane protein 1 (EMP1) and the non-coding sequence Pfr364 for P. falciparum were targeted to design new LAMP primers. The limit of detection (LOD) of each colorimetric LAMP was established and assessed with DNA extracted by mini spin column kit and the Boil & Spin method from 28 microscopy infections, 101 malaria submicroscopic infections detected by real-time PCR only, and 183 negatives infections by both microscopy and PCR. RESULTS The LODs for the colorimetric LAMPs were estimated between 2.4 to 3.7 parasites/µL of whole blood. For P. vivax detection, the colorimetric LAMP using the COX1 target showed a better performance than the Pvr47 target, whereas the Pfr364 target was the most specific for P. falciparum detection. All microscopic infections of P. vivax were detected by PvCOX1-LAMP using the mini spin column kit DNA extraction method and 81% (17/21) were detected using Boil & Spin sample preparation. Moreover, all microscopic infections of P. falciparum were detected by Pfr364-LAMP using both sample preparation methods. In total, PvCOX1-LAMP and Pfr364-LAMP detected 80.2% (81 samples) of the submicroscopic infections using the DNA extraction method by mini spin column kit, while 36.6% (37 samples) were detected using the Boil & Spin sample preparation method. CONCLUSION The colorimetric LAMPs with multicopy targets using the COX1 target for P. vivax and the Pfr364 for P. falciparum have a high potential to improve POC malaria diagnosis detecting a greater number of submicroscopic Plasmodium infections.
Collapse
Affiliation(s)
- Oscar Nolasco
- Instituto de Medicina Tropical "Alexander von Humboldt" Universidad Peruana Cayetano Heredia, Lima, Peru.
- Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Jhoel Montoya
- Unidad de Posgrado de la Facultad de Ciencias Biológicas Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ana L Rosales Rosas
- Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Scarlett Barrientos
- Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt" Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares Y Moleculares, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
17
|
Flaherty BR, Barratt J, Lane M, Talundzic E, Bradbury RS. Sensitive universal detection of blood parasites by selective pathogen-DNA enrichment and deep amplicon sequencing. MICROBIOME 2021; 9:1. [PMID: 33388088 PMCID: PMC7778815 DOI: 10.1186/s40168-020-00939-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/14/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Targeted amplicon deep sequencing (TADS) has enabled characterization of diverse bacterial communities, yet the application of TADS to communities of parasites has been relatively slow to advance. The greatest obstacle to this has been the genetic diversity of parasitic agents, which include helminths, protozoa, arthropods, and some acanthocephalans. Meanwhile, universal amplification of conserved loci from all parasites without amplifying host DNA has proven challenging. Pan-eukaryotic PCRs preferentially amplify the more abundant host DNA, obscuring parasite-derived reads following TADS. Flaherty et al. (2018) described a pan-parasitic TADS method involving amplification of eukaryotic 18S rDNA regions possessing restriction sites only in vertebrates. Using this method, host DNA in total DNA extracts could be selectively digested prior to PCR using restriction enzymes, thereby increasing the number of parasite-derived reads obtained following NGS. This approach showed promise though was only as sensitive as conventional PCR. RESULTS Here, we expand on this work by designing a second set of pan-eukaryotic primers flanking the priming sites already described, enabling nested PCR amplification of the established 18S rDNA target. This nested approach facilitated introduction of a second restriction digestion between the first and second PCR, reducing the proportional mass of amplifiable host-derived DNA while increasing the number of PCR amplification cycles. We applied this method to blood specimens containing Babesia, Plasmodium, various kinetoplastids, and filarial nematodes and confirmed its limit of detection (LOD) to be approximately 10-fold lower than previously described, falling within the range of most qPCR methods. CONCLUSIONS The assay detects and differentiates the major malaria parasites of humans, along with several other clinically important blood parasites. This represents an important step towards a TADS-based universal parasite diagnostic (UPDx) test with a sufficient LOD for routine applications. Video Abstract.
Collapse
Affiliation(s)
- Briana R Flaherty
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Joel Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Meredith Lane
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Synergy America Inc., Duluth, GA, USA
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard S Bradbury
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- School of Health and Life Sciences, Federation University, Ballarat, Australia.
| |
Collapse
|
18
|
Parija SC, Poddar A. Molecular diagnosis of infectious parasites in the post-COVID-19 era. Trop Parasitol 2021; 11:3-10. [PMID: 34195053 PMCID: PMC8213111 DOI: 10.4103/tp.tp_12_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
The endemicity of several parasitic diseases across the globe and recent evidence of distress among COVID-19 patients with preexisting parasitic infections requires strengthening One Health framework and advanced strategies for parasitic detection. Owing to the greater sensitivity and accuracy, molecular technologies such as conventional polymerase chain reaction (PCR), reverse transcription (RT)-PCR, nested PCR, loop-mediated isothermal amplification (LAMP), and xMAP technology have been extensively studied for parasitic diagnosis. Varieties of genes have been targeted for primer development where 18S rRNA, internal transcribed spacer regions, and mitochondrial DNAs coding for cytochrome, and other enzymes have been widely used. More recent, low-cost sequencing and advances in big data management have resulted in a slow but steady rise of next-generation sequencing-based approaches for parasite diagnosis. However, except for few parasites of global concerns such as Plasmodium and Entamoeba, most of the molecular tools and technologies are yet to witness bench to bedside and field translations. This review looks into some of the advancements in the molecular diagnosis of parasites that have potential relevance to clinical purposes and may pave the way toward disease management in an efficient and timely manner.
Collapse
Affiliation(s)
| | - Abhijit Poddar
- Scientist, Sri Balaji Vidyapeeth University, Puducherry, India
| |
Collapse
|
19
|
Lee YW, Choi JW, Shin EH. Machine learning model for predicting malaria using clinical information. Comput Biol Med 2020; 129:104151. [PMID: 33290932 DOI: 10.1016/j.compbiomed.2020.104151] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Rapid diagnosing is crucial for controlling malaria. Various studies have aimed at developing machine learning models to diagnose malaria using blood smear images; however, this approach has many limitations. This study developed a machine learning model for malaria diagnosis using patient information. METHODS To construct datasets, we extracted patient information from the PubMed abstracts from 1956 to 2019. We used two datasets: a solely parasitic disease dataset and total dataset by adding information about other diseases. We compared six machine learning models: support vector machine, random forest (RF), multilayered perceptron, AdaBoost, gradient boosting (GB), and CatBoost. In addition, a synthetic minority oversampling technique (SMOTE) was employed to address the data imbalance problem. RESULTS Concerning the solely parasitic disease dataset, RF was found to be the best model regardless of using SMOTE. Concerning the total dataset, GB was found to be the best. However, after applying SMOTE, RF performed the best. Considering the imbalanced data, nationality was found to be the most important feature in malaria prediction. In case of the balanced data with SMOTE, the most important feature was symptom. CONCLUSIONS The results demonstrated that machine learning techniques can be successfully applied to predict malaria using patient information.
Collapse
Affiliation(s)
- You Won Lee
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul, 03080, Republic of Korea
| | - Jae Woo Choi
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eun-Hee Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul, 03080, Republic of Korea; Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
20
|
Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proc Natl Acad Sci U S A 2020; 117:25722-25731. [PMID: 32958655 PMCID: PMC7568265 DOI: 10.1073/pnas.2010196117] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Detection of submicroscopic malaria in asymptomatic individuals is needed for eradication and remains a diagnostic gap in resource-limited settings. Nonfalciparum clinical diagnostics are a second gap, as these infections have a low parasite density and are commonly undetected. We describe an integrated, 60-min, ultrasensitive and specific CRISPR-based diagnostic for the four major pathogenic Plasmodium species that can fill these gaps. Using the SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) platform, we designed assays with limits of detection below that recommended by the World Health Organization. These assays have a simplified sample preparation method: the SHERLOCK parasite rapid extraction protocol, which eliminates complicated nucleic acid extraction steps. Our work further translates the SHERLOCK platform into a field-deployable diagnostic. Asymptomatic carriers of Plasmodium parasites hamper malaria control and eradication. Achieving malaria eradication requires ultrasensitive diagnostics for low parasite density infections (<100 parasites per microliter blood) that work in resource-limited settings (RLS). Sensitive point-of-care diagnostics are also lacking for nonfalciparum malaria, which is characterized by lower density infections and may require additional therapy for radical cure. Molecular methods, such as PCR, have high sensitivity and specificity, but remain high-complexity technologies impractical for RLS. Here we describe a CRISPR-based diagnostic for ultrasensitive detection and differentiation of Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae, using the nucleic acid detection platform SHERLOCK (specific high-sensitivity enzymatic reporter unlocking). We present a streamlined, field-applicable, diagnostic comprised of a 10-min SHERLOCK parasite rapid extraction protocol, followed by SHERLOCK for 60 min for Plasmodium species-specific detection via fluorescent or lateral flow strip readout. We optimized one-pot, lyophilized, isothermal assays with a simplified sample preparation method independent of nucleic acid extraction, and showed that these assays are capable of detection below two parasites per microliter blood, a limit of detection suggested by the World Health Organization. Our P. falciparum and P. vivax assays exhibited 100% sensitivity and specificity on clinical samples (5 P. falciparum and 10 P. vivax samples). This work establishes a field-applicable diagnostic for ultrasensitive detection of asymptomatic carriers as well as a rapid point-of-care clinical diagnostic for nonfalciparum malaria species and low parasite density P. falciparum infections.
Collapse
|
21
|
Medeiros CMP, Moreira EUM, Pires CV, Torres LM, Guimarães LFF, Alves JRS, Lima BAS, Fontes CJF, Costa HL, Brito CFA, Sousa TN, Ntumngia FB, Adams JH, Kano FS, Carvalho LH. Dynamics of IgM and IgG responses to the next generation of engineered Duffy binding protein II immunogen: Strain-specific and strain-transcending immune responses over a nine-year period. PLoS One 2020; 15:e0232786. [PMID: 32379804 PMCID: PMC7205269 DOI: 10.1371/journal.pone.0232786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A low proportion of P. vivax-exposed individuals acquire protective strain-transcending neutralizing IgG antibodies that are able to block the interaction between the Duffy binding protein II (DBPII) and its erythrocyte-specific invasion receptor. In a recent study, a novel surface-engineered DBPII-based vaccine termed DEKnull-2, whose antibody response target conserved DBPII epitopes, was able to induce broadly binding-inhibitory IgG antibodies (BIAbs) that inhibit P. vivax reticulocyte invasion. Toward the development of DEKnull-2 as an effective P. vivax blood-stage vaccine, we investigate the relationship between naturally acquired DBPII-specific IgM response and the profile of IgG antibodies/BIAbs activity over time. METHODOLOGY/PRINCIPAL FINDINGS A nine-year follow-up study was carried-out among long-term P. vivax-exposed Amazonian individuals and included six cross-sectional surveys at periods of high and low malaria transmission. DBPII immune responses associated with either strain-specific (Sal1, natural DBPII variant circulating in the study area) or conserved epitopes (DEKnull-2) were monitored by conventional serology (ELISA-detected IgM and IgG antibodies), with IgG BIAbs activity evaluated by functional assays (in vitro inhibition of DBPII-erythrocyte binding). The results showed a tendency of IgM antibodies toward Sal1-specific response; the profile of Sal1 over DEKnull-2 was not associated with acute malaria and sustained throughout the observation period. The low malaria incidence in two consecutive years allowed us to demonstrate that variant-specific IgG (but not IgM) antibodies waned over time, which resulted in IgG skewed to the DEKnull-2 response. A persistent DBPII-specific IgM response was not associated with the presence (or absence) of broadly neutralizing IgG antibody response. CONCLUSIONS/SIGNIFICANCE The current study demonstrates that long-term exposure to low and unstable levels of P. vivax transmission led to a sustained DBPII-specific IgM response against variant-specific epitopes, while sustained IgG responses are skewed to conserved epitopes. Further studies should investigate on the role of a stable and persistent IgM antibody response in the immune response mediated by DBPII.
Collapse
Affiliation(s)
- Camila M. P. Medeiros
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Camilla V. Pires
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | - Letícia M. Torres
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Bárbara A. S. Lima
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | - Cor J. F. Fontes
- Hospital Júlio Muller, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Helena L. Costa
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | | | - Tais N. Sousa
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Flora S. Kano
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
- * E-mail: (LHC); (FSK)
| | - Luzia H. Carvalho
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail: (LHC); (FSK)
| |
Collapse
|
22
|
Robortella DR, Calvet AA, Amaral LC, Fantin RF, Guimarães LFF, França Dias MH, de Brito CFA, de Sousa TN, Herzog MM, Oliveira-Ferreira J, Carvalho LH. Prospective assessment of malaria infection in a semi-isolated Amazonian indigenous Yanomami community: Transmission heterogeneity and predominance of submicroscopic infection. PLoS One 2020; 15:e0230643. [PMID: 32191777 PMCID: PMC7081991 DOI: 10.1371/journal.pone.0230643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
In the Amazon basin, indigenous forest-dwelling communities typically suffer from a high burden of infectious diseases, including malaria. Difficulties in accessing these isolated ethnic groups, such as the semi-nomadic Yanomami, make official malaria data largely underestimated. In the current study, we longitudinally surveyed microscopic and submicroscopic malaria infection in four Yanomami villages of the Marari community in the northern-most region of the Brazilian Amazon. Malaria parasite species-specific PCR-based detection of ribosomal and non-ribosomal targets showed that approximately 75% to 80% of all malaria infections were submicroscopic, with the ratio of submicroscopic to microscopic infection remaining stable over the 4-month follow-up period. Although the prevalence of malaria infection fluctuated over time, microscopically-detectable parasitemia was only found in children and adolescents, presumably reflecting their higher susceptibility to malaria infection. As well as temporal variation, the prevalence of malaria infection differed significantly between villages (from 1% to 19%), demonstrating a marked heterogeneity at micro-scales. Over the study period, Plasmodium vivax was the most commonly detected malaria parasite species, followed by P. malariae, and much less frequently P. falciparum. Consecutive blood samples from 859 out of the 981 studied Yanomami showed that malaria parasites were detected in only 8% of the previously malaria-positive individuals, with most of them young children (median age 3 yrs). Overall, our results show that molecular tools are more sensitive for the identification of malaria infection among the Yanomami, which is characterized by heterogeneous transmission, a predominance of low-density infections, circulation of multiple malaria parasite species, and a higher susceptibility in young children. Our findings are important for the design and implementation of the new strategic interventions that will be required for the elimination of malaria from isolated indigenous populations in Latin America.
Collapse
Affiliation(s)
- Daniela Rocha Robortella
- Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Instituto René Rachou (FIOCRUZ-MINAS), Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | - Mariza Maia Herzog
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio De Janeiro, Brazil
| | - Joseli Oliveira-Ferreira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio De Janeiro, Brazil
- * E-mail: (LHC); (JOF)
| | - Luzia Helena Carvalho
- Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Instituto René Rachou (FIOCRUZ-MINAS), Belo Horizonte, Brazil
- * E-mail: (LHC); (JOF)
| |
Collapse
|